Pub Date : 2023-10-31DOI: 10.54910/sabrao2023.55.5.27
K SUKWIWAT, J KUMCHAI, W BUNDITHYA, N POTAPOHN
This research’s objectives focused on using two male-sterile systems, apetaloid and petaloid types, as female parents for the F1 marigold cut flower hybrid development. These female lines’ creation came from the same original line, the gynomonoecious line, with five backcrosses to obtain two female lines, FY1502 and FY1502AP. Their crossing with 10 male lines progressed during the summer from April to August 2016. Then, growing the progenies of 20 crosses and four commercial varieties as checks for characterization and evaluation continued in a lattice design with two replications. Planting them in six blocks contained 10 plants per treatment. The data recorded on eight horticultural characteristics include flower diameter, number of petals per flower, calyx length, peduncle length, flower weight, the number of days from sowing to first flowering, plant height, and plant bush diameter, as well as, the morphology of flowers. The results showed that progenies from two female apetaloid and petaloid with the same male line gave similar outcomes; all progenies produced male sterile double-flowers with golden-yellow flowers, except progenies of MY1501 and MY1502, which created yellow flowers. FY1502 gave the same superior F1 progenies as FY1502AP in the diameter of the flower. Based on the results, both females could give good characteristics on flower diameter, calyx length, plant height and bush diameter, and early flowering. However, the heterobeltiosis of the F1 progenies of a few vegetative and reproductive characteristics differed. The FY1502AP gave better progenies in peduncle length heterobeltiosis than those of FY1502 and slightly better for plant bush diameter, whereas FY1502 gave slightly better in flower weight heterobeltiosis than those of FY1502AP. The findings of this study indicate that this apetaloid type could benefit Thailand’s marigold seed production program.
{"title":"APETALOID AND PETALOID FEMALE PERFORMANCE ON HORTICULTURAL CHARACTERISTICS OF F1 AMERICAN MARIGOLD (TAGETES ERECTA L.) HYBRIDS","authors":"K SUKWIWAT, J KUMCHAI, W BUNDITHYA, N POTAPOHN","doi":"10.54910/sabrao2023.55.5.27","DOIUrl":"https://doi.org/10.54910/sabrao2023.55.5.27","url":null,"abstract":"This research’s objectives focused on using two male-sterile systems, apetaloid and petaloid types, as female parents for the F1 marigold cut flower hybrid development. These female lines’ creation came from the same original line, the gynomonoecious line, with five backcrosses to obtain two female lines, FY1502 and FY1502AP. Their crossing with 10 male lines progressed during the summer from April to August 2016. Then, growing the progenies of 20 crosses and four commercial varieties as checks for characterization and evaluation continued in a lattice design with two replications. Planting them in six blocks contained 10 plants per treatment. The data recorded on eight horticultural characteristics include flower diameter, number of petals per flower, calyx length, peduncle length, flower weight, the number of days from sowing to first flowering, plant height, and plant bush diameter, as well as, the morphology of flowers. The results showed that progenies from two female apetaloid and petaloid with the same male line gave similar outcomes; all progenies produced male sterile double-flowers with golden-yellow flowers, except progenies of MY1501 and MY1502, which created yellow flowers. FY1502 gave the same superior F1 progenies as FY1502AP in the diameter of the flower. Based on the results, both females could give good characteristics on flower diameter, calyx length, plant height and bush diameter, and early flowering. However, the heterobeltiosis of the F1 progenies of a few vegetative and reproductive characteristics differed. The FY1502AP gave better progenies in peduncle length heterobeltiosis than those of FY1502 and slightly better for plant bush diameter, whereas FY1502 gave slightly better in flower weight heterobeltiosis than those of FY1502AP. The findings of this study indicate that this apetaloid type could benefit Thailand’s marigold seed production program.","PeriodicalId":21328,"journal":{"name":"Sabrao Journal of Breeding and Genetics","volume":"17 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135929531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-31DOI: 10.54910/sabrao2023.55.5.10
A NARIMONOV, A AZIMOV, N YAKUBJANOVA, J SHAVKIEV
The responses of cotton (Gossypium hirsutum L.) seeds to germination depend upon the point in the germination-through-emergence sequence at which seed environmental conditions conclude to promote germination and seedling development. Temperature and genotype can influence seedling vigor in upland cotton and help identify promising genotypes that could perform well under different temperature extremes. In the presented research, the nature of the development of cotton seeds largely depends on temperature conditions and the growing seasons, which provide information that determines their uniformity based on the thermal regime of germination. The physical and biological diversity of cotton seeds has close relations to the pattern of plant development and the influence of certain environmental factors on them. In the presented study, sowing seeds of three local cotton cultivars, AN-Bayaut-2, Tashkent-6, and Armugon-2, transpired on two dates (April 17 and May 10). The nature of cotton seeds’ development, largely dependent on temperature and growing season and on the thermal regime of their germination, showed different indicators. A discovery revealed that the germination of seeds decreased in areas with later-sown kernels. In terms of germination energy and other physiological functions, the best results were notable in seeds at the lower and middle stages of plant development. The cultivar AN-Bayaut-2 is adaptable to various environmental factors according to seed germination and vegetation period compared with other local cotton varieties, i.e., Tashkent-6 and Armugon-2.
{"title":"SCIENTIFIC BASIS OF COTTON SEED GERMINATION IN THE CENTRAL REGION OF UZBEKISTAN","authors":"A NARIMONOV, A AZIMOV, N YAKUBJANOVA, J SHAVKIEV","doi":"10.54910/sabrao2023.55.5.10","DOIUrl":"https://doi.org/10.54910/sabrao2023.55.5.10","url":null,"abstract":"The responses of cotton (Gossypium hirsutum L.) seeds to germination depend upon the point in the germination-through-emergence sequence at which seed environmental conditions conclude to promote germination and seedling development. Temperature and genotype can influence seedling vigor in upland cotton and help identify promising genotypes that could perform well under different temperature extremes. In the presented research, the nature of the development of cotton seeds largely depends on temperature conditions and the growing seasons, which provide information that determines their uniformity based on the thermal regime of germination. The physical and biological diversity of cotton seeds has close relations to the pattern of plant development and the influence of certain environmental factors on them. In the presented study, sowing seeds of three local cotton cultivars, AN-Bayaut-2, Tashkent-6, and Armugon-2, transpired on two dates (April 17 and May 10). The nature of cotton seeds’ development, largely dependent on temperature and growing season and on the thermal regime of their germination, showed different indicators. A discovery revealed that the germination of seeds decreased in areas with later-sown kernels. In terms of germination energy and other physiological functions, the best results were notable in seeds at the lower and middle stages of plant development. The cultivar AN-Bayaut-2 is adaptable to various environmental factors according to seed germination and vegetation period compared with other local cotton varieties, i.e., Tashkent-6 and Armugon-2.","PeriodicalId":21328,"journal":{"name":"Sabrao Journal of Breeding and Genetics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135809261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One of the most serious issues confronting the global food system is the wastage of approximately one-third of food at various points throughout the supply chain due to environmental and economic factors. Declines in production and food quality deterioration are concerns due to less awareness of the farming community and end users about the advanced technologies. Therefore, scientists face to develop cutting-edge technology to solve these problems and feed the bulging population to prevent starvation. Genetic engineering (GE) techniques can aid in several contexts to boost crop yields and quality. Biotechnology, genetic modification, and recombinant (r) deoxyribonucleic acid (DNA) technologies are significantly beneficial in pursuing chief progress in food production and supply. This latest literature review illustrates the recent advances in GE, their sources, current trends, and future. GE foods from animals, microbes, and crop plants have altered DNA and introduced modified genetic characteristics. Genetically modified organisms (GMOs) are vital parts of the industrial food system, and most packaged foods contain GMO ingredients that received engineering for resistance to pesticides and herbicides. Several issues raise red flags concerning GMOs, including safety, effects on the environment, and ineffective usage of pesticides. Many people are anxious about GMOs; however, most do not understand the problems.
{"title":"ROLE OF BIOTECHNOLOGY IN FOOD SECURITY: A REVIEW","authors":"F.O. ARECHE, A.H. GONDAL, L.A. SUMARRIVA-BUSTINZA, N.O. ZELA-PAYI, J.M. SUMARRIVA-BUSTINZA, R.B. OSCANOA-LEON, A.F. CALCINASOTELO, M.C.T.T.D AGUILAR, E.R. ACOSTA-LOPEZ, J.A. JULCAHUANGA-DOMINGUEZ, DDC FLORES, MAC HUAYAPA, EMF DONAYRE, AR RODRIGUEZ, ZLDL CRUZ, CWT HUAMAN, LDM PERALES","doi":"10.54910/sabrao2023.55.5.5","DOIUrl":"https://doi.org/10.54910/sabrao2023.55.5.5","url":null,"abstract":"One of the most serious issues confronting the global food system is the wastage of approximately one-third of food at various points throughout the supply chain due to environmental and economic factors. Declines in production and food quality deterioration are concerns due to less awareness of the farming community and end users about the advanced technologies. Therefore, scientists face to develop cutting-edge technology to solve these problems and feed the bulging population to prevent starvation. Genetic engineering (GE) techniques can aid in several contexts to boost crop yields and quality. Biotechnology, genetic modification, and recombinant (r) deoxyribonucleic acid (DNA) technologies are significantly beneficial in pursuing chief progress in food production and supply. This latest literature review illustrates the recent advances in GE, their sources, current trends, and future. GE foods from animals, microbes, and crop plants have altered DNA and introduced modified genetic characteristics. Genetically modified organisms (GMOs) are vital parts of the industrial food system, and most packaged foods contain GMO ingredients that received engineering for resistance to pesticides and herbicides. Several issues raise red flags concerning GMOs, including safety, effects on the environment, and ineffective usage of pesticides. Many people are anxious about GMOs; however, most do not understand the problems.","PeriodicalId":21328,"journal":{"name":"Sabrao Journal of Breeding and Genetics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135871812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-31DOI: 10.54910/sabrao2023.55.5.24
KR AISAKULOVA, ND SLYAMOVA, AM USTEMIROVA, AA SEISENOVA, SZH KAZYBAYEVA, S SKAK, ZH MATAI
Intensive farming has adversely affected soil fertility and ecosystems due to excessive chemicalization in the Kazakhstan Republic. The soil lacks organic matter, leading to declining fertility. Biologization has emerged to address this issue as a solution to improve soil fertility and enhance the growth and development of crop plants. This study aimed to determine the impact of organic fertilizers on the composition of soil microflora and biometric values in cultivating stone and pome fruits. The use of microbiological methods analyzed soil microflora and physiological bacterial groups. The research’s novelty lies in developing a technology that utilizes organic fertilizers and biological products to improve the activities of soil microorganisms and plant roots’ nutrition. Organic fertilizers ‘Bio juice Energy Plus’ and ‘Agroflorin’ positively influenced beneficial bacteria and fungi and significantly contributed to soil enrichment. Organic fertilizers and biological products support soil biological processes and replenish the nutrients, promoting sustainable agricultural productivity and reducing chemical dependency. The current study emphasizes the potential of organic fertilizers and natural products in enhancing soil fertility and supporting plant growth in Kazakhstan. Biologization also offers an eco-friendly approach to agricultural practices, ensuring agronomic productivity and the long-term good health of soils.
在哈萨克斯坦共和国,由于过度化学化,集约化耕作对土壤肥力和生态系统产生了不利影响。土壤缺乏有机质,导致肥力下降。生物化是为了解决这一问题而出现的,它是一种改善土壤肥力和促进作物生长发育的解决方案。本研究旨在确定有机肥对石果和梨果栽培土壤微生物区系组成及生物计量学值的影响。利用微生物学方法分析了土壤微生物区系和生理菌群。该研究的新颖之处在于开发了一种利用有机肥和生物制品来改善土壤微生物活动和植物根系营养的技术。有机肥“Bio juice Energy Plus”和“Agroflorin”对有益菌和真菌有积极影响,对土壤富集有显著贡献。有机肥和生物制品支持土壤生物过程,补充养分,促进可持续农业生产力,减少对化学物质的依赖。目前的研究强调了有机肥料和天然产品在提高哈萨克斯坦土壤肥力和支持植物生长方面的潜力。生物化还为农业实践提供了一种生态友好的方法,确保了农业生产力和土壤的长期健康。
{"title":"ORGANIC FERTILIZER'S ROLE IN THE IMPROVEMENT OF SOIL MICROFLORA AND BIOMETRIC VALUES IN FRUIT CROPS","authors":"KR AISAKULOVA, ND SLYAMOVA, AM USTEMIROVA, AA SEISENOVA, SZH KAZYBAYEVA, S SKAK, ZH MATAI","doi":"10.54910/sabrao2023.55.5.24","DOIUrl":"https://doi.org/10.54910/sabrao2023.55.5.24","url":null,"abstract":"Intensive farming has adversely affected soil fertility and ecosystems due to excessive chemicalization in the Kazakhstan Republic. The soil lacks organic matter, leading to declining fertility. Biologization has emerged to address this issue as a solution to improve soil fertility and enhance the growth and development of crop plants. This study aimed to determine the impact of organic fertilizers on the composition of soil microflora and biometric values in cultivating stone and pome fruits. The use of microbiological methods analyzed soil microflora and physiological bacterial groups. The research’s novelty lies in developing a technology that utilizes organic fertilizers and biological products to improve the activities of soil microorganisms and plant roots’ nutrition. Organic fertilizers ‘Bio juice Energy Plus’ and ‘Agroflorin’ positively influenced beneficial bacteria and fungi and significantly contributed to soil enrichment. Organic fertilizers and biological products support soil biological processes and replenish the nutrients, promoting sustainable agricultural productivity and reducing chemical dependency. The current study emphasizes the potential of organic fertilizers and natural products in enhancing soil fertility and supporting plant growth in Kazakhstan. Biologization also offers an eco-friendly approach to agricultural practices, ensuring agronomic productivity and the long-term good health of soils.","PeriodicalId":21328,"journal":{"name":"Sabrao Journal of Breeding and Genetics","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135928027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-31DOI: 10.54910/sabrao2023.55.5.22
None JASMI, M AFRILLAH, A NASUTION
Determining the effects of the refugia plant on the whitefly population and the production of several cultivars of red chili (Capsicum annuum L.) was the focus of research conducted from March to June 2019 in the experimental garden, Faculty of Agriculture, Teuku Umar University, Meulaboh, West Aceh Regency, Indonesia. The genetic materials consisted of three chili genotypes, i.e., cultivar TM-999 and two hybrid cultivars, Lado F1 and Lidia F1. The experiment in a 3 × 2 split plot design had three replications. The factor studied was the presence of a whitefly. The Refugia (R) plants, used as main plots, included R0 = Control, R1 = Zinnia, and R2 = Kenikir. Red chili genotypes comprised the sub-plots, i.e., V1 = TM-999, V2 = Lado F1, and V3 = Lidia F1. The studied variables were the whitefly population determination, the percentage of attack rate, and the chili production per plot. The results showed that Refugia plants greatly affected the whitefly population, portion of pest attack rates, and chili production per plot. Specifically, the refugia plant highly affected the whitefly population (Refugia kenikir 1.41% compared with control 11.89%), the percentage rate of pest attack (Refugia kenikir 44.44% compared with 100% of check), and production per plot (kenikir 23.59 g compared with the control’s 23.07 g). Refugia plants are influential in reducing whitefly development/production.
{"title":"EFFECT OF REFUGIA PLANTS ON WHITEFLY POPULATION AND RED CHILI (CAPSICUM ANNUUM L.) PRODUCTION","authors":"None JASMI, M AFRILLAH, A NASUTION","doi":"10.54910/sabrao2023.55.5.22","DOIUrl":"https://doi.org/10.54910/sabrao2023.55.5.22","url":null,"abstract":"Determining the effects of the refugia plant on the whitefly population and the production of several cultivars of red chili (Capsicum annuum L.) was the focus of research conducted from March to June 2019 in the experimental garden, Faculty of Agriculture, Teuku Umar University, Meulaboh, West Aceh Regency, Indonesia. The genetic materials consisted of three chili genotypes, i.e., cultivar TM-999 and two hybrid cultivars, Lado F1 and Lidia F1. The experiment in a 3 × 2 split plot design had three replications. The factor studied was the presence of a whitefly. The Refugia (R) plants, used as main plots, included R0 = Control, R1 = Zinnia, and R2 = Kenikir. Red chili genotypes comprised the sub-plots, i.e., V1 = TM-999, V2 = Lado F1, and V3 = Lidia F1. The studied variables were the whitefly population determination, the percentage of attack rate, and the chili production per plot. The results showed that Refugia plants greatly affected the whitefly population, portion of pest attack rates, and chili production per plot. Specifically, the refugia plant highly affected the whitefly population (Refugia kenikir 1.41% compared with control 11.89%), the percentage rate of pest attack (Refugia kenikir 44.44% compared with 100% of check), and production per plot (kenikir 23.59 g compared with the control’s 23.07 g). Refugia plants are influential in reducing whitefly development/production.","PeriodicalId":21328,"journal":{"name":"Sabrao Journal of Breeding and Genetics","volume":"110 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135929224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-31DOI: 10.54910/sabrao2023.55.5.8
ES MULYANINGSIH, AF DEVI, YGD ANGGRAHENI, YB PARADISA, D PRIADI, S INDRAYANI, Y SULISTYOWATI, AY PERDANI, F NURO, EBM ADI, P DESWINA
The ultimate objective of breeding is to produce high-yielding cultivars that are fascinating to the farming community and end users, allowing for easy marketing. Therefore, it is crucial to conduct various tests on milling quality, physicochemical properties, and eating quality to determine the overall rice quality and evaluate the response of potential consumers. The presented study sought the complete rice quality and the consumer acceptance of 12 upland rice lines derived from superior parental genotypes. This research conducted in 2019 performed milling and eating quality assessments on milled and cooked rice, respectively. The milling quality analysis revealed that lines L-04, L-05, and L-06 produced middle-length grains, while others produced full-length grains. Rice from lines L-02, L-09, and L-12 were slender, while the rest were medium-shape. All upland rice lines also met the national standard (SNI 6128-2015) for milling degree (85%–100%), moisture content (9.85%–11.30%), chalky rice (0.06%–1.59%), and yellow rice (0.21%–1.77%). Lines L-03 and L-05 met the Medium-I quality standard with head rice recovery (HRR) values of 84.15% and 84.76%, respectively. However, lines L-01 and L-02 met the Medium-III standard with HRR values of 66.24% and 66.39%, separately. Principal Component Analysis (PCA) revealed four principal physicochemical characteristics, i.e., degree of milling, length, width, and HRR. Partial Least Squares Regression (PLSR) analysis displayed the overall liking as determined by the interaction of four descriptive factors, mostly taste and texture. Cooked rice of line L-12 (cross of cv. Inpago-8 × B11930F-TB-2) was the most liked compared with other cooked rice samples.
{"title":"PHYSICOCHEMICAL PROPERTIES AND EATING QUALITY OF PROMISING CROSSBRED UPLAND RICE LINES DEVELOPED FROM SUPERIOR PARENTAL GENOTYPES","authors":"ES MULYANINGSIH, AF DEVI, YGD ANGGRAHENI, YB PARADISA, D PRIADI, S INDRAYANI, Y SULISTYOWATI, AY PERDANI, F NURO, EBM ADI, P DESWINA","doi":"10.54910/sabrao2023.55.5.8","DOIUrl":"https://doi.org/10.54910/sabrao2023.55.5.8","url":null,"abstract":"The ultimate objective of breeding is to produce high-yielding cultivars that are fascinating to the farming community and end users, allowing for easy marketing. Therefore, it is crucial to conduct various tests on milling quality, physicochemical properties, and eating quality to determine the overall rice quality and evaluate the response of potential consumers. The presented study sought the complete rice quality and the consumer acceptance of 12 upland rice lines derived from superior parental genotypes. This research conducted in 2019 performed milling and eating quality assessments on milled and cooked rice, respectively. The milling quality analysis revealed that lines L-04, L-05, and L-06 produced middle-length grains, while others produced full-length grains. Rice from lines L-02, L-09, and L-12 were slender, while the rest were medium-shape. All upland rice lines also met the national standard (SNI 6128-2015) for milling degree (85%–100%), moisture content (9.85%–11.30%), chalky rice (0.06%–1.59%), and yellow rice (0.21%–1.77%). Lines L-03 and L-05 met the Medium-I quality standard with head rice recovery (HRR) values of 84.15% and 84.76%, respectively. However, lines L-01 and L-02 met the Medium-III standard with HRR values of 66.24% and 66.39%, separately. Principal Component Analysis (PCA) revealed four principal physicochemical characteristics, i.e., degree of milling, length, width, and HRR. Partial Least Squares Regression (PLSR) analysis displayed the overall liking as determined by the interaction of four descriptive factors, mostly taste and texture. Cooked rice of line L-12 (cross of cv. Inpago-8 × B11930F-TB-2) was the most liked compared with other cooked rice samples.","PeriodicalId":21328,"journal":{"name":"Sabrao Journal of Breeding and Genetics","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135809264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-31DOI: 10.54910/sabrao2023.55.5.18
Maize (Zea mays L.) is a vital grain crop cultivated globally, which ranks third after wheat and rice. Its consumption in Egypt is primarily for human food, livestock and poultry feed, and raw materials for industrial products, such as, oil and starch. The main environmental factors that limit crop productivity worldwide include salinity, drought, and nutrient imbalance. Plant Growth regulators (PGR), such as, gibberellic acid (GA3) and mepiquat chloride (M.C), reduce the dramatic impacts of salinity and drought on crop growth and yield. This experiment sought to verify the influence of foliar spray application of GA3 and M.C as growth regulators on the growth metrics, chemical components, and maize harvest cultivated in calcareous soil under salinity during the summer of 2021 and 2022, respectively. The following treatments comprised foliar applications of 50 ppm GA3, 100 ppm GA3, 100 ppm M.C, and 250 ppm M.C, applied three times every season. It is clear from the results that foliar application of gibberellic (GA3) and mepiquat chloride (M.C) enhanced growth metrics, biochemical parameters, nutritional content, yield and its components, and oil percentage. After treatment with 100 ppm GA3 and 250 ppm M.C foliar spray, the yield and its constituents and oil percentage achieved the highest shares, with substantial differences between the two treatments. Compared with the control, treatments with 100 ppm GA3 and 250 ppm M.C increased grain yield by 33% and 29.9%, respectively. The study concluded that the most effective therapy for improving maize growth, development, and output under salt stress was 100 ppm GA3 and 250 ppm M.C foliar application during the growth stages. Administering GA3 and M.C mitigated successfully the damage caused by salt stress. Under salinity, gibberellic acid and mepiquat chloride addition increased the growth of maize, chlorophyll content, soluble protein, proline, and the concentration of K+ ions while decreasing the oxidative stress and the accumulation of Na+ ions.
{"title":"UTILIZATION OF GIBBERELLIC ACID (GA3) AND MEPIQUAT CHLORIDE (M.C) AS GROWTH REGULATORS ON MAIZE TO ALLEVIATE SALINITY STRESS","authors":"","doi":"10.54910/sabrao2023.55.5.18","DOIUrl":"https://doi.org/10.54910/sabrao2023.55.5.18","url":null,"abstract":"Maize (Zea mays L.) is a vital grain crop cultivated globally, which ranks third after wheat and rice. Its consumption in Egypt is primarily for human food, livestock and poultry feed, and raw materials for industrial products, such as, oil and starch. The main environmental factors that limit crop productivity worldwide include salinity, drought, and nutrient imbalance. Plant Growth regulators (PGR), such as, gibberellic acid (GA3) and mepiquat chloride (M.C), reduce the dramatic impacts of salinity and drought on crop growth and yield. This experiment sought to verify the influence of foliar spray application of GA3 and M.C as growth regulators on the growth metrics, chemical components, and maize harvest cultivated in calcareous soil under salinity during the summer of 2021 and 2022, respectively. The following treatments comprised foliar applications of 50 ppm GA3, 100 ppm GA3, 100 ppm M.C, and 250 ppm M.C, applied three times every season. It is clear from the results that foliar application of gibberellic (GA3) and mepiquat chloride (M.C) enhanced growth metrics, biochemical parameters, nutritional content, yield and its components, and oil percentage. After treatment with 100 ppm GA3 and 250 ppm M.C foliar spray, the yield and its constituents and oil percentage achieved the highest shares, with substantial differences between the two treatments. Compared with the control, treatments with 100 ppm GA3 and 250 ppm M.C increased grain yield by 33% and 29.9%, respectively. The study concluded that the most effective therapy for improving maize growth, development, and output under salt stress was 100 ppm GA3 and 250 ppm M.C foliar application during the growth stages. Administering GA3 and M.C mitigated successfully the damage caused by salt stress. Under salinity, gibberellic acid and mepiquat chloride addition increased the growth of maize, chlorophyll content, soluble protein, proline, and the concentration of K+ ions while decreasing the oxidative stress and the accumulation of Na+ ions.","PeriodicalId":21328,"journal":{"name":"Sabrao Journal of Breeding and Genetics","volume":"94 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135929691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-31DOI: 10.54910/sabrao2023.55.5.17
DDC NIETO, FO ARECHE, ETC CHIRRE, JUR MENACHO, HEC TANTALEAN, HJC BARTOLOME, LA SUMARRIVA-BUSTINZA, NO ZELA-PAYI, AP ANGOMA, AI CAMPOSANO-CORDOVA, NES MALLMA, MAQ SOLANO, DDC FLORES, RAA MAMANI, HLV CAJAVILCA
The scarcity of nutrients and synthetic fertilizers reduced crop productivity, increasing production costs and prompting scientists to seek new technologies to ensure high-quality output. In this context, using cytokinins with organic fertilizers ensued to assess their effects on caigua (Cyclanthera pedata L.) production. For this purpose, land preparation for planting comprised two levels of cytokinins (100 and 150 ml, Anthesis Plus per 200 L of water) and organic compost at 10 t/ha, then spread across the land. Results showed that adding cytokinins and compost manure, alone and in combination, significantly improved the agronomic and physiological characteristics of caigua. However, the combined application of compost manure and cytokinins dramatically enriched the caigua plant length, diameter, fruits per plant, and fruit dry and fresh weight per plant up to 85.0%, 46.9%, 81.8%, 80.6%, and 83.2%, respectively, in comparison with the control treatment. Similarly, chlorophyll contents, quantum yield, photosynthetically active radiation, fluorescence yield, and electron transport reaction increased at 68.8%, 66.4%, 79.2%, 51.1%, and 74.0%, respectively, with combined application as compared with control. Furthermore, the co-addition of composting and cytokinins also upgraded the biochemical composition versus the control. The presented results suggested that applying a mixture of compost manure and cytokinins may help enhance caigua plant growth, yield, and quality and improve soil characteristics.
{"title":"USE OF CYTOKININS AND COMPOSTING TO IMPROVE THE AGRONOMIC AND PHYSIOLOGICAL TRAITS OF CAIGUA (CYCLANTHERA PEDATA L.)","authors":"DDC NIETO, FO ARECHE, ETC CHIRRE, JUR MENACHO, HEC TANTALEAN, HJC BARTOLOME, LA SUMARRIVA-BUSTINZA, NO ZELA-PAYI, AP ANGOMA, AI CAMPOSANO-CORDOVA, NES MALLMA, MAQ SOLANO, DDC FLORES, RAA MAMANI, HLV CAJAVILCA","doi":"10.54910/sabrao2023.55.5.17","DOIUrl":"https://doi.org/10.54910/sabrao2023.55.5.17","url":null,"abstract":"The scarcity of nutrients and synthetic fertilizers reduced crop productivity, increasing production costs and prompting scientists to seek new technologies to ensure high-quality output. In this context, using cytokinins with organic fertilizers ensued to assess their effects on caigua (Cyclanthera pedata L.) production. For this purpose, land preparation for planting comprised two levels of cytokinins (100 and 150 ml, Anthesis Plus per 200 L of water) and organic compost at 10 t/ha, then spread across the land. Results showed that adding cytokinins and compost manure, alone and in combination, significantly improved the agronomic and physiological characteristics of caigua. However, the combined application of compost manure and cytokinins dramatically enriched the caigua plant length, diameter, fruits per plant, and fruit dry and fresh weight per plant up to 85.0%, 46.9%, 81.8%, 80.6%, and 83.2%, respectively, in comparison with the control treatment. Similarly, chlorophyll contents, quantum yield, photosynthetically active radiation, fluorescence yield, and electron transport reaction increased at 68.8%, 66.4%, 79.2%, 51.1%, and 74.0%, respectively, with combined application as compared with control. Furthermore, the co-addition of composting and cytokinins also upgraded the biochemical composition versus the control. The presented results suggested that applying a mixture of compost manure and cytokinins may help enhance caigua plant growth, yield, and quality and improve soil characteristics.","PeriodicalId":21328,"journal":{"name":"Sabrao Journal of Breeding and Genetics","volume":"87 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135929693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-31DOI: 10.54910/sabrao2023.55.5.25
A OSMAN, M SITOHY, FS MOHSEN, E ABBAS
The 7S globulins (seed storage glycoprotein) isolated from soybean and chickpea seeds have the antifungal potential against the pathogenic fungus (Botrytis cinerea) causing gray mold in grapes assessing table grapes in vitro or postharvest by comparing with synthetic fungicide, Switch 62.5 WG. Conventional microbiological procedures estimated the in-vitro antifungal potential of the 7S globulins, such as linear growth curves and scanning electron microscopy (SEM). Soybean-7S significantly inhibited the in-vitro growth of Botrytis cinerea by about 64.44%, 66.64%, and 76.67% when applied at 50, 100, and 200 μg/mL, respectively, followed by chickpea 7S with growth reduction of 52.22%, 54.44%, and 66.67%, respectively. The synthetic fungicide (Switch 62.5 WG) induced higher growth inhibition extents (83.33% and 86.66%) when applied at 50 and 200 μg/mL, respectively. The 7S-exposed B. cinerea displayed swollen hyphae compared with the control under scanning electron microscope examination. The 7S derived from soybean and chickpea inhibited gray mold development in table grapes when applied at 200 and 400 μg/mL for 30 days after infection with B. cinerea. The maintained disease severity was also minimal (40% and 25% for soybean-7S and chickpea-7S, respectively). An increased level of treatment (400 μg/mL) highly reduced the disease severity to only 7.5% after 30 days of storage at cold conditions for both proteins. The 7S globulin from legume seeds can be an alternative to synthetic fungicides for controlling B. cinerea as a postharvest treatment. Developing these legume proteins as natural fungicides could also progress for the safe control of various plant pathogens, causing drastic crop losses.
{"title":"GREEN BIOCHEMICAL PROTECTION OF POSTHARVEST TABLE GRAPES AGAINST GRAY MOLD (BOTRYTIS CINEREA) USING 7S PROTEINS","authors":"A OSMAN, M SITOHY, FS MOHSEN, E ABBAS","doi":"10.54910/sabrao2023.55.5.25","DOIUrl":"https://doi.org/10.54910/sabrao2023.55.5.25","url":null,"abstract":"The 7S globulins (seed storage glycoprotein) isolated from soybean and chickpea seeds have the antifungal potential against the pathogenic fungus (Botrytis cinerea) causing gray mold in grapes assessing table grapes in vitro or postharvest by comparing with synthetic fungicide, Switch 62.5 WG. Conventional microbiological procedures estimated the in-vitro antifungal potential of the 7S globulins, such as linear growth curves and scanning electron microscopy (SEM). Soybean-7S significantly inhibited the in-vitro growth of Botrytis cinerea by about 64.44%, 66.64%, and 76.67% when applied at 50, 100, and 200 μg/mL, respectively, followed by chickpea 7S with growth reduction of 52.22%, 54.44%, and 66.67%, respectively. The synthetic fungicide (Switch 62.5 WG) induced higher growth inhibition extents (83.33% and 86.66%) when applied at 50 and 200 μg/mL, respectively. The 7S-exposed B. cinerea displayed swollen hyphae compared with the control under scanning electron microscope examination. The 7S derived from soybean and chickpea inhibited gray mold development in table grapes when applied at 200 and 400 μg/mL for 30 days after infection with B. cinerea. The maintained disease severity was also minimal (40% and 25% for soybean-7S and chickpea-7S, respectively). An increased level of treatment (400 μg/mL) highly reduced the disease severity to only 7.5% after 30 days of storage at cold conditions for both proteins. The 7S globulin from legume seeds can be an alternative to synthetic fungicides for controlling B. cinerea as a postharvest treatment. Developing these legume proteins as natural fungicides could also progress for the safe control of various plant pathogens, causing drastic crop losses.","PeriodicalId":21328,"journal":{"name":"Sabrao Journal of Breeding and Genetics","volume":"87 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135928026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-31DOI: 10.54910/sabrao2023.55.5.35
AMM AL-NAGGAR, MRA SHABANA, MS HASSANEIN, AMA METWALLY
Elevating plant density and improving N fertilizer rate for high density-tolerant genotype can maximize maize (Zea mays L.) grain productivity per unit land area. This investigation’s objective sought to evaluate the effects of stresses resulting from increasing plant density combined with reducing N application rate on traits of eight inbred lines and their diallel F1 crosses. Choosing eight maize inbred lines differing in tolerance to low N and high density (D) were samples for diallel crosses. Parents and crosses’ evaluation ensued in the 2020 and 2021 seasons under three plant densities: low (47,600), medium (71,400), and high (95,200) plants/ha, and three N fertilization rates: low (95 kg N/ha), medium (285 kg N/ha), and high (476 kg N/ha). Elevating plant density from 47,600 to 71,400 and 95,200 plants/ha caused a significant decrease in grain yield/plant by 25.43% and 30.15% for inbred parents and 17.92% and 25.65% for F1 crosses, respectively. This reduction correlated with significant decreases in all yield components but caused a notable increase in grain yield/ha by 13.69% and 27.33% for inbreds and 20.99% and 44.69% for F1 crosses, respectively. The best combination of plant population density and N level for giving the highest grain yield/ha was high N (476 kg N/ha) × high density (95,200 plants/ha) for all inbreds and all F1 crosses.
提高高密度耐受性基因型的株密度和提高氮肥施用量可以最大限度地提高玉米(Zea mays L.)的单位土地产量。本研究旨在评价提高植株密度和降低施氮量对8个自交系及其双列杂交F1性状的影响。选择8个玉米低氮高密度耐受性不同的自交系,进行双列杂交。在2020年和2021年对亲本和杂交组合进行了低(47600株/ha)、中(71400株/ha)和高(95200株/ha) 3种密度和低(95 kg N/ha)、中(285 kg N/ha)和高(476 kg N/ha) 3种施氮量的评价。单株密度由47,600株增加到71,400株和95,200株/ha后,自交系单株产量显著降低25.43%和30.15%,F1杂交单株产量显著降低17.92%和25.65%。这种降低与各产量成分的显著降低相关,但导致自交系和F1杂交的每公顷产量分别显著提高13.69%和27.33%和20.99%和44.69%。在所有自交系和所有F1杂交组合中,高氮(476 kg N/ha) ×高密度(95,200株/ha)是获得最高籽粒产量的最佳组合。
{"title":"EFFECTS OF ELEVATED PLANT DENSITY AND REDUCED NITROGEN ON AGRONOMIC AND YIELD ATTRIBUTES OF MAIZE INBRED LINES AND THEIR DIALLEL CROSSES","authors":"AMM AL-NAGGAR, MRA SHABANA, MS HASSANEIN, AMA METWALLY","doi":"10.54910/sabrao2023.55.5.35","DOIUrl":"https://doi.org/10.54910/sabrao2023.55.5.35","url":null,"abstract":"Elevating plant density and improving N fertilizer rate for high density-tolerant genotype can maximize maize (Zea mays L.) grain productivity per unit land area. This investigation’s objective sought to evaluate the effects of stresses resulting from increasing plant density combined with reducing N application rate on traits of eight inbred lines and their diallel F1 crosses. Choosing eight maize inbred lines differing in tolerance to low N and high density (D) were samples for diallel crosses. Parents and crosses’ evaluation ensued in the 2020 and 2021 seasons under three plant densities: low (47,600), medium (71,400), and high (95,200) plants/ha, and three N fertilization rates: low (95 kg N/ha), medium (285 kg N/ha), and high (476 kg N/ha). Elevating plant density from 47,600 to 71,400 and 95,200 plants/ha caused a significant decrease in grain yield/plant by 25.43% and 30.15% for inbred parents and 17.92% and 25.65% for F1 crosses, respectively. This reduction correlated with significant decreases in all yield components but caused a notable increase in grain yield/ha by 13.69% and 27.33% for inbreds and 20.99% and 44.69% for F1 crosses, respectively. The best combination of plant population density and N level for giving the highest grain yield/ha was high N (476 kg N/ha) × high density (95,200 plants/ha) for all inbreds and all F1 crosses.","PeriodicalId":21328,"journal":{"name":"Sabrao Journal of Breeding and Genetics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135928465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}