Pub Date : 2019-09-01Epub Date: 2019-08-01DOI: 10.1088/1361-6633/ab37d4
J Gardner, Atul Thakre, Ashok Kumar, J F Scott
We review all the published literature and show that there is no experimental evidence for homogeneous tin titanate SnTiO3 in bulk or thin-film form. Instead a combination of unrelated artefacts are easily misinterpreted. The x-ray Bragg data are contaminated by double scattering from the Si substrate, giving a strong line at the 2θ angle exactly where perovskite SnTiO3 should appear. The strong dielectric divergence near 560 K is irreversible and arises from oxygen site detrapping, accompanied by Warburg/Randles interfacial anomalies. The small (4 µC cm-2) apparent ferroelectric hysteresis remains in samples shown to be pure (Sn,Ti)O2 rutile/cassiterite, in which ferroelectricity is forbidden. Only very recent work reveals real bulk SnTiO3, but it possesses an ilmenite-like structure with an elaborate array of stacking faults, not suitable for ferroelectric devices. Unpublished TEM data reveal an inhomogeneous SnO layered structured thin films, related to shell-core structures. The harsh conclusion is that there is a combination of unrelated artefacts masquerading as ferroelectricity in powders and ALD films; and only a trace of a second phase in PLD film data suggests any perovskite content at all. The fact that x-ray, dielectric, and hysteresis data all lead to the wrong conclusion is instructive and reminds us of earlier work on copper calcium titanate (a well-known boundary-layer capacitor).
{"title":"Tin titanate-the hunt for a new ferroelectric perovskite.","authors":"J Gardner, Atul Thakre, Ashok Kumar, J F Scott","doi":"10.1088/1361-6633/ab37d4","DOIUrl":"10.1088/1361-6633/ab37d4","url":null,"abstract":"<p><p>We review all the published literature and show that there is no experimental evidence for homogeneous tin titanate SnTiO<sub>3</sub> in bulk or thin-film form. Instead a combination of unrelated artefacts are easily misinterpreted. The x-ray Bragg data are contaminated by double scattering from the Si substrate, giving a strong line at the 2θ angle exactly where perovskite SnTiO<sub>3</sub> should appear. The strong dielectric divergence near 560 K is irreversible and arises from oxygen site detrapping, accompanied by Warburg/Randles interfacial anomalies. The small (4 µC cm<sup>-2</sup>) apparent ferroelectric hysteresis remains in samples shown to be pure (Sn,Ti)O<sub>2</sub> rutile/cassiterite, in which ferroelectricity is forbidden. Only very recent work reveals real bulk SnTiO<sub>3</sub>, but it possesses an ilmenite-like structure with an elaborate array of stacking faults, not suitable for ferroelectric devices. Unpublished TEM data reveal an inhomogeneous SnO layered structured thin films, related to shell-core structures. The harsh conclusion is that there is a combination of unrelated artefacts masquerading as ferroelectricity in powders and ALD films; and only a trace of a second phase in PLD film data suggests any perovskite content at all. The fact that x-ray, dielectric, and hysteresis data all lead to the wrong conclusion is instructive and reminds us of earlier work on copper calcium titanate (a well-known boundary-layer capacitor).</p>","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"55 1","pages":"092501"},"PeriodicalIF":20.7,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80442323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-10-29DOI: 10.1088/1361-6633/AAE6B2
T. Zanon-Willette, R. Lefevre, R. Metzdorff, N. Sillitoe, S. Almonacil, M. Minissale, E. de Clercq, A. Taichenachev, V. Yudin, E. Arimondo
{"title":"Corrigendum: Composite laser-pulses spectroscopy for high-accuracy optical clocks: a review of recent progress and perspectives (2018 Rep. Prog. Phys. 81 094401)","authors":"T. Zanon-Willette, R. Lefevre, R. Metzdorff, N. Sillitoe, S. Almonacil, M. Minissale, E. de Clercq, A. Taichenachev, V. Yudin, E. Arimondo","doi":"10.1088/1361-6633/AAE6B2","DOIUrl":"https://doi.org/10.1088/1361-6633/AAE6B2","url":null,"abstract":"","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"6 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2018-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73934640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-10-08DOI: 10.1088/0034-4885/38/8/001
J. B. Birks
Excimers are dimers with associated excited electronic states, dissociative ground states, and structureless emission spectra. Noble and other monatomic gases form atomic excimers. Aromatic molecules form excimers in fluid solutions, liquids, crystals and polymers, at crystal defects, and intramolecularly. Excimer interaction is attributed to configurational mixing of exciton and charge resonance states. The helium excimer and pyrene crystal dimer potential curves are compared. Aromatic excimers are discussed. Related photophysical studies on atomic excimers are considered. Saturated amines, which exhibit vapour and solution excimer fluorescence, provide a link between atomic and aromatic excimers. Aromatic molecules form complexes, exciplexes or mixed excimers with different molecules, and noble gas atoms form complexes or exciplexes with different atoms. Review completed in 1975.
{"title":"Excimers","authors":"J. B. Birks","doi":"10.1088/0034-4885/38/8/001","DOIUrl":"https://doi.org/10.1088/0034-4885/38/8/001","url":null,"abstract":"Excimers are dimers with associated excited electronic states, dissociative ground states, and structureless emission spectra. Noble and other monatomic gases form atomic excimers. Aromatic molecules form excimers in fluid solutions, liquids, crystals and polymers, at crystal defects, and intramolecularly. Excimer interaction is attributed to configurational mixing of exciton and charge resonance states. The helium excimer and pyrene crystal dimer potential curves are compared. Aromatic excimers are discussed. Related photophysical studies on atomic excimers are considered. Saturated amines, which exhibit vapour and solution excimer fluorescence, provide a link between atomic and aromatic excimers. Aromatic molecules form complexes, exciplexes or mixed excimers with different molecules, and noble gas atoms form complexes or exciplexes with different atoms. Review completed in 1975.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"1 1","pages":"903 - 974"},"PeriodicalIF":18.1,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90319641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-09DOI: 10.1088/1361-6633/aa97a8
S. Nagataki
Long GRBs are the most powerful explosions in the universe since the Big Bang. At least, some fraction of long GRBs are born from the death of massive stars. Likewise, only some fraction of massive stars that satisfy additional special conditions explode as long GRBs associated with supernovae/hypernovae. In this paper, we discuss the explosion mechanism of long GRBs associated with hypernovae: ‘the central engine of long GRBs’. The central engine of long GRBs is very different from that of core-collapse supernovae, although the mechanism of the engine is still not firmly established. In this paper, we review theoretical studies of the central engine of long GRBs. First, we discuss possible progenitor stars. Then several promising mechanisms of the central engine—such as black hole and magnetar formation—will be reviewed. We will also mention some more exotic models. Finally, we describe prospects for future studies of the central engine of long GRBs.
{"title":"Theories of central engine for long gamma-ray bursts","authors":"S. Nagataki","doi":"10.1088/1361-6633/aa97a8","DOIUrl":"https://doi.org/10.1088/1361-6633/aa97a8","url":null,"abstract":"Long GRBs are the most powerful explosions in the universe since the Big Bang. At least, some fraction of long GRBs are born from the death of massive stars. Likewise, only some fraction of massive stars that satisfy additional special conditions explode as long GRBs associated with supernovae/hypernovae. In this paper, we discuss the explosion mechanism of long GRBs associated with hypernovae: ‘the central engine of long GRBs’. The central engine of long GRBs is very different from that of core-collapse supernovae, although the mechanism of the engine is still not firmly established. In this paper, we review theoretical studies of the central engine of long GRBs. First, we discuss possible progenitor stars. Then several promising mechanisms of the central engine—such as black hole and magnetar formation—will be reviewed. We will also mention some more exotic models. Finally, we describe prospects for future studies of the central engine of long GRBs.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"73 4","pages":""},"PeriodicalIF":18.1,"publicationDate":"2018-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1361-6633/aa97a8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72445071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-06-02DOI: 10.1088/1361-6633/aa5e03
Yue Zheng, Wei Chen
Topological defects in condensed matter are attracting e significant attention due to their important role in phase transition and their fascinating characteristics. Among the various types of matter, ferroics which possess a switchable physical characteristic and form domain structure are ideal systems to form topological defects. In particular, a special class of topological defects—vortices—have been found to commonly exist in ferroics. They often manifest themselves as singular regions where domains merge in large systems, or stabilize as novel order states instead of forming domain structures in small enough systems. Understanding the characteristics and controllability of vortices in ferroics can provide us with deeper insight into the phase transition of condensed matter and also exciting opportunities in designing novel functional devices such as nano-memories, sensors, and transducers based on topological defects. In this review, we summarize the recent experimental and theoretical progress in ferroic vortices, with emphasis on those spin/dipole vortices formed in nanoscale ferromagnetics and ferroelectrics, and those structural domain vortices formed in multiferroic hexagonal manganites. We begin with an overview of this field. The fundamental concepts of ferroic vortices, followed by the theoretical simulation and experimental methods to explore ferroic vortices, are then introduced. The various characteristics of vortices (e.g. formation mechanisms, static/dynamic features, and electronic properties) and their controllability (e.g. by size, geometry, external thermal, electrical, magnetic, or mechanical fields) in ferromagnetics, ferroelectrics, and multiferroics are discussed in detail in individual sections. Finally, we conclude this review with an outlook on this rapidly developing field.
{"title":"Characteristics and controllability of vortices in ferromagnetics, ferroelectrics, and multiferroics","authors":"Yue Zheng, Wei Chen","doi":"10.1088/1361-6633/aa5e03","DOIUrl":"https://doi.org/10.1088/1361-6633/aa5e03","url":null,"abstract":"Topological defects in condensed matter are attracting e significant attention due to their important role in phase transition and their fascinating characteristics. Among the various types of matter, ferroics which possess a switchable physical characteristic and form domain structure are ideal systems to form topological defects. In particular, a special class of topological defects—vortices—have been found to commonly exist in ferroics. They often manifest themselves as singular regions where domains merge in large systems, or stabilize as novel order states instead of forming domain structures in small enough systems. Understanding the characteristics and controllability of vortices in ferroics can provide us with deeper insight into the phase transition of condensed matter and also exciting opportunities in designing novel functional devices such as nano-memories, sensors, and transducers based on topological defects. In this review, we summarize the recent experimental and theoretical progress in ferroic vortices, with emphasis on those spin/dipole vortices formed in nanoscale ferromagnetics and ferroelectrics, and those structural domain vortices formed in multiferroic hexagonal manganites. We begin with an overview of this field. The fundamental concepts of ferroic vortices, followed by the theoretical simulation and experimental methods to explore ferroic vortices, are then introduced. The various characteristics of vortices (e.g. formation mechanisms, static/dynamic features, and electronic properties) and their controllability (e.g. by size, geometry, external thermal, electrical, magnetic, or mechanical fields) in ferromagnetics, ferroelectrics, and multiferroics are discussed in detail in individual sections. Finally, we conclude this review with an outlook on this rapidly developing field.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"19 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2017-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83805851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-04-10DOI: 10.1088/1361-6633/aa6172
D. Mcgloin
It is perhaps surprising that something as fragile as a microscopic droplet could possibly form a laser. In this article we will review some of the underpinning physics as to how this might be possible, and then examine the state of the art in the field. The technology to create and manipulate droplets will be examined, as will the different classes of droplet lasers. We discuss the rapidly developing fields of droplet biolasers, liquid crystal laser droplets and explore how droplet lasers could give rise to new bio and chemical sensing and analysis. The challenges that droplet lasers face in becoming robust devices, either as sensors or as photonic components in the lab on chip devices, is assessed.
{"title":"Droplet lasers: a review of current progress","authors":"D. Mcgloin","doi":"10.1088/1361-6633/aa6172","DOIUrl":"https://doi.org/10.1088/1361-6633/aa6172","url":null,"abstract":"It is perhaps surprising that something as fragile as a microscopic droplet could possibly form a laser. In this article we will review some of the underpinning physics as to how this might be possible, and then examine the state of the art in the field. The technology to create and manipulate droplets will be examined, as will the different classes of droplet lasers. We discuss the rapidly developing fields of droplet biolasers, liquid crystal laser droplets and explore how droplet lasers could give rise to new bio and chemical sensing and analysis. The challenges that droplet lasers face in becoming robust devices, either as sensors or as photonic components in the lab on chip devices, is assessed.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"3 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2017-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82170754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-04-10DOI: 10.1088/1361-6633/aa56f0
W. Weber, T. Mikolajick
Research in the field of electronics of 1D group-IV semiconductor structures has attracted increasing attention over the past 15 years. The exceptional combination of the unique 1D electronic transport properties with the mature material know-how of highly integrated silicon and germanium technology holds the promise of enhancing state-of-the-art electronics. In addition of providing conduction channels that can bring conventional field effect transistors to the uttermost scaling limits, the physics of 1D group IV nanowires endows new device principles. Such unconventional silicon and germanium nanowire devices are contenders for beyond complementary metal oxide semiconductor (CMOS) computing by virtue of their distinct switching behavior and higher expressive value. This review conveys to the reader a systematic recapitulation and analysis of the physics of silicon and germanium nanowires and the most relevant CMOS and CMOS-like devices built from silicon and germanium nanowires, including inversion mode, junctionless, steep-slope, quantum well and reconfigurable transistors.
{"title":"Silicon and germanium nanowire electronics: physics of conventional and unconventional transistors","authors":"W. Weber, T. Mikolajick","doi":"10.1088/1361-6633/aa56f0","DOIUrl":"https://doi.org/10.1088/1361-6633/aa56f0","url":null,"abstract":"Research in the field of electronics of 1D group-IV semiconductor structures has attracted increasing attention over the past 15 years. The exceptional combination of the unique 1D electronic transport properties with the mature material know-how of highly integrated silicon and germanium technology holds the promise of enhancing state-of-the-art electronics. In addition of providing conduction channels that can bring conventional field effect transistors to the uttermost scaling limits, the physics of 1D group IV nanowires endows new device principles. Such unconventional silicon and germanium nanowire devices are contenders for beyond complementary metal oxide semiconductor (CMOS) computing by virtue of their distinct switching behavior and higher expressive value. This review conveys to the reader a systematic recapitulation and analysis of the physics of silicon and germanium nanowires and the most relevant CMOS and CMOS-like devices built from silicon and germanium nanowires, including inversion mode, junctionless, steep-slope, quantum well and reconfigurable transistors.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"126 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2017-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85105653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-03-13DOI: 10.1088/1361-6633/aa5aeb
K. Sneppen
This review emphasizes aspects of biology that can be understood through repeated applications of simple causal rules. The selected topics include perspectives on gene regulation, phage lambda development, epigenetics, microbial ecology, as well as model approaches to diversity and to punctuated equilibrium in evolution. Two outstanding features are repeatedly described. One is the minimal number of rules to sustain specific states of complex systems for a long time. The other is the collapse of such states and the subsequent dynamical cycle of situations that restitute the system to a potentially new metastable state.
{"title":"Models of life: epigenetics, diversity and cycles","authors":"K. Sneppen","doi":"10.1088/1361-6633/aa5aeb","DOIUrl":"https://doi.org/10.1088/1361-6633/aa5aeb","url":null,"abstract":"This review emphasizes aspects of biology that can be understood through repeated applications of simple causal rules. The selected topics include perspectives on gene regulation, phage lambda development, epigenetics, microbial ecology, as well as model approaches to diversity and to punctuated equilibrium in evolution. Two outstanding features are repeatedly described. One is the minimal number of rules to sustain specific states of complex systems for a long time. The other is the collapse of such states and the subsequent dynamical cycle of situations that restitute the system to a potentially new metastable state.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"4 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88805987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-17DOI: 10.1088/1361-6633/aa538e
R. Yuan, Xiaomei Zhu, Gaowei Wang, Site Li, P. Ao
Cancer is a complex disease: its pathology cannot be properly understood in terms of independent players—genes, proteins, molecular pathways, or their simple combinations. This is similar to many-body physics of a condensed phase that many important properties are not determined by a single atom or molecule. The rapidly accumulating large ‘omics’ data also require a new mechanistic and global underpinning to organize for rationalizing cancer complexity. A unifying and quantitative theory was proposed by some of the present authors that cancer is a robust state formed by the endogenous molecular–cellular network, which is evolutionarily built for the developmental processes and physiological functions. Cancer state is not optimized for the whole organism. The discovery of crucial players in cancer, together with their developmental and physiological roles, in turn, suggests the existence of a hierarchical structure within molecular biology systems. Such a structure enables a decision network to be constructed from experimental knowledge. By examining the nonlinear stochastic dynamics of the network, robust states corresponding to normal physiological and abnormal pathological phenotypes, including cancer, emerge naturally. The nonlinear dynamical model of the network leads to a more encompassing understanding than the prevailing linear-additive thinking in cancer research. So far, this theory has been applied to prostate, hepatocellular, gastric cancers and acute promyelocytic leukemia with initial success. It may offer an example of carrying physics inquiring spirit beyond its traditional domain: while quantitative approaches can address individual cases, however there must be general rules/laws to be discovered in biology and medicine.
{"title":"Cancer as robust intrinsic state shaped by evolution: a key issues review","authors":"R. Yuan, Xiaomei Zhu, Gaowei Wang, Site Li, P. Ao","doi":"10.1088/1361-6633/aa538e","DOIUrl":"https://doi.org/10.1088/1361-6633/aa538e","url":null,"abstract":"Cancer is a complex disease: its pathology cannot be properly understood in terms of independent players—genes, proteins, molecular pathways, or their simple combinations. This is similar to many-body physics of a condensed phase that many important properties are not determined by a single atom or molecule. The rapidly accumulating large ‘omics’ data also require a new mechanistic and global underpinning to organize for rationalizing cancer complexity. A unifying and quantitative theory was proposed by some of the present authors that cancer is a robust state formed by the endogenous molecular–cellular network, which is evolutionarily built for the developmental processes and physiological functions. Cancer state is not optimized for the whole organism. The discovery of crucial players in cancer, together with their developmental and physiological roles, in turn, suggests the existence of a hierarchical structure within molecular biology systems. Such a structure enables a decision network to be constructed from experimental knowledge. By examining the nonlinear stochastic dynamics of the network, robust states corresponding to normal physiological and abnormal pathological phenotypes, including cancer, emerge naturally. The nonlinear dynamical model of the network leads to a more encompassing understanding than the prevailing linear-additive thinking in cancer research. So far, this theory has been applied to prostate, hepatocellular, gastric cancers and acute promyelocytic leukemia with initial success. It may offer an example of carrying physics inquiring spirit beyond its traditional domain: while quantitative approaches can address individual cases, however there must be general rules/laws to be discovered in biology and medicine.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"266 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2017-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79776974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-13DOI: 10.1088/1361-6633/aa574a
Vaccination has saved more lives than any other medical procedure. Pathogens have now evolved that have not succumbed to vaccination using the empirical paradigms pioneered by Pasteur and Jenner. Vaccine design strategies that are based on a mechanistic understanding of the pertinent immunology and virology are required to confront and eliminate these scourges. In this perspective, we describe just a few examples of work aimed to achieve this goal by bringing together approaches from statistical physics with biology and clinical research.
{"title":"Rational design of vaccine targets and strategies for HIV: a crossroad of statistical physics, biology, and medicine","authors":"","doi":"10.1088/1361-6633/aa574a","DOIUrl":"https://doi.org/10.1088/1361-6633/aa574a","url":null,"abstract":"Vaccination has saved more lives than any other medical procedure. Pathogens have now evolved that have not succumbed to vaccination using the empirical paradigms pioneered by Pasteur and Jenner. Vaccine design strategies that are based on a mechanistic understanding of the pertinent immunology and virology are required to confront and eliminate these scourges. In this perspective, we describe just a few examples of work aimed to achieve this goal by bringing together approaches from statistical physics with biology and clinical research.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"4 1","pages":""},"PeriodicalIF":18.1,"publicationDate":"2017-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75585402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}