Pub Date : 2017-02-13DOI: 10.1088/1361-6633/aa574a
Vaccination has saved more lives than any other medical procedure. Pathogens have now evolved that have not succumbed to vaccination using the empirical paradigms pioneered by Pasteur and Jenner. Vaccine design strategies that are based on a mechanistic understanding of the pertinent immunology and virology are required to confront and eliminate these scourges. In this perspective, we describe just a few examples of work aimed to achieve this goal by bringing together approaches from statistical physics with biology and clinical research.
{"title":"Rational design of vaccine targets and strategies for HIV: a crossroad of statistical physics, biology, and medicine","authors":"","doi":"10.1088/1361-6633/aa574a","DOIUrl":"https://doi.org/10.1088/1361-6633/aa574a","url":null,"abstract":"Vaccination has saved more lives than any other medical procedure. Pathogens have now evolved that have not succumbed to vaccination using the empirical paradigms pioneered by Pasteur and Jenner. Vaccine design strategies that are based on a mechanistic understanding of the pertinent immunology and virology are required to confront and eliminate these scourges. In this perspective, we describe just a few examples of work aimed to achieve this goal by bringing together approaches from statistical physics with biology and clinical research.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"4 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2017-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75585402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-10DOI: 10.1088/1361-6633/aa5b0c
L. Greene, J. Thompson, J. Schmalian
The Editorial Board for Reports on Progress in Physics (ROPP) is delighted to announce the publication of a special, focused, issue on ‘strongly correlated electron systems’ or ‘SCES’ containing mini review articles or ‘Report on Progress’ aimed at collectively surveying the status of the field. Strongly correlated electron matter is seen in over 40 classes of materials (including the cuprate and Fe-based high temperature superconductors, organic superconductors, heavy fermions, transition-metal di-chalcogenides, and general quantum critical materials) as pseudogap, electronic stripe, electronic nematic, heavy electron, temperature dependent or novel charge density wave behavior, or any non-Fermi liquid behavior. The understanding of the origin of these emergent collective behaviors represents perhaps the greatest unsolved problem in physics today. It is also widely accepted that finding the solutions to these problems is essential if definitive progress is to be made in the predictive design of functional SCES, such as high-temperature superconductors. This special issue examines the foundations, present status, and future prospects of the field of SCES at over 60 years old. In light of the recent remarkable progress of this field in materials growth, measurement, theory, computation, and our general understanding, this is an opportune time to bring the world’s experts together to remind us of the foundations, elucidate where we are now, and make bold and specific recommendations for the future to aid our progress in solving this complex and important question. We have collected a significant number manuscripts by many of the leading researchers in this area, in the hope that this special issue will provide a timely and valuable resource for the many researches now working in this field, and hope to entice more scientists into this intriguing area of research. L H Greene et al
《物理学进展报告》(ROPP)编辑委员会很高兴地宣布出版一份特别的,集中的,关于“强相关电子系统”或“SCES”的问题,其中包含小型评论文章或“进展报告”,旨在集体调查该领域的现状。在40多种材料(包括铜基和铁基高温超导体、有机超导体、重费米子、过渡金属双硫属化合物和一般量子临界材料)中可以看到强相关电子物质,如赝隙、电子条纹、电子向列、重电子、温度依赖性或新型电荷密度波行为,或任何非费米液体行为。对这些突现的集体行为起源的理解可能是当今物理学中最大的未解决问题。人们也普遍认为,如果要在功能性sce(如高温超导体)的预测设计方面取得决定性进展,找到这些问题的解决方案是必不可少的。本期特刊探讨了60多年来经济社会科学领域的基础、现状和未来前景。鉴于该领域最近在材料生长、测量、理论、计算和我们的一般理解方面取得的显著进展,这是一个将世界上的专家聚集在一起的时机,提醒我们的基础,阐明我们现在所处的位置,并为未来提出大胆而具体的建议,以帮助我们在解决这个复杂而重要的问题方面取得进展。我们收集了该领域许多主要研究人员的大量手稿,希望这一期特刊能为目前在该领域工作的许多研究人员提供及时而有价值的资源,并希望吸引更多的科学家进入这一有趣的研究领域。L H Greene等人
{"title":"Strongly correlated electron systems—reports on the progress of the field","authors":"L. Greene, J. Thompson, J. Schmalian","doi":"10.1088/1361-6633/aa5b0c","DOIUrl":"https://doi.org/10.1088/1361-6633/aa5b0c","url":null,"abstract":"The Editorial Board for Reports on Progress in Physics (ROPP) is delighted to announce the publication of a special, focused, issue on ‘strongly correlated electron systems’ or ‘SCES’ containing mini review articles or ‘Report on Progress’ aimed at collectively surveying the status of the field. Strongly correlated electron matter is seen in over 40 classes of materials (including the cuprate and Fe-based high temperature superconductors, organic superconductors, heavy fermions, transition-metal di-chalcogenides, and general quantum critical materials) as pseudogap, electronic stripe, electronic nematic, heavy electron, temperature dependent or novel charge density wave behavior, or any non-Fermi liquid behavior. The understanding of the origin of these emergent collective behaviors represents perhaps the greatest unsolved problem in physics today. It is also widely accepted that finding the solutions to these problems is essential if definitive progress is to be made in the predictive design of functional SCES, such as high-temperature superconductors. This special issue examines the foundations, present status, and future prospects of the field of SCES at over 60 years old. In light of the recent remarkable progress of this field in materials growth, measurement, theory, computation, and our general understanding, this is an opportune time to bring the world’s experts together to remind us of the foundations, elucidate where we are now, and make bold and specific recommendations for the future to aid our progress in solving this complex and important question. We have collected a significant number manuscripts by many of the leading researchers in this area, in the hope that this special issue will provide a timely and valuable resource for the many researches now working in this field, and hope to entice more scientists into this intriguing area of research. L H Greene et al","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"153 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2017-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74046420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-06DOI: 10.1088/1361-6633/aa518f
F. Monticone, A. Alú
The field of metamaterials has opened landscapes of possibilities in basic science, and a paradigm shift in the way we think about and design emergent material properties. In many scenarios, metamaterial concepts have helped overcome long-held scientific challenges, such as the absence of optical magnetism and the limits imposed by diffraction in optical imaging. As the potential of metamaterials, as well as their limitations, become clearer, these advances in basic science have started to make an impact on several applications in different areas, with far-reaching implications for many scientific and engineering fields. At optical frequencies, the alliance of metamaterials with the fields of plasmonics and nanophotonics can further advance the possibility of controlling light propagation, radiation, localization and scattering in unprecedented ways. In this review article, we discuss the recent progress in the field of metamaterials, with particular focus on how fundamental advances in this field are enabling a new generation of metamaterial, plasmonic and nanophotonic devices. Relevant examples include optical nanocircuits and nanoantennas, invisibility cloaks, superscatterers and superabsorbers, metasurfaces for wavefront shaping and wave-based analog computing, as well as active, nonreciprocal and topological devices. Throughout the paper, we highlight the fundamental limitations and practical challenges associated with the realization of advanced functionalities, and we suggest potential directions to go beyond these limits. Over the next few years, as new scientific breakthroughs are translated into technological advances, the fields of metamaterials, plasmonics and nanophotonics are expected to have a broad impact on a variety of applications in areas of scientific, industrial and societal significance.
{"title":"Metamaterial, plasmonic and nanophotonic devices","authors":"F. Monticone, A. Alú","doi":"10.1088/1361-6633/aa518f","DOIUrl":"https://doi.org/10.1088/1361-6633/aa518f","url":null,"abstract":"The field of metamaterials has opened landscapes of possibilities in basic science, and a paradigm shift in the way we think about and design emergent material properties. In many scenarios, metamaterial concepts have helped overcome long-held scientific challenges, such as the absence of optical magnetism and the limits imposed by diffraction in optical imaging. As the potential of metamaterials, as well as their limitations, become clearer, these advances in basic science have started to make an impact on several applications in different areas, with far-reaching implications for many scientific and engineering fields. At optical frequencies, the alliance of metamaterials with the fields of plasmonics and nanophotonics can further advance the possibility of controlling light propagation, radiation, localization and scattering in unprecedented ways. In this review article, we discuss the recent progress in the field of metamaterials, with particular focus on how fundamental advances in this field are enabling a new generation of metamaterial, plasmonic and nanophotonic devices. Relevant examples include optical nanocircuits and nanoantennas, invisibility cloaks, superscatterers and superabsorbers, metasurfaces for wavefront shaping and wave-based analog computing, as well as active, nonreciprocal and topological devices. Throughout the paper, we highlight the fundamental limitations and practical challenges associated with the realization of advanced functionalities, and we suggest potential directions to go beyond these limits. Over the next few years, as new scientific breakthroughs are translated into technological advances, the fields of metamaterials, plasmonics and nanophotonics are expected to have a broad impact on a variety of applications in areas of scientific, industrial and societal significance.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"17 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2017-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82869138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-03DOI: 10.1088/1361-6633/aa5283
A. Stanislavsky, K. Weron
The paper is devoted to recent advances in stochastic modeling of anomalous kinetic processes observed in dielectric materials which are prominent examples of disordered (complex) systems. Theoretical studies of dynamical properties of ‘structures with variations’ (Goldenfield and Kadanoff 1999 Science 284 87–9) require application of such mathematical tools—by means of which their random nature can be analyzed and, independently of the details distinguishing various systems (dipolar materials, glasses, semiconductors, liquid crystals, polymers, etc), the empirical universal kinetic patterns can be derived. We begin with a brief survey of the historical background of the dielectric relaxation study. After a short outline of the theoretical ideas providing the random tools applicable to modeling of relaxation phenomena, we present probabilistic implications for the study of the relaxation-rate distribution models. In the framework of the probability distribution of relaxation rates we consider description of complex systems, in which relaxing entities form random clusters interacting with each other and single entities. Then we focus on stochastic mechanisms of the relaxation phenomenon. We discuss the diffusion approach and its usefulness for understanding of anomalous dynamics of relaxing systems. We also discuss extensions of the diffusive approach to systems under tempered random processes. Useful relationships among different stochastic approaches to the anomalous dynamics of complex systems allow us to get a fresh look at this subject. The paper closes with a final discussion on achievements of stochastic tools describing the anomalous time evolution of complex systems.
{"title":"Stochastic tools hidden behind the empirical dielectric relaxation laws","authors":"A. Stanislavsky, K. Weron","doi":"10.1088/1361-6633/aa5283","DOIUrl":"https://doi.org/10.1088/1361-6633/aa5283","url":null,"abstract":"The paper is devoted to recent advances in stochastic modeling of anomalous kinetic processes observed in dielectric materials which are prominent examples of disordered (complex) systems. Theoretical studies of dynamical properties of ‘structures with variations’ (Goldenfield and Kadanoff 1999 Science 284 87–9) require application of such mathematical tools—by means of which their random nature can be analyzed and, independently of the details distinguishing various systems (dipolar materials, glasses, semiconductors, liquid crystals, polymers, etc), the empirical universal kinetic patterns can be derived. We begin with a brief survey of the historical background of the dielectric relaxation study. After a short outline of the theoretical ideas providing the random tools applicable to modeling of relaxation phenomena, we present probabilistic implications for the study of the relaxation-rate distribution models. In the framework of the probability distribution of relaxation rates we consider description of complex systems, in which relaxing entities form random clusters interacting with each other and single entities. Then we focus on stochastic mechanisms of the relaxation phenomenon. We discuss the diffusion approach and its usefulness for understanding of anomalous dynamics of relaxing systems. We also discuss extensions of the diffusive approach to systems under tempered random processes. Useful relationships among different stochastic approaches to the anomalous dynamics of complex systems allow us to get a fresh look at this subject. The paper closes with a final discussion on achievements of stochastic tools describing the anomalous time evolution of complex systems.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"9 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2017-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78588413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-01DOI: 10.1088/1361-6633/80/2/026401
Zefeng Ren, Zhigang Sun, Donghui Zhang, Xueming Yang
The concept of the transition state has played an important role in the field of chemical kinetics and reaction dynamics. Reactive resonances in the transition-state region can dramatically enhance the reaction probability; thus investigation of the reactive resonances has attracted great attention from chemical physicists for many decades. In this review, we mainly focus on the recent progress made in probing the elusive resonance phenomenon in the simple A + BC reaction and understanding its nature, especially in the benchmark F/Cl + H2 and their isotopic variants. The signatures of reactive resonances in the integral cross section, differential cross section (DCS), forward- and backward-scattered DCS, and anion photodetachment spectroscopy are comprehensively presented in individual prototype reactions. The dynamical origins of reactive resonances are also discussed in this review, based on information on the wave function in the transition-state region obtained by time-dependent quantum wave-packet calculations.
{"title":"A review of dynamical resonances in A + BC chemical reactions","authors":"Zefeng Ren, Zhigang Sun, Donghui Zhang, Xueming Yang","doi":"10.1088/1361-6633/80/2/026401","DOIUrl":"https://doi.org/10.1088/1361-6633/80/2/026401","url":null,"abstract":"The concept of the transition state has played an important role in the field of chemical kinetics and reaction dynamics. Reactive resonances in the transition-state region can dramatically enhance the reaction probability; thus investigation of the reactive resonances has attracted great attention from chemical physicists for many decades. In this review, we mainly focus on the recent progress made in probing the elusive resonance phenomenon in the simple A + BC reaction and understanding its nature, especially in the benchmark F/Cl + H2 and their isotopic variants. The signatures of reactive resonances in the integral cross section, differential cross section (DCS), forward- and backward-scattered DCS, and anion photodetachment spectroscopy are comprehensively presented in individual prototype reactions. The dynamical origins of reactive resonances are also discussed in this review, based on information on the wave function in the transition-state region obtained by time-dependent quantum wave-packet calculations.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"137 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86289246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-01DOI: 10.1088/1361-6633/80/2/026001
J. Pullin
We present a summary for non-specialists of the special issue of the journal Classical and Quantum Gravity on ‘Milestones of general relativity’, commemorating the 100th anniversary of the theory.
{"title":"Milestones of general relativity","authors":"J. Pullin","doi":"10.1088/1361-6633/80/2/026001","DOIUrl":"https://doi.org/10.1088/1361-6633/80/2/026001","url":null,"abstract":"We present a summary for non-specialists of the special issue of the journal Classical and Quantum Gravity on ‘Milestones of general relativity’, commemorating the 100th anniversary of the theory.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"23 3 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89837162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-01DOI: 10.1088/1361-6633/80/2/026101
M. Oxley, A. Lupini, S. Pennycook
The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. We briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed to describe a more exact imaging theory starting from Yoshioka’s formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.
{"title":"Ultra-high resolution electron microscopy","authors":"M. Oxley, A. Lupini, S. Pennycook","doi":"10.1088/1361-6633/80/2/026101","DOIUrl":"https://doi.org/10.1088/1361-6633/80/2/026101","url":null,"abstract":"The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. We briefly review these advances, the achievement of sub-Ångstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed to describe a more exact imaging theory starting from Yoshioka’s formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"155 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78587178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-01DOI: 10.1088/1361-6633/80/2/026601
K. Greulich
The use of laser microbeams and optical tweezers in a wide field of biological applications from genomic to immunology is discussed. Microperforation is used to introduce a well-defined amount of molecules into cells for genetic engineering and optical imaging. The microwelding of two cells induced by a laser microbeam combines their genetic outfit. Microdissection allows specific regions of genomes to be isolated from a whole set of chromosomes. Handling the cells with optical tweezers supports investigation on the attack of immune systems against diseased or cancerous cells. With the help of laser microbeams, heart infarction can be simulated, and optical tweezers support studies on the heartbeat. Finally, laser microbeams are used to induce DNA damage in living cells for studies on cancer and ageing.
{"title":"Manipulation of cells with laser microbeam scissors and optical tweezers: a review","authors":"K. Greulich","doi":"10.1088/1361-6633/80/2/026601","DOIUrl":"https://doi.org/10.1088/1361-6633/80/2/026601","url":null,"abstract":"The use of laser microbeams and optical tweezers in a wide field of biological applications from genomic to immunology is discussed. Microperforation is used to introduce a well-defined amount of molecules into cells for genetic engineering and optical imaging. The microwelding of two cells induced by a laser microbeam combines their genetic outfit. Microdissection allows specific regions of genomes to be isolated from a whole set of chromosomes. Handling the cells with optical tweezers supports investigation on the attack of immune systems against diseased or cancerous cells. With the help of laser microbeams, heart infarction can be simulated, and optical tweezers support studies on the heartbeat. Finally, laser microbeams are used to induce DNA damage in living cells for studies on cancer and ageing.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"18 1 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80554122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-01DOI: 10.1088/1361-6633/80/2/026502
C. Groves
Charge transport simulation can be a valuable tool to better understand, optimise and design organic transistors (OTFTs), photovoltaics (OPVs), and light-emitting diodes (OLEDs). This review presents an overview of common charge transport and device models; namely drift-diffusion, master equation, mesoscale kinetic Monte Carlo and quantum chemical Monte Carlo, and a discussion of the relative merits of each. This is followed by a review of the application of these models as applied to charge transport in organic semiconductors and devices, highlighting in particular the insights made possible by modelling. The review concludes with an outlook for charge transport modelling in organic electronics.
{"title":"Simulating charge transport in organic semiconductors and devices: a review","authors":"C. Groves","doi":"10.1088/1361-6633/80/2/026502","DOIUrl":"https://doi.org/10.1088/1361-6633/80/2/026502","url":null,"abstract":"Charge transport simulation can be a valuable tool to better understand, optimise and design organic transistors (OTFTs), photovoltaics (OPVs), and light-emitting diodes (OLEDs). This review presents an overview of common charge transport and device models; namely drift-diffusion, master equation, mesoscale kinetic Monte Carlo and quantum chemical Monte Carlo, and a discussion of the relative merits of each. This is followed by a review of the application of these models as applied to charge transport in organic semiconductors and devices, highlighting in particular the insights made possible by modelling. The review concludes with an outlook for charge transport modelling in organic electronics.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"75 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78449112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-31DOI: 10.1088/1361-6633/aa5171
A. Lohrmann, B. Johnson, J. McCallum, S. Castelletto
This paper summarizes key findings in single-photon generation from deep level defects in silicon carbide (SiC) and highlights the significance of these individually addressable centers for emerging quantum applications. Single photon emission from various defect centers in both bulk and nanostructured SiC are discussed as well as their formation and possible integration into optical and electrical devices. The related measurement protocols, the building blocks of quantum communication and computation network architectures in solid state systems, are also summarized. This includes experimental methodologies developed for spin control of different paramagnetic defects, including the measurement of spin coherence times. Well established doping, and micro- and nanofabrication procedures for SiC may allow the quantum properties of paramagnetic defects to be electrically and mechanically controlled efficiently. The integration of single defects into SiC devices is crucial for applications in quantum technologies and we will review progress in this direction.
{"title":"A review on single photon sources in silicon carbide","authors":"A. Lohrmann, B. Johnson, J. McCallum, S. Castelletto","doi":"10.1088/1361-6633/aa5171","DOIUrl":"https://doi.org/10.1088/1361-6633/aa5171","url":null,"abstract":"This paper summarizes key findings in single-photon generation from deep level defects in silicon carbide (SiC) and highlights the significance of these individually addressable centers for emerging quantum applications. Single photon emission from various defect centers in both bulk and nanostructured SiC are discussed as well as their formation and possible integration into optical and electrical devices. The related measurement protocols, the building blocks of quantum communication and computation network architectures in solid state systems, are also summarized. This includes experimental methodologies developed for spin control of different paramagnetic defects, including the measurement of spin coherence times. Well established doping, and micro- and nanofabrication procedures for SiC may allow the quantum properties of paramagnetic defects to be electrically and mechanically controlled efficiently. The integration of single defects into SiC devices is crucial for applications in quantum technologies and we will review progress in this direction.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"133 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2017-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75136337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}