In genetic conflicts between intergenomic and selfish elements, driver and killer elements achieve biased survival, replication, or transmission over sensitive and targeted elements through a wide range of molecular mechanisms, including mimicry. Driving mechanisms manifest at all organismal levels, from the biased propagation of individual genes, as demonstrated by transposable elements, to the biased transmission of genomes, as illustrated by viruses, to the biased transmission of cell lineages, as in cancer. Targeted genomes are vulnerable to molecular mimicry through the conserved motifs they use for their own signaling and regulation. Mimicking these motifs enables an intergenomic or selfish element to control core target processes, and can occur at the sequence, structure, or functional level. Molecular mimicry was first appreciated as an important phenomenon more than twenty years ago. Modern genomics technologies, databases, and machine learning approaches offer tremendous potential to study the distribution of molecular mimicry across genetic conflicts in nature. Here, we explore the theoretical expectations for molecular mimicry between conflicting genomes, the trends in molecular mimicry mechanisms across known genetic conflicts, and outline how new examples can be gleaned from population genomic datasets. We discuss how mimics involving short sequence-based motifs or gene duplications can evolve convergently from new mutations. Whereas, processes that involve divergent domains or fully-folded structures occur among genomes by horizontal gene transfer. These trends are largely based on a small number of organisms and should be reevaluated in a general, phylogenetically independent framework. Currently, publicly available databases can be mined for genotypes driving non-Mendelian inheritance patterns, epistatic interactions, and convergent protein structures. A subset of these conflicting elements may be molecular mimics. We propose approaches for detecting genetic conflict and molecular mimicry from these datasets.
Transposable elements (TEs) provide a prime example of genetic conflict because they can proliferate in genomes and populations even if they harm the host. However, numerous studies have shown that TEs, though typically harmful, can also provide fuel for adaptation. This is because they code functional sequences that can be useful for the host in which they reside. In this review, I summarize the "how" and "why" of adaptation enabled by the genetic conflict between TEs and hosts. In addition, focusing on mechanisms of TE control by small piwi-interacting RNAs (piRNAs), I highlight an indirect form of adaptation enabled by conflict. In this case, mechanisms of host defense that regulate TEs have been redeployed for endogenous gene regulation. I propose that the genetic conflict released by meiosis in early eukaryotes may have been important because, among other reasons, it spurred evolutionary innovation on multiple interwoven trajectories - on the part of hosts and also embedded genetic parasites. This form of evolution may function as a complexity generating engine that was a critical player in eukaryotic evolution.
Homing genetic elements are a form of selfish DNA that inserts into a specific target site in the genome and spreads through the population by a process of biased inheritance. Two well-known types of homing element, called inteins and homing introns, were discovered decades ago. In this review we describe WHO elements, a newly discovered type of homing element that constitutes a distinct third category but is rare, having been found only in a few yeast species so far. WHO elements are inferred to spread using the same molecular homing mechanism as inteins and introns: they encode a site-specific endonuclease that cleaves the genome at the target site, making a DNA break that is subsequently repaired by copying the element. For most WHO elements, the target site is in the glycolytic gene FBA1. WHO elements differ from inteins and homing introns in two fundamental ways: they do not interrupt their host gene (FBA1), and they occur in clusters. The clusters were formed by successive integrations of different WHO elements into the FBA1 locus, the result of an ‘arms race’ between the endonuclease and its target site. We also describe one family of WHO elements (WHO10) that is no longer specifically associated with the FBA1 locus and instead appears to have become transposable, inserting at random genomic sites in Torulaspora globosa with up to 26 copies per strain. The WHO family of elements is therefore at the borderline between homing genetic elements and transposable elements.
Chromosomal regions with meiotic drivers exhibit biased transmission (> 50 %) over their competing homologous chromosomal region. These regions often have two prominent genetic features: suppressed meiotic crossing over and rapidly evolving multicopy gene families. Heteromorphic sex chromosomes (e.g., XY) often share these two genetic features with chromosomal regions exhibiting meiotic drive. Here, we discuss parallels between meiotic drive and sex chromosome evolution, how the divergence of heteromorphic sex chromosomes can be influenced by meiotic drive, experimental approaches to study meiotic drive on sex chromosomes, and meiotic drive in traditional and non-traditional model organisms with high-quality genome assemblies. The newly available diversity of high-quality sex chromosome sequences allows us to revisit conventional models of sex chromosome evolution through the lens of meiotic drive.
Mitochondria play a multitude of essential roles within mammalian cells, and understanding how they control immunity is an emerging area of study. Lymphocytes, as integral cellular components of the adaptive immune system, rely on mitochondria for their function, and mitochondria can dynamically instruct their differentiation and activation by undergoing rapid and profound remodelling. Energy homeostasis and ATP production are often considered the primary functions of mitochondria in immune cells; however, their importance extends across a spectrum of other molecular processes, including regulation of redox balance, signalling pathways, and biosynthesis. In this review, we explore the dynamic landscape of mitochondrial homeostasis in T and B cells, and discuss how mitochondrial disorders compromise adaptive immunity.
Antagonistic coevolution, arising from genetic conflict, can drive rapid evolution and biological innovation. Conflict can arise both between organisms and within genomes. This review focuses on budding yeasts as a model system for exploring intra- and inter-genomic genetic conflict, highlighting in particular the 2-micron (2μ) plasmid as a model selfish element. The 2μ is found widely in laboratory strains and industrial isolates of Saccharomyces cerevisiae and has long been known to cause host fitness defects. Nevertheless, the plasmid is frequently ignored in the context of genetic, fitness, and evolution studies. Here, I make a case for further exploring the evolutionary impact of the 2μ plasmid as well as other selfish elements of budding yeasts, discuss recent advances, and, finally, future directions for the field.

