首页 > 最新文献

Seminars in cell & developmental biology最新文献

英文 中文
Decoding the blueprints of embryo development with single-cell and spatial omics 用单细胞和空间组学解码胚胎发育蓝图。
IF 6.2 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-01-31 DOI: 10.1016/j.semcdb.2025.01.002
Chang Liu , Xuerong Li , Qinan Hu , Zihan Jia , Qing Ye , Xianzhe Wang , Kaichen Zhao , Longqi Liu , Mingyue Wang
Embryonic development is a complex and intricately regulated process that encompasses precise control over cell differentiation, morphogenesis, and the underlying gene expression changes. Recent years have witnessed a remarkable acceleration in the development of single-cell and spatial omic technologies, enabling high-throughput profiling of transcriptomic and other multi-omic information at the individual cell level. These innovations offer fresh and multifaceted perspectives for investigating the intricate cellular and molecular mechanisms that govern embryonic development. In this review, we provide an in-depth exploration of the latest technical advancements in single-cell and spatial multi-omic methodologies and compile a systematic catalog of their applications in the field of embryonic development. We deconstruct the research strategies employed by recent studies that leverage single-cell sequencing techniques and underscore the unique advantages of spatial transcriptomics. Furthermore, we delve into both the current applications, data analysis algorithms and the untapped potential of these technologies in advancing our understanding of embryonic development. With the continuous evolution of multi-omic technologies, we anticipate their widespread adoption and profound contributions to unraveling the intricate molecular foundations underpinning embryo development in the foreseeable future.
胚胎发育是一个复杂而复杂的调控过程,包括对细胞分化、形态发生和潜在基因表达变化的精确控制。近年来,单细胞和空间组学技术的发展显著加速,使转录组学和其他多组学信息在单个细胞水平上的高通量分析成为可能。这些创新为研究控制胚胎发育的复杂细胞和分子机制提供了新的和多方面的视角。本文综述了单细胞和空间多组学方法的最新技术进展,并对其在胚胎发育领域的应用进行了系统的综述。我们解构了最近利用单细胞测序技术的研究策略,并强调了空间转录组学的独特优势。此外,我们深入研究了当前的应用,数据分析算法和这些技术的未开发潜力,以促进我们对胚胎发育的理解。随着多组学技术的不断发展,我们预计在可预见的未来,它们将被广泛采用,并为揭示胚胎发育的复杂分子基础做出深刻贡献。
{"title":"Decoding the blueprints of embryo development with single-cell and spatial omics","authors":"Chang Liu ,&nbsp;Xuerong Li ,&nbsp;Qinan Hu ,&nbsp;Zihan Jia ,&nbsp;Qing Ye ,&nbsp;Xianzhe Wang ,&nbsp;Kaichen Zhao ,&nbsp;Longqi Liu ,&nbsp;Mingyue Wang","doi":"10.1016/j.semcdb.2025.01.002","DOIUrl":"10.1016/j.semcdb.2025.01.002","url":null,"abstract":"<div><div>Embryonic development is a complex and intricately regulated process that encompasses precise control over cell differentiation, morphogenesis, and the underlying gene expression changes. Recent years have witnessed a remarkable acceleration in the development of single-cell and spatial omic technologies, enabling high-throughput profiling of transcriptomic and other multi-omic information at the individual cell level. These innovations offer fresh and multifaceted perspectives for investigating the intricate cellular and molecular mechanisms that govern embryonic development. In this review, we provide an in-depth exploration of the latest technical advancements in single-cell and spatial multi-omic methodologies and compile a systematic catalog of their applications in the field of embryonic development. We deconstruct the research strategies employed by recent studies that leverage single-cell sequencing techniques and underscore the unique advantages of spatial transcriptomics. Furthermore, we delve into both the current applications, data analysis algorithms and the untapped potential of these technologies in advancing our understanding of embryonic development. With the continuous evolution of multi-omic technologies, we anticipate their widespread adoption and profound contributions to unraveling the intricate molecular foundations underpinning embryo development in the foreseeable future.</div></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"167 ","pages":"Pages 22-39"},"PeriodicalIF":6.2,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143075371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards deciphering the bone marrow microenvironment with spatial multi-omics 空间多组学对骨髓微环境的解读。
IF 6.2 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-01-30 DOI: 10.1016/j.semcdb.2025.01.001
Raymond K.H. Yip , Edwin D. Hawkins , Rory Bowden , Kelly L. Rogers
The tissue microenvironment refers to a localised tissue area where a complex combination of cells, structural components, and signalling molecules work together to support specific biological activities. A prime example is the bone marrow microenvironment, particularly the hematopoietic stem cell (HSC) niche, which is of immense interest due to its critical role in supporting lifelong blood cell production and the growth of malignant cells. In this review, we summarise the current understanding of HSC niche biology, highlighting insights gained from advanced imaging and genomic techniques. We also discuss the potential of emerging technologies such as spatial multi-omics to unravel bone marrow architecture in unprecedented detail.
组织微环境是指细胞、结构成分和信号分子的复杂组合共同作用以支持特定生物活性的局部组织区域。一个典型的例子是骨髓微环境,特别是造血干细胞(HSC)生态位,由于其在支持终身血细胞生成和恶性细胞生长方面的关键作用,因此引起了极大的兴趣。在这篇综述中,我们总结了目前对HSC生态位生物学的理解,重点介绍了从先进的成像和基因组技术中获得的见解。我们还讨论了新兴技术的潜力,如空间多组学,以前所未有的细节揭示骨髓结构。
{"title":"Towards deciphering the bone marrow microenvironment with spatial multi-omics","authors":"Raymond K.H. Yip ,&nbsp;Edwin D. Hawkins ,&nbsp;Rory Bowden ,&nbsp;Kelly L. Rogers","doi":"10.1016/j.semcdb.2025.01.001","DOIUrl":"10.1016/j.semcdb.2025.01.001","url":null,"abstract":"<div><div>The tissue microenvironment refers to a localised tissue area where a complex combination of cells, structural components, and signalling molecules work together to support specific biological activities. A prime example is the bone marrow microenvironment, particularly the hematopoietic stem cell (HSC) niche, which is of immense interest due to its critical role in supporting lifelong blood cell production and the growth of malignant cells. In this review, we summarise the current understanding of HSC niche biology, highlighting insights gained from advanced imaging and genomic techniques. We also discuss the potential of emerging technologies such as spatial multi-omics to unravel bone marrow architecture in unprecedented detail.</div></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"167 ","pages":"Pages 10-21"},"PeriodicalIF":6.2,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143075374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial omics shed light on the tumour organisation of glioblastoma 空间组学揭示了胶质母细胞瘤的肿瘤组织。
IF 6.2 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-01-08 DOI: 10.1016/j.semcdb.2024.12.006
James R. Whittle , Jurgen Kriel , Oluwaseun E. Fatunla , Tianyao Lu , Joel J.D. Moffet , Montana Spiteri , Sarah A. Best , Saskia Freytag
The glioblastoma tumour microenvironment is characterised by immense heterogeneity, with malignant and non-malignant cells that interact in a complex ecosystem. Emerging evidence suggests that the tumour microenvironment is key in facilitating rapid proliferation, invasion, migration and cancer cell survival, crucial for treatment resistance. Spatial omics technologies have enabled the molecular characterisation of regions or individual cells within their spatial context, providing previously unattainable insights into the complex organisation of the glioblastoma tumour microenvironment. Understanding this organisation is crucial for the development of new therapeutics and novel diagnostic tools that guide patient care. This review explores spatial omics technologies and how they have contributed to the development of a model outlining the architecture of the glioblastoma tumour microenvironment.
胶质母细胞瘤肿瘤微环境的特点是巨大的异质性,恶性和非恶性细胞在一个复杂的生态系统中相互作用。新出现的证据表明,肿瘤微环境是促进癌细胞快速增殖、侵袭、迁移和存活的关键,对治疗耐药性至关重要。空间组学技术使区域或单个细胞在其空间背景下的分子特征成为可能,为胶质母细胞瘤肿瘤微环境的复杂组织提供了以前无法实现的见解。了解这种组织对于开发指导患者护理的新疗法和新诊断工具至关重要。这篇综述探讨了空间组学技术,以及它们如何促进了胶质母细胞瘤肿瘤微环境结构模型的发展。
{"title":"Spatial omics shed light on the tumour organisation of glioblastoma","authors":"James R. Whittle ,&nbsp;Jurgen Kriel ,&nbsp;Oluwaseun E. Fatunla ,&nbsp;Tianyao Lu ,&nbsp;Joel J.D. Moffet ,&nbsp;Montana Spiteri ,&nbsp;Sarah A. Best ,&nbsp;Saskia Freytag","doi":"10.1016/j.semcdb.2024.12.006","DOIUrl":"10.1016/j.semcdb.2024.12.006","url":null,"abstract":"<div><div>The glioblastoma tumour microenvironment is characterised by immense heterogeneity, with malignant and non-malignant cells that interact in a complex ecosystem. Emerging evidence suggests that the tumour microenvironment is key in facilitating rapid proliferation, invasion, migration and cancer cell survival, crucial for treatment resistance. Spatial omics technologies have enabled the molecular characterisation of regions or individual cells within their spatial context, providing previously unattainable insights into the complex organisation of the glioblastoma tumour microenvironment. Understanding this organisation is crucial for the development of new therapeutics and novel diagnostic tools that guide patient care. This review explores spatial omics technologies and how they have contributed to the development of a model outlining the architecture of the glioblastoma tumour microenvironment.</div></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"167 ","pages":"Pages 1-9"},"PeriodicalIF":6.2,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142954505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diverse genetic conflicts mediated by molecular mimicry and computational approaches to detect them 分子拟态介导的多种基因冲突以及检测这些冲突的计算方法。
IF 6.2 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-07-29 DOI: 10.1016/j.semcdb.2024.07.001
Shelbi L. Russell , Gabriel Penunuri , Christopher Condon

In genetic conflicts between intergenomic and selfish elements, driver and killer elements achieve biased survival, replication, or transmission over sensitive and targeted elements through a wide range of molecular mechanisms, including mimicry. Driving mechanisms manifest at all organismal levels, from the biased propagation of individual genes, as demonstrated by transposable elements, to the biased transmission of genomes, as illustrated by viruses, to the biased transmission of cell lineages, as in cancer. Targeted genomes are vulnerable to molecular mimicry through the conserved motifs they use for their own signaling and regulation. Mimicking these motifs enables an intergenomic or selfish element to control core target processes, and can occur at the sequence, structure, or functional level. Molecular mimicry was first appreciated as an important phenomenon more than twenty years ago. Modern genomics technologies, databases, and machine learning approaches offer tremendous potential to study the distribution of molecular mimicry across genetic conflicts in nature. Here, we explore the theoretical expectations for molecular mimicry between conflicting genomes, the trends in molecular mimicry mechanisms across known genetic conflicts, and outline how new examples can be gleaned from population genomic datasets. We discuss how mimics involving short sequence-based motifs or gene duplications can evolve convergently from new mutations. Whereas, processes that involve divergent domains or fully-folded structures occur among genomes by horizontal gene transfer. These trends are largely based on a small number of organisms and should be reevaluated in a general, phylogenetically independent framework. Currently, publicly available databases can be mined for genotypes driving non-Mendelian inheritance patterns, epistatic interactions, and convergent protein structures. A subset of these conflicting elements may be molecular mimics. We propose approaches for detecting genetic conflict and molecular mimicry from these datasets.

在基因组间和自私元素之间的遗传冲突中,驱动元素和杀手元素通过各种分子机制(包括拟态),在敏感元素和目标元素之上实现有偏向的生存、复制或传播。驱动机制体现在生物体的各个层面,从单个基因的偏向传播(如转座元件)到基因组的偏向传播(如病毒),再到细胞系的偏向传播(如癌症)。靶向基因组通过自身信号传递和调控所使用的保守基序,很容易受到分子模仿的影响。模仿这些基调可使基因组间或自私的元素控制核心目标过程,并可发生在序列、结构或功能水平上。分子模拟在二十多年前首次被视为一种重要现象。现代基因组学技术、数据库和机器学习方法为研究分子拟态在自然界遗传冲突中的分布提供了巨大的潜力。在此,我们将探讨冲突基因组间分子拟态的理论预期、已知基因冲突中分子拟态机制的趋势,并概述如何从群体基因组数据集中收集新的实例。我们讨论了涉及短序列图案或基因重复的拟态如何从新突变中趋同进化。而涉及不同结构域或完全折叠结构的过程则是通过水平基因转移在基因组之间发生的。这些趋势主要基于少数生物,应该在一个普遍的、独立于系统发育的框架内重新评估。目前,可从公开数据库中挖掘驱动非孟德尔遗传模式、表观相互作用和趋同蛋白质结构的基因型。这些冲突元素的一个子集可能是分子模拟物。我们提出了从这些数据集中检测遗传冲突和分子模仿的方法。
{"title":"Diverse genetic conflicts mediated by molecular mimicry and computational approaches to detect them","authors":"Shelbi L. Russell ,&nbsp;Gabriel Penunuri ,&nbsp;Christopher Condon","doi":"10.1016/j.semcdb.2024.07.001","DOIUrl":"10.1016/j.semcdb.2024.07.001","url":null,"abstract":"<div><p>In genetic conflicts between intergenomic and selfish elements, driver and killer elements achieve biased survival, replication, or transmission over sensitive and targeted elements through a wide range of molecular mechanisms, including mimicry. Driving mechanisms manifest at all organismal levels, from the biased propagation of individual genes, as demonstrated by transposable elements, to the biased transmission of genomes, as illustrated by viruses, to the biased transmission of cell lineages, as in cancer. Targeted genomes are vulnerable to molecular mimicry through the conserved motifs they use for their own signaling and regulation. Mimicking these motifs enables an intergenomic or selfish element to control core target processes, and can occur at the sequence, structure, or functional level. Molecular mimicry was first appreciated as an important phenomenon more than twenty years ago. Modern genomics technologies, databases, and machine learning approaches offer tremendous potential to study the distribution of molecular mimicry across genetic conflicts in nature. Here, we explore the theoretical expectations for molecular mimicry between conflicting genomes, the trends in molecular mimicry mechanisms across known genetic conflicts, and outline how new examples can be gleaned from population genomic datasets. We discuss how mimics involving short sequence-based motifs or gene duplications can evolve convergently from new mutations<em>.</em> Whereas, processes that involve divergent domains or fully-folded structures occur among genomes by horizontal gene transfer. These trends are largely based on a small number of organisms and should be reevaluated in a general, phylogenetically independent framework. Currently, publicly available databases can be mined for genotypes driving non-Mendelian inheritance patterns, epistatic interactions, and convergent protein structures. A subset of these conflicting elements may be molecular mimics. We propose approaches for detecting genetic conflict and molecular mimicry from these datasets.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"165 ","pages":"Pages 1-12"},"PeriodicalIF":6.2,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1084952124000557/pdfft?md5=d2592468bfb577ff0aef406716dc2946&pid=1-s2.0-S1084952124000557-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From the cauldron of conflict: Endogenous gene regulation by piRNA and other modes of adaptation enabled by selfish transposable elements 来自冲突的大锅:piRNA 的内源基因调控以及自私的转座元件促成的其他适应模式。
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-05-31 DOI: 10.1016/j.semcdb.2024.05.001
Justin P. Blumenstiel

Transposable elements (TEs) provide a prime example of genetic conflict because they can proliferate in genomes and populations even if they harm the host. However, numerous studies have shown that TEs, though typically harmful, can also provide fuel for adaptation. This is because they code functional sequences that can be useful for the host in which they reside. In this review, I summarize the "how" and "why" of adaptation enabled by the genetic conflict between TEs and hosts. In addition, focusing on mechanisms of TE control by small piwi-interacting RNAs (piRNAs), I highlight an indirect form of adaptation enabled by conflict. In this case, mechanisms of host defense that regulate TEs have been redeployed for endogenous gene regulation. I propose that the genetic conflict released by meiosis in early eukaryotes may have been important because, among other reasons, it spurred evolutionary innovation on multiple interwoven trajectories - on the part of hosts and also embedded genetic parasites. This form of evolution may function as a complexity generating engine that was a critical player in eukaryotic evolution.

可转座元件(Transposable elements,TEs)是遗传冲突的一个典型例子,因为它们即使对宿主有害,也能在基因组和种群中大量繁殖。然而,大量研究表明,可转座元件虽然通常有害,但也能为适应性提供动力。这是因为它们编码的功能序列对宿主有用。在这篇综述中,我将总结 TE 与宿主之间的遗传冲突是如何和为什么促成适应的。此外,我将重点放在小 piwi-interacting RNAs(piRNAs)控制 TE 的机制上,强调冲突带来的一种间接适应形式。在这种情况下,调控 TE 的宿主防御机制被重新用于内源基因调控。我提出,早期真核生物减数分裂释放的遗传冲突之所以重要,除其他原因外,可能还因为它刺激了多种交织轨迹上的进化创新--既有宿主方面的,也有嵌入的遗传寄生虫方面的。这种进化形式可能是真核生物进化过程中产生复杂性的一个关键引擎。
{"title":"From the cauldron of conflict: Endogenous gene regulation by piRNA and other modes of adaptation enabled by selfish transposable elements","authors":"Justin P. Blumenstiel","doi":"10.1016/j.semcdb.2024.05.001","DOIUrl":"10.1016/j.semcdb.2024.05.001","url":null,"abstract":"<div><p>Transposable elements (TEs) provide a prime example of genetic conflict because they can proliferate in genomes and populations even if they harm the host. However, numerous studies have shown that TEs, though typically harmful, can also provide fuel for adaptation. This is because they code functional sequences that can be useful for the host in which they reside. In this review, I summarize the \"how\" and \"why\" of adaptation enabled by the genetic conflict between TEs and hosts. In addition, focusing on mechanisms of TE control by small piwi-interacting RNAs (piRNAs), I highlight an indirect form of adaptation enabled by conflict. In this case, mechanisms of host defense that regulate TEs have been redeployed for endogenous gene regulation. I propose that the genetic conflict released by meiosis in early eukaryotes may have been important because, among other reasons, it spurred evolutionary innovation on multiple interwoven trajectories - on the part of hosts and also embedded genetic parasites. This form of evolution may function as a complexity generating engine that was a critical player in eukaryotic evolution.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"164 ","pages":"Pages 1-12"},"PeriodicalIF":7.3,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WHO elements – A new category of selfish genetic elements at the borderline between homing elements and transposable elements 世卫组织元件--介于同源元件和转座元件之间的一类新的自私遗传元件。
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-04-25 DOI: 10.1016/j.semcdb.2024.04.001
Matthieu Osborne, Athaliah Fubara, Eoin Ó Cinnéide, Aisling Y. Coughlan, Kenneth H. Wolfe

Homing genetic elements are a form of selfish DNA that inserts into a specific target site in the genome and spreads through the population by a process of biased inheritance. Two well-known types of homing element, called inteins and homing introns, were discovered decades ago. In this review we describe WHO elements, a newly discovered type of homing element that constitutes a distinct third category but is rare, having been found only in a few yeast species so far. WHO elements are inferred to spread using the same molecular homing mechanism as inteins and introns: they encode a site-specific endonuclease that cleaves the genome at the target site, making a DNA break that is subsequently repaired by copying the element. For most WHO elements, the target site is in the glycolytic gene FBA1. WHO elements differ from inteins and homing introns in two fundamental ways: they do not interrupt their host gene (FBA1), and they occur in clusters. The clusters were formed by successive integrations of different WHO elements into the FBA1 locus, the result of an ‘arms race’ between the endonuclease and its target site. We also describe one family of WHO elements (WHO10) that is no longer specifically associated with the FBA1 locus and instead appears to have become transposable, inserting at random genomic sites in Torulaspora globosa with up to 26 copies per strain. The WHO family of elements is therefore at the borderline between homing genetic elements and transposable elements.

同源遗传因子是一种自私的 DNA,它插入基因组中的特定目标位点,并通过偏向遗传的过程在群体中传播。几十年前,人们就发现了两种众所周知的归巢元件,分别称为内含子和归巢内含子。在这篇综述中,我们将介绍一种新发现的同源元件--WHO元件,它构成了独特的第三类同源元件,但非常罕见,迄今只在少数酵母物种中发现过。据推断,WHO 元子与内含子和内含子一样,都是利用分子归巢机制进行传播的:它们编码一种位点特异性内切酶,能在目标位点裂解基因组,造成 DNA 断裂,随后通过复制元件进行修复。对于大多数 WHO 基因元件来说,目标位点位于糖酵解基因 FBA1 中。世卫组织元件与内含子和归巢内含子有两个根本区别:它们不会中断宿主基因(FBA1),而且是成簇出现。这些基因簇是由不同的WHO元件连续整合到FBA1基因座中形成的,是内切酶与其目标位点之间 "军备竞赛 "的结果。我们还描述了一个世卫组织元件家族(WHO10),它不再与 FBA1 基因座有特异性关联,而似乎已成为可转座元件,插入到球花藻(Torulaspora globosa)的随机基因组位点,每个菌株多达 26 个拷贝。因此,世卫组织元件家族处于同源遗传元件和转座元件的交界处。
{"title":"WHO elements – A new category of selfish genetic elements at the borderline between homing elements and transposable elements","authors":"Matthieu Osborne,&nbsp;Athaliah Fubara,&nbsp;Eoin Ó Cinnéide,&nbsp;Aisling Y. Coughlan,&nbsp;Kenneth H. Wolfe","doi":"10.1016/j.semcdb.2024.04.001","DOIUrl":"10.1016/j.semcdb.2024.04.001","url":null,"abstract":"<div><p>Homing genetic elements are a form of selfish DNA that inserts into a specific target site in the genome and spreads through the population by a process of biased inheritance. Two well-known types of homing element, called inteins and homing introns, were discovered decades ago. In this review we describe WHO elements, a newly discovered type of homing element that constitutes a distinct third category but is rare, having been found only in a few yeast species so far. WHO elements are inferred to spread using the same molecular homing mechanism as inteins and introns: they encode a site-specific endonuclease that cleaves the genome at the target site, making a DNA break that is subsequently repaired by copying the element. For most WHO elements, the target site is in the glycolytic gene <em>FBA1</em>. WHO elements differ from inteins and homing introns in two fundamental ways: they do not interrupt their host gene (<em>FBA1</em>), and they occur in clusters. The clusters were formed by successive integrations of different WHO elements into the <em>FBA1</em> locus, the result of an ‘arms race’ between the endonuclease and its target site. We also describe one family of WHO elements (WHO10) that is no longer specifically associated with the <em>FBA1</em> locus and instead appears to have become transposable, inserting at random genomic sites in <em>Torulaspora globosa</em> with up to 26 copies per strain. The WHO family of elements is therefore at the borderline between homing genetic elements and transposable elements.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"163 ","pages":"Pages 2-13"},"PeriodicalIF":7.3,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1084952124000326/pdfft?md5=ca5197c79a4967a06b53c679ce8a49e9&pid=1-s2.0-S1084952124000326-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140774912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Out with the old, in with the new: Meiotic driving of sex chromosome evolution 旧的不去,新的不来:性染色体进化的减数分裂驱动力。
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-04-24 DOI: 10.1016/j.semcdb.2024.04.004
Callie M. Swanepoel, Jacob L. Mueller

Chromosomal regions with meiotic drivers exhibit biased transmission (> 50 %) over their competing homologous chromosomal region. These regions often have two prominent genetic features: suppressed meiotic crossing over and rapidly evolving multicopy gene families. Heteromorphic sex chromosomes (e.g., XY) often share these two genetic features with chromosomal regions exhibiting meiotic drive. Here, we discuss parallels between meiotic drive and sex chromosome evolution, how the divergence of heteromorphic sex chromosomes can be influenced by meiotic drive, experimental approaches to study meiotic drive on sex chromosomes, and meiotic drive in traditional and non-traditional model organisms with high-quality genome assemblies. The newly available diversity of high-quality sex chromosome sequences allows us to revisit conventional models of sex chromosome evolution through the lens of meiotic drive.

具有减数分裂驱动力的染色体区域比与其竞争的同源染色体区域表现出偏向传递(50%)。这些区域通常有两个突出的遗传特征:减数分裂交叉抑制和快速进化的多拷贝基因家族。异形性染色体(如 XY)与表现出减数分裂驱动力的染色体区域通常具有这两个遗传特征。在此,我们将讨论减数分裂驱动与性染色体进化之间的相似之处、减数分裂驱动如何影响异形性染色体的分化、研究性染色体减数分裂驱动的实验方法,以及具有高质量基因组组装的传统和非传统模式生物的减数分裂驱动。新近获得的高质量性染色体序列的多样性使我们能够通过减数分裂驱动的视角重新审视性染色体进化的传统模型。
{"title":"Out with the old, in with the new: Meiotic driving of sex chromosome evolution","authors":"Callie M. Swanepoel,&nbsp;Jacob L. Mueller","doi":"10.1016/j.semcdb.2024.04.004","DOIUrl":"10.1016/j.semcdb.2024.04.004","url":null,"abstract":"<div><p>Chromosomal regions with meiotic drivers exhibit biased transmission (&gt; 50 %) over their competing homologous chromosomal region. These regions often have two prominent genetic features: suppressed meiotic crossing over and rapidly evolving multicopy gene families. Heteromorphic sex chromosomes (e.g., XY) often share these two genetic features with chromosomal regions exhibiting meiotic drive. Here, we discuss parallels between meiotic drive and sex chromosome evolution, how the divergence of heteromorphic sex chromosomes can be influenced by meiotic drive, experimental approaches to study meiotic drive on sex chromosomes, and meiotic drive in traditional and non-traditional model organisms with high-quality genome assemblies. The newly available diversity of high-quality sex chromosome sequences allows us to revisit conventional models of sex chromosome evolution through the lens of meiotic drive.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"163 ","pages":"Pages 14-21"},"PeriodicalIF":7.3,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140759524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover image of cell death and resilience in health and disease 健康和疾病中的细胞死亡与恢复能力的封面图片
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-04-17 DOI: 10.1016/j.semcdb.2024.04.003
Hadley Hanson , Jane Feng
{"title":"Cover image of cell death and resilience in health and disease","authors":"Hadley Hanson ,&nbsp;Jane Feng","doi":"10.1016/j.semcdb.2024.04.003","DOIUrl":"https://doi.org/10.1016/j.semcdb.2024.04.003","url":null,"abstract":"","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"163 ","pages":"Page 1"},"PeriodicalIF":7.3,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S108495212400034X/pdfft?md5=7421370082880d496827b62ff687887a&pid=1-s2.0-S108495212400034X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140557848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial control of lymphocyte homeostasis 线粒体对淋巴细胞平衡的控制
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-04-11 DOI: 10.1016/j.semcdb.2024.03.002
Yavuz F. Yazicioglu , Robert J. Mitchell , Alexander J. Clarke

Mitochondria play a multitude of essential roles within mammalian cells, and understanding how they control immunity is an emerging area of study. Lymphocytes, as integral cellular components of the adaptive immune system, rely on mitochondria for their function, and mitochondria can dynamically instruct their differentiation and activation by undergoing rapid and profound remodelling. Energy homeostasis and ATP production are often considered the primary functions of mitochondria in immune cells; however, their importance extends across a spectrum of other molecular processes, including regulation of redox balance, signalling pathways, and biosynthesis. In this review, we explore the dynamic landscape of mitochondrial homeostasis in T and B cells, and discuss how mitochondrial disorders compromise adaptive immunity.

线粒体在哺乳动物细胞中发挥着多种重要作用,了解线粒体如何控制免疫是一个新兴的研究领域。淋巴细胞作为适应性免疫系统中不可或缺的细胞成分,其功能依赖于线粒体,线粒体可以通过快速而深刻的重塑,动态地指导淋巴细胞的分化和活化。能量平衡和 ATP 生成通常被认为是线粒体在免疫细胞中的主要功能;然而,线粒体的重要性还延伸到其他一系列分子过程,包括氧化还原平衡调节、信号通路和生物合成。在这篇综述中,我们将探讨 T 细胞和 B 细胞中线粒体平衡的动态变化,并讨论线粒体紊乱如何损害适应性免疫。
{"title":"Mitochondrial control of lymphocyte homeostasis","authors":"Yavuz F. Yazicioglu ,&nbsp;Robert J. Mitchell ,&nbsp;Alexander J. Clarke","doi":"10.1016/j.semcdb.2024.03.002","DOIUrl":"https://doi.org/10.1016/j.semcdb.2024.03.002","url":null,"abstract":"<div><p>Mitochondria play a multitude of essential roles within mammalian cells, and understanding how they control immunity is an emerging area of study. Lymphocytes, as integral cellular components of the adaptive immune system, rely on mitochondria for their function, and mitochondria can dynamically instruct their differentiation and activation by undergoing rapid and profound remodelling. Energy homeostasis and ATP production are often considered the primary functions of mitochondria in immune cells; however, their importance extends across a spectrum of other molecular processes, including regulation of redox balance, signalling pathways, and biosynthesis. In this review, we explore the dynamic landscape of mitochondrial homeostasis in T and B cells, and discuss how mitochondrial disorders compromise adaptive immunity.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"161 ","pages":"Pages 42-53"},"PeriodicalIF":7.3,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1084952124000314/pdfft?md5=60e9f6a11ceaf2027bd611227bfb6eb1&pid=1-s2.0-S1084952124000314-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140545736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic conflicts in budding yeast: The 2μ plasmid as a model selfish element 芽殖酵母中的遗传冲突:2μ质粒是自私元素的典范
IF 7.3 2区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-04-10 DOI: 10.1016/j.semcdb.2024.04.002
Michelle Hays

Antagonistic coevolution, arising from genetic conflict, can drive rapid evolution and biological innovation. Conflict can arise both between organisms and within genomes. This review focuses on budding yeasts as a model system for exploring intra- and inter-genomic genetic conflict, highlighting in particular the 2-micron (2μ) plasmid as a model selfish element. The 2μ is found widely in laboratory strains and industrial isolates of Saccharomyces cerevisiae and has long been known to cause host fitness defects. Nevertheless, the plasmid is frequently ignored in the context of genetic, fitness, and evolution studies. Here, I make a case for further exploring the evolutionary impact of the 2μ plasmid as well as other selfish elements of budding yeasts, discuss recent advances, and, finally, future directions for the field.

基因冲突引起的对抗性共同进化可以推动快速进化和生物创新。生物体之间和基因组内部都可能产生冲突。这篇综述以芽殖酵母为模型系统,探讨基因组内和基因组间的遗传冲突,特别强调 2 微米(2μ)质粒作为自私元素的模型。2μ 质粒广泛存在于酿酒酵母(Saccharomyces cerevisiae)的实验室菌株和工业分离菌株中,长期以来一直被认为会导致宿主健康缺陷。然而,在遗传、适应性和进化研究中,人们经常忽视这种质粒。在此,我提出了进一步探索 2μ 质粒以及芽殖酵母中其他自私元素对进化的影响的理由,讨论了最近的研究进展,最后提出了该领域的未来发展方向。
{"title":"Genetic conflicts in budding yeast: The 2μ plasmid as a model selfish element","authors":"Michelle Hays","doi":"10.1016/j.semcdb.2024.04.002","DOIUrl":"https://doi.org/10.1016/j.semcdb.2024.04.002","url":null,"abstract":"<div><p>Antagonistic coevolution, arising from genetic conflict, can drive rapid evolution and biological innovation. Conflict can arise both between organisms and within genomes. This review focuses on budding yeasts as a model system for exploring intra- and inter-genomic genetic conflict, highlighting in particular the 2-micron (2μ) plasmid as a model selfish element. The 2μ is found widely in laboratory strains and industrial isolates of <em>Saccharomyces cerevisiae</em> and has long been known to cause host fitness defects. Nevertheless, the plasmid is frequently ignored in the context of genetic, fitness, and evolution studies. Here, I make a case for further exploring the evolutionary impact of the 2μ plasmid as well as other selfish elements of budding yeasts, discuss recent advances, and, finally, future directions for the field.</p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"161 ","pages":"Pages 31-41"},"PeriodicalIF":7.3,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140539220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Seminars in cell & developmental biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1