Pub Date : 2023-10-11DOI: 10.3390/separations10100536
Hanxiao Liu, Shuiyuan Luo, Liyuan Yu, Haibao Zhao, Jun Liang, Ying Guo, Ying Cui, Sike Shan, Xiaowei Liu, Jianguo Li
A wet electrostatic precipitator (WESP) is typically installed downstream of wet flue gas desulfurization (WFGD) to remove fine particles and sulfuric acid mists from flue gases in coal-fired power plants. The emission reduction characteristics of multiple pollutants and the energy consumption data of 214 sets of WESPs (94 sets of metal plate WESPs, 111 sets of conductive Fiber Reinforced Plastic WESPs, and 9 sets of flexible plate WESPs) were tested and analyzed, and the results showed that: WESPs had a high removal efficiency on PM, PM2.5, SO3, droplets and Hg, and mostly concentrated in ≥75%, ≥70%, ≥60%, ≥70% and ≥40%, respectively. The outlet pollutant concentrations were mostly concentrated in ≤5 mg/m3, ≤3 mg/m3, ≤5 mg/m3, ≤15 mg/m3 and ≤5 μg/m3, respectively. Specific power consumption and specific water consumption were concentrated in the range of 0.5~2.5 × 10−4 kWh/m3 and ≤10 × 10−6 t/m3. The correlation analysis of multiple pollutant’s removal performance was studied and the quantitative evaluation index requirements of high efficiency WESPs were determined in this paper. The high efficiency indexes of WESPs, such as PM emission concentration, SO3 emission concentration, PM removal efficiency, SO3 removal efficiency, pressure drop, air leakage rate and specific power consumption, were ≤2.50 mg/m3, ≤2.50 mg/m3, ≥90%, ≥85%, ≤200 Pa, ≤0.5% and ≤1.3 × 10−4 kWh/m3, respectively. The high efficiency indexes of specific water consumption for metal plate WESPs and FRP WESPs were ≤2.50 and ≤0.66 × 10−6 t/m3, respectively. This study can provide valuable reference for the following energy conservation and efficiency improvement of ultra-low emission units.
{"title":"Study on Multi-Pollutant Test and Performance Index Determination of Wet Electrostatic Precipitator","authors":"Hanxiao Liu, Shuiyuan Luo, Liyuan Yu, Haibao Zhao, Jun Liang, Ying Guo, Ying Cui, Sike Shan, Xiaowei Liu, Jianguo Li","doi":"10.3390/separations10100536","DOIUrl":"https://doi.org/10.3390/separations10100536","url":null,"abstract":"A wet electrostatic precipitator (WESP) is typically installed downstream of wet flue gas desulfurization (WFGD) to remove fine particles and sulfuric acid mists from flue gases in coal-fired power plants. The emission reduction characteristics of multiple pollutants and the energy consumption data of 214 sets of WESPs (94 sets of metal plate WESPs, 111 sets of conductive Fiber Reinforced Plastic WESPs, and 9 sets of flexible plate WESPs) were tested and analyzed, and the results showed that: WESPs had a high removal efficiency on PM, PM2.5, SO3, droplets and Hg, and mostly concentrated in ≥75%, ≥70%, ≥60%, ≥70% and ≥40%, respectively. The outlet pollutant concentrations were mostly concentrated in ≤5 mg/m3, ≤3 mg/m3, ≤5 mg/m3, ≤15 mg/m3 and ≤5 μg/m3, respectively. Specific power consumption and specific water consumption were concentrated in the range of 0.5~2.5 × 10−4 kWh/m3 and ≤10 × 10−6 t/m3. The correlation analysis of multiple pollutant’s removal performance was studied and the quantitative evaluation index requirements of high efficiency WESPs were determined in this paper. The high efficiency indexes of WESPs, such as PM emission concentration, SO3 emission concentration, PM removal efficiency, SO3 removal efficiency, pressure drop, air leakage rate and specific power consumption, were ≤2.50 mg/m3, ≤2.50 mg/m3, ≥90%, ≥85%, ≤200 Pa, ≤0.5% and ≤1.3 × 10−4 kWh/m3, respectively. The high efficiency indexes of specific water consumption for metal plate WESPs and FRP WESPs were ≤2.50 and ≤0.66 × 10−6 t/m3, respectively. This study can provide valuable reference for the following energy conservation and efficiency improvement of ultra-low emission units.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136209684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-11DOI: 10.3390/separations10100538
Aqsa Fatima, Muhammad Asif Hanif, Umer Rashid, Muhammad Idrees Jilani, Fahad A. Alharthi, Jeehoon Han
Due to growing environmental awareness and demands, many efforts were implemented for the transformation of waste materials into highly efficient adsorption capacity materials. In this work, efforts were made to convert the Sindh clay and quartz into an efficient composite for dye removal from polluted water. The synthesized composites were characterized using FT-IR, BET, SEM, and XRD. The synthesized composite showed a crystalline structure with specific characteristics, including a specific surface area of 7.20 m2/g and a pore diameter of 3.27 nm. The formation of iron cyanide hydrate (2030 cm−1) and iron oxides (418 cm−1) were depicted through Fourier transform infrared spectroscopy analysis. The micrographs obtained show that the unmodified quartz sample has a flattened and elongated shape compared to the modified quartz sample, which has aggregated and coarse morphology. The effects of several factors, such as temperature, contact time, and initial dye concentration, were studied. Kinetic models were also applied to determine the probable route of the adsorption process. For adsorption equilibrium analysis, the Dubinin–Radushkevich, Langmuir, Freundlich, Temkin, and Harkin–Juraisotherm models were employed. The Freundlich isotherm model and pseudo-first-order model best described the adsorption of dyes onto the clay composites. R2 values were close to 1 or more than 0.9, showing which equation fits the experimental data. The produced composite demonstrated good reusability, maintaining over 90% of the adsorption capacity after five reaction cycles without the need for reactivation.
{"title":"Adsorption, Modeling, Thermodynamic, and Kinetic Studies of Acteray Golden Removal from Polluted Water Using Sindh Clay and Quartz as Low-Cost Adsorbents","authors":"Aqsa Fatima, Muhammad Asif Hanif, Umer Rashid, Muhammad Idrees Jilani, Fahad A. Alharthi, Jeehoon Han","doi":"10.3390/separations10100538","DOIUrl":"https://doi.org/10.3390/separations10100538","url":null,"abstract":"Due to growing environmental awareness and demands, many efforts were implemented for the transformation of waste materials into highly efficient adsorption capacity materials. In this work, efforts were made to convert the Sindh clay and quartz into an efficient composite for dye removal from polluted water. The synthesized composites were characterized using FT-IR, BET, SEM, and XRD. The synthesized composite showed a crystalline structure with specific characteristics, including a specific surface area of 7.20 m2/g and a pore diameter of 3.27 nm. The formation of iron cyanide hydrate (2030 cm−1) and iron oxides (418 cm−1) were depicted through Fourier transform infrared spectroscopy analysis. The micrographs obtained show that the unmodified quartz sample has a flattened and elongated shape compared to the modified quartz sample, which has aggregated and coarse morphology. The effects of several factors, such as temperature, contact time, and initial dye concentration, were studied. Kinetic models were also applied to determine the probable route of the adsorption process. For adsorption equilibrium analysis, the Dubinin–Radushkevich, Langmuir, Freundlich, Temkin, and Harkin–Juraisotherm models were employed. The Freundlich isotherm model and pseudo-first-order model best described the adsorption of dyes onto the clay composites. R2 values were close to 1 or more than 0.9, showing which equation fits the experimental data. The produced composite demonstrated good reusability, maintaining over 90% of the adsorption capacity after five reaction cycles without the need for reactivation.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136062809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pentachlorophenol (PCP) is a persistent organic pollutant usually present in the form of sodium salts (PCP-Na) that has been banned for many years, but it can still be detected in animal food. The present study established a method of detecting PCP-Na and its metabolites—tetrachlorocatechol (TCC), pentachlorophenol acetate (PCP-acetate), and pentachloroanisole (PCA)—in swine samples (pork, fat, liver, heart, lungs and kidney), simultaneously using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS) based on the modified QuEChERS pre-treatment method. The validation results exhibited a good sensitivity with limits of quantitation (LOQs) of 1 μg/kg–2 μg/kg. The recoveries of spiked samples were in the range of 60.5–119.9%, with a relative standard deviation (RSD) between replicates (n = 5) of between 0.70% and 12.06%.
{"title":"Simultaneous Determination of Sodium Pentachlorophenolate and Its Metabolites in Swine Samples","authors":"Qi Jia, Miao Cui, Meiling Li, Yuncheng Li, Fanbing Meng, Yanyang Xu, Yongzhong Qian, Xue Yan, Jing Qiu","doi":"10.3390/separations10100537","DOIUrl":"https://doi.org/10.3390/separations10100537","url":null,"abstract":"Pentachlorophenol (PCP) is a persistent organic pollutant usually present in the form of sodium salts (PCP-Na) that has been banned for many years, but it can still be detected in animal food. The present study established a method of detecting PCP-Na and its metabolites—tetrachlorocatechol (TCC), pentachlorophenol acetate (PCP-acetate), and pentachloroanisole (PCA)—in swine samples (pork, fat, liver, heart, lungs and kidney), simultaneously using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS) based on the modified QuEChERS pre-treatment method. The validation results exhibited a good sensitivity with limits of quantitation (LOQs) of 1 μg/kg–2 μg/kg. The recoveries of spiked samples were in the range of 60.5–119.9%, with a relative standard deviation (RSD) between replicates (n = 5) of between 0.70% and 12.06%.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136062845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sediment bacterial communities are a vital component of microbial communities in aquatic and terrestrial ecosystems and they play a critical role in lake wetlands. We aimed to investigate the effect of season, depth and regional environmental factors on the composition and diversity of bacterial communities in a plain river network area from Taihu Basin. The millions of Illumina reads (16S rRNA gene amplicons) at the surface 25 cm inside samples of the study area were examined using a technically consistent approach. Results from the diversity index, relative abundance, principal component analysis (PCA), redundancy analysis (RDA) and linear discriminant analysis effect size (LEfSe) analysis indicated that the diversity of the bacterial community in summer was generally higher than in other seasons. Proteobacteria were the most abundant phylum in the sediment samples in different seasons (43.15–57.41%) and different layers (39.66–77.97%); the autumn sediments were enriched with Firmicutes (5.67%) and Chloroflexi (12.5%); in all four seasons the sediments were enriched with Betaproteobacteria (14.98–23.45%), Gammaproteobacteria (11.98–14.36%) and Deltaproteobacteria (8.68–14.45%). In the bottom sediments (10–25 cm), Chloroflexi were abundant (average value 10.42%), while Bacteroidetes was the dominant phylum in the surface sediments; redundancy analysis found that total phosphorus (TP) (p = 0.036) was the main environmental factor influencing the sediment bacterial community in different layers. This study provides a reference for further understanding the effects of seasonal changes on sediment microorganisms in lake wetlands.
{"title":"Temporal and Spatial Characterization of Sediment Bacterial Communities from Lake Wetlands in a Plain River Network Region","authors":"Yongsheng Chang, Xiaoshuang Dong, Xixi Yang, Haojie Chen, Haoran Yang, Wei Huang","doi":"10.3390/separations10100535","DOIUrl":"https://doi.org/10.3390/separations10100535","url":null,"abstract":"Sediment bacterial communities are a vital component of microbial communities in aquatic and terrestrial ecosystems and they play a critical role in lake wetlands. We aimed to investigate the effect of season, depth and regional environmental factors on the composition and diversity of bacterial communities in a plain river network area from Taihu Basin. The millions of Illumina reads (16S rRNA gene amplicons) at the surface 25 cm inside samples of the study area were examined using a technically consistent approach. Results from the diversity index, relative abundance, principal component analysis (PCA), redundancy analysis (RDA) and linear discriminant analysis effect size (LEfSe) analysis indicated that the diversity of the bacterial community in summer was generally higher than in other seasons. Proteobacteria were the most abundant phylum in the sediment samples in different seasons (43.15–57.41%) and different layers (39.66–77.97%); the autumn sediments were enriched with Firmicutes (5.67%) and Chloroflexi (12.5%); in all four seasons the sediments were enriched with Betaproteobacteria (14.98–23.45%), Gammaproteobacteria (11.98–14.36%) and Deltaproteobacteria (8.68–14.45%). In the bottom sediments (10–25 cm), Chloroflexi were abundant (average value 10.42%), while Bacteroidetes was the dominant phylum in the surface sediments; redundancy analysis found that total phosphorus (TP) (p = 0.036) was the main environmental factor influencing the sediment bacterial community in different layers. This study provides a reference for further understanding the effects of seasonal changes on sediment microorganisms in lake wetlands.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136294808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-07DOI: 10.3390/separations10100534
Abdulilah Mohammad Mayet, John William Grimaldo Guerrero, Thafasal Ijyas, Javed Khan Bhutto, Neeraj Kumar Shukla, Ehsan Eftekhari-Zadeh, Hala H. Alhashim
With the passage of time, scale gradually forms inside the oil pipeline. The produced scale, which has a high density, strongly attenuates photons, which lowers the measurement accuracy of three-phase flow meters based on gamma radiation. It is worth mentioning that the need for multiphase flow metering arises when it is necessary or desirable to meter well stream(s) upstream of inlet separation and/or commingling. In this investigation, a novel technique based on artificial intelligence is presented to overcome the issue mentioned earlier. Initially, a detection system was comprised of two NaI detectors and a dual-energy gamma source (241 Am and 133 Ba radioisotopes) using Monte Carlo N particle (MCNP) code. A stratified flow regime with varying volume percentages of oil, water, and gas was modeled inside a pipe that included a scale layer with varying thicknesses. Two detectors record the attenuated photons that could travel through the pipe. Four characteristics with the names of the amplitude of the first and second dominant signal frequencies were extracted from the received signals by both detectors. The aforementioned obtained characteristics were used to train two Radial Basis Function (RBF) neural networks to forecast the volumetric percentages of each component. The RMSE value of the gas and oil prediction neural networks are equal to 0.27 and 0.29, respectively. By measuring two phases of fluids in the pipe, the volume of the third phase can be calculated by subtracting the volume of two phases from the total volume of the pipe. Extraction and introduction of suitable characteristics to determine the volume percentages, reducing the computational burden of the detection system, considering the scale value thickness the pipe, and increasing the accuracy in determining the volume percentages of oil pipes are some of the advantages of the current research, which has increased the usability of the proposed system as a reliable measuring system in the oil and petrochemical industry.
{"title":"Application of the Fourier Transform to Improve the Accuracy of Gamma-Based Volume Percentage Detection System Independent of Scale Thickness","authors":"Abdulilah Mohammad Mayet, John William Grimaldo Guerrero, Thafasal Ijyas, Javed Khan Bhutto, Neeraj Kumar Shukla, Ehsan Eftekhari-Zadeh, Hala H. Alhashim","doi":"10.3390/separations10100534","DOIUrl":"https://doi.org/10.3390/separations10100534","url":null,"abstract":"With the passage of time, scale gradually forms inside the oil pipeline. The produced scale, which has a high density, strongly attenuates photons, which lowers the measurement accuracy of three-phase flow meters based on gamma radiation. It is worth mentioning that the need for multiphase flow metering arises when it is necessary or desirable to meter well stream(s) upstream of inlet separation and/or commingling. In this investigation, a novel technique based on artificial intelligence is presented to overcome the issue mentioned earlier. Initially, a detection system was comprised of two NaI detectors and a dual-energy gamma source (241 Am and 133 Ba radioisotopes) using Monte Carlo N particle (MCNP) code. A stratified flow regime with varying volume percentages of oil, water, and gas was modeled inside a pipe that included a scale layer with varying thicknesses. Two detectors record the attenuated photons that could travel through the pipe. Four characteristics with the names of the amplitude of the first and second dominant signal frequencies were extracted from the received signals by both detectors. The aforementioned obtained characteristics were used to train two Radial Basis Function (RBF) neural networks to forecast the volumetric percentages of each component. The RMSE value of the gas and oil prediction neural networks are equal to 0.27 and 0.29, respectively. By measuring two phases of fluids in the pipe, the volume of the third phase can be calculated by subtracting the volume of two phases from the total volume of the pipe. Extraction and introduction of suitable characteristics to determine the volume percentages, reducing the computational burden of the detection system, considering the scale value thickness the pipe, and increasing the accuracy in determining the volume percentages of oil pipes are some of the advantages of the current research, which has increased the usability of the proposed system as a reliable measuring system in the oil and petrochemical industry.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135301834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water contamination is a ubiquitous issue for all countries and territories worldwide. Among others, pesticides, drugs, heavy metals, and phosphates play a special role in terms of pollutants due to their toxicity and large-scale applications in industrial and agricultural activities. In order to provide cleaner freshwater for the world’s population, two types of actions are required: preventing/limiting the pollution that might occur during our daily activities and decontaminating the already exposed/contaminated water sources. One of the key points in the decontamination process is to create as few as possible side effects with the solutions applied. For this reason, in the case of the mentioned types of pollutants but not limited only to them, the use of environmentally friendly materials is more than welcome. Biochar qualifies as one of these materials, and its field of applications expands to larger scientific and industrial areas every day. Moreover, it can be functionalized in order to improve its properties in terms of pollutant removal efficiency. This paper summarizes the most recent developments in the field of water decontamination using biochar or biochar-based materials in order to remove pesticides, drugs, heavy metals, and phosphates from contaminated aqueous environments. Also, the removal of phosphorus from wastewater using biochar is considered. This removal can be a key controlling factor for the wastewater, which is obtained as a residual of agricultural activities. Indeed, due to the excessive use of chemical fertilizers, eutrophication in such kinds of wastewater can be a serious challenge.
{"title":"Biochar-Based Adsorbents for Pesticides, Drugs, Phosphorus, and Heavy Metal Removal from Polluted Water","authors":"Mariana Bocșa, Stelian Pintea, Ildiko Lung, Ocsana Opriș, Adina Stegarescu, Muhammad Humayun, Mohamed Bououdina, Maria-Loredana Soran, Stefano Bellucci","doi":"10.3390/separations10100533","DOIUrl":"https://doi.org/10.3390/separations10100533","url":null,"abstract":"Water contamination is a ubiquitous issue for all countries and territories worldwide. Among others, pesticides, drugs, heavy metals, and phosphates play a special role in terms of pollutants due to their toxicity and large-scale applications in industrial and agricultural activities. In order to provide cleaner freshwater for the world’s population, two types of actions are required: preventing/limiting the pollution that might occur during our daily activities and decontaminating the already exposed/contaminated water sources. One of the key points in the decontamination process is to create as few as possible side effects with the solutions applied. For this reason, in the case of the mentioned types of pollutants but not limited only to them, the use of environmentally friendly materials is more than welcome. Biochar qualifies as one of these materials, and its field of applications expands to larger scientific and industrial areas every day. Moreover, it can be functionalized in order to improve its properties in terms of pollutant removal efficiency. This paper summarizes the most recent developments in the field of water decontamination using biochar or biochar-based materials in order to remove pesticides, drugs, heavy metals, and phosphates from contaminated aqueous environments. Also, the removal of phosphorus from wastewater using biochar is considered. This removal can be a key controlling factor for the wastewater, which is obtained as a residual of agricultural activities. Indeed, due to the excessive use of chemical fertilizers, eutrophication in such kinds of wastewater can be a serious challenge.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"151 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135351547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-06DOI: 10.3390/separations10100532
Veronica D’Eusanio, Lorenzo Morelli, Andrea Marchetti, Lorenzo Tassi
This study aimed to compare the aroma profiles of Sorbara and Spergola grapevine prunings roasted at different temperatures (120, 140, 160, 180, 200, and 240 °C). One potential application of grapevine prunings is their use as infusion chips to enhance and improve the aging processes of alcoholic beverages and vinegars. Aromatic compounds impart unique flavors and contribute to the complexity of the final products. Thermogravimetry–mass spectrometry coupled with evolved gas analysis (TGA-MS-EGA) was conducted to identify the thermal steps at which substantial changes occurred in the wood matrix. Solid-phase microextraction–gas chromatography–mass spectrometry (SPME-GC-MS) was used for the analysis of volatile compounds. Several key volatile compounds were identified, showing variations in their concentrations as a function of cultivar and roasting temperature. Furan derivatives, such as furfural, and phenolic compounds, such as guaiacol and vanillin, were the two main chemical classes of volatile compounds that predominantly defined the aroma of grapevine chips roasted above 180 °C. At lower roasting temperatures, some aldehydes, such as hexanal and terpenes, defined the aroma profiles of the samples. By repurposing waste materials, this application offers a pathway for environmentally conscious viticulture and sustainable practices within the food industry.
{"title":"Aroma Profile of Grapevine Chips after Roasting: A Comparative Study of Sorbara and Spergola Cultivars for More Sustainable Oenological Production","authors":"Veronica D’Eusanio, Lorenzo Morelli, Andrea Marchetti, Lorenzo Tassi","doi":"10.3390/separations10100532","DOIUrl":"https://doi.org/10.3390/separations10100532","url":null,"abstract":"This study aimed to compare the aroma profiles of Sorbara and Spergola grapevine prunings roasted at different temperatures (120, 140, 160, 180, 200, and 240 °C). One potential application of grapevine prunings is their use as infusion chips to enhance and improve the aging processes of alcoholic beverages and vinegars. Aromatic compounds impart unique flavors and contribute to the complexity of the final products. Thermogravimetry–mass spectrometry coupled with evolved gas analysis (TGA-MS-EGA) was conducted to identify the thermal steps at which substantial changes occurred in the wood matrix. Solid-phase microextraction–gas chromatography–mass spectrometry (SPME-GC-MS) was used for the analysis of volatile compounds. Several key volatile compounds were identified, showing variations in their concentrations as a function of cultivar and roasting temperature. Furan derivatives, such as furfural, and phenolic compounds, such as guaiacol and vanillin, were the two main chemical classes of volatile compounds that predominantly defined the aroma of grapevine chips roasted above 180 °C. At lower roasting temperatures, some aldehydes, such as hexanal and terpenes, defined the aroma profiles of the samples. By repurposing waste materials, this application offers a pathway for environmentally conscious viticulture and sustainable practices within the food industry.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135350254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-04DOI: 10.3390/separations10100531
Jorge A. Custodio-Mendoza, Ana M. Ares-Fuentes, Antonia M. Carro
Lipid peroxidation, the most aggressive reaction in food, results in the formation of reactive organic compounds that detrimentally impact food sensory qualities and consumers’ health. While controlled lipid peroxidation can enhance flavors and appearance in certain foods, secondary peroxidation products lead to sensory deterioration in a variety of products, such as oils, alcoholic beverages, and meat. This publication reviews the use of modern analytical techniques for detecting and quantifying carbonyl compounds, i.e., secondary lipid peroxidation products. The paper focuses specifically on microextraction-based methods: dispersive liquid-liquid microextraction (DLLME), solid-phase microextraction (SPME), and gas-diffusion microextraction (GDME). These techniques offer efficient and sensitive approaches to extracting and quantifying lipid oxidation products and contribute to the understanding of oxidative deterioration in various food products. The review outlines recent advancements, challenges, and limitations in these microextraction techniques, as well as emphasizes the potential for further innovation and improvement in the field of food analysis.
{"title":"Innovative Solutions for Food Analysis: Microextraction Techniques in Lipid Peroxidation Product Detection","authors":"Jorge A. Custodio-Mendoza, Ana M. Ares-Fuentes, Antonia M. Carro","doi":"10.3390/separations10100531","DOIUrl":"https://doi.org/10.3390/separations10100531","url":null,"abstract":"Lipid peroxidation, the most aggressive reaction in food, results in the formation of reactive organic compounds that detrimentally impact food sensory qualities and consumers’ health. While controlled lipid peroxidation can enhance flavors and appearance in certain foods, secondary peroxidation products lead to sensory deterioration in a variety of products, such as oils, alcoholic beverages, and meat. This publication reviews the use of modern analytical techniques for detecting and quantifying carbonyl compounds, i.e., secondary lipid peroxidation products. The paper focuses specifically on microextraction-based methods: dispersive liquid-liquid microextraction (DLLME), solid-phase microextraction (SPME), and gas-diffusion microextraction (GDME). These techniques offer efficient and sensitive approaches to extracting and quantifying lipid oxidation products and contribute to the understanding of oxidative deterioration in various food products. The review outlines recent advancements, challenges, and limitations in these microextraction techniques, as well as emphasizes the potential for further innovation and improvement in the field of food analysis.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135644895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-03DOI: 10.3390/separations10100530
Hideo Maruyama, Hideshi Seki
The influence of adding boric acid (BA) on the adsorption behavior of lactose onto an anion exchange resin (IRA402) was investigated. By adding BA, the amount of lactose adsorbed onto IRA402 was increased ca. 20% compared to without adding BA. In the presence of BA, ca. 70% of the adsorbed lactose could desorb from IRA402, while the absorbed lactose hardly desorbed in the absence of BA. Lactose molecules were considered to bind to tertiary amine group on IRA402 by Maillard reaction. The optimum conditions of the dosage of BA and pH were found at the molar ratio of BA to lactose ranging from 1–2, and pH 7–9. The kinetics and equilibrium of lactose adsorption could be explained by the Langmuir adsorption model (best model). In the case of a real whey solution, phosphate strongly affected the adsorption behavior and could be removed as precipitation from the whey over pH 10. Whey proteins had little effect on lactose adsorption, which was ca. 30% less than that in the model system. Moreover, the different kinds of whey proteins and amino acids had little effect on the amount adsorbed. Minerals in the whey may also be considered to be responsible for the decreased adsorption in the whey.
{"title":"Adsorption of Lactose Using Anion Exchange Resin by Adding Boric Acid from Milk Whey","authors":"Hideo Maruyama, Hideshi Seki","doi":"10.3390/separations10100530","DOIUrl":"https://doi.org/10.3390/separations10100530","url":null,"abstract":"The influence of adding boric acid (BA) on the adsorption behavior of lactose onto an anion exchange resin (IRA402) was investigated. By adding BA, the amount of lactose adsorbed onto IRA402 was increased ca. 20% compared to without adding BA. In the presence of BA, ca. 70% of the adsorbed lactose could desorb from IRA402, while the absorbed lactose hardly desorbed in the absence of BA. Lactose molecules were considered to bind to tertiary amine group on IRA402 by Maillard reaction. The optimum conditions of the dosage of BA and pH were found at the molar ratio of BA to lactose ranging from 1–2, and pH 7–9. The kinetics and equilibrium of lactose adsorption could be explained by the Langmuir adsorption model (best model). In the case of a real whey solution, phosphate strongly affected the adsorption behavior and could be removed as precipitation from the whey over pH 10. Whey proteins had little effect on lactose adsorption, which was ca. 30% less than that in the model system. Moreover, the different kinds of whey proteins and amino acids had little effect on the amount adsorbed. Minerals in the whey may also be considered to be responsible for the decreased adsorption in the whey.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"96 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135697056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-02DOI: 10.3390/separations10100529
Alexandre Landry, Samuel Banville, Olivier Clarisse
Radium-226 (226Ra) measurement in living organisms, such as the American oyster (Crassostrea virginica), is an analytical challenge: the matrix complexity and the extremely low Ra levels require a purification/preconcentration step prior to its quantification. In this study, 5 g of dry oyster soft tissues and 1.6 g of shell were both mineralized, preconcentrated on an AG50W-X8 and a strontium-specific resin, and measured using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The volumes of digestate used in the method for both matrices were optimized to reach a high preconcentration factor without any risk of oversaturating the columns. Out of the 50 mL of digestates, 48 mL and 2.5 mL were determined as optimal volumes for soft tissues and shell, respectively. To obtain a higher preconcentration factor and a lower limit of quantification (LOQ) for shell samples, three aliquots of 2.5 mL digestate were run on three different sets of resins and, ultimately, combined for Ra analysis using ICP-MS. LOQs of 7.7 and 0.3 fg/g (260 and 11 µBq/g) were achieved for the oyster shell and soft tissues, respectively. The new protocols were applied on relevant samples: oyster soft tissues and shell from New Brunswick, Canada, and different types of reference materials, such as IAEA-470, oyster soft tissue and IAEA-A-12, and animal bones. 226Ra recovery of 105 ± 3% (n = 6) was achieved for IAEA-A-12 (animal bones), the closest available reference material to shell with a recommended value for 226Ra. Resin performances were investigated using 226Ra standard solution and real samples: each set of columns could be used more than 100 times without any significant reduction in Ra preconcentration efficiency. Although the method proposed and validated in this work was developed for oysters, it could easily be applied to other matrices by adjusting the volume of digestate run on the resins to avoid their oversaturation.
{"title":"Development, Optimization, and Validation of Radium-226 Measurement in Oyster, a Sentinel Organism by Mass Spectrometry","authors":"Alexandre Landry, Samuel Banville, Olivier Clarisse","doi":"10.3390/separations10100529","DOIUrl":"https://doi.org/10.3390/separations10100529","url":null,"abstract":"Radium-226 (226Ra) measurement in living organisms, such as the American oyster (Crassostrea virginica), is an analytical challenge: the matrix complexity and the extremely low Ra levels require a purification/preconcentration step prior to its quantification. In this study, 5 g of dry oyster soft tissues and 1.6 g of shell were both mineralized, preconcentrated on an AG50W-X8 and a strontium-specific resin, and measured using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The volumes of digestate used in the method for both matrices were optimized to reach a high preconcentration factor without any risk of oversaturating the columns. Out of the 50 mL of digestates, 48 mL and 2.5 mL were determined as optimal volumes for soft tissues and shell, respectively. To obtain a higher preconcentration factor and a lower limit of quantification (LOQ) for shell samples, three aliquots of 2.5 mL digestate were run on three different sets of resins and, ultimately, combined for Ra analysis using ICP-MS. LOQs of 7.7 and 0.3 fg/g (260 and 11 µBq/g) were achieved for the oyster shell and soft tissues, respectively. The new protocols were applied on relevant samples: oyster soft tissues and shell from New Brunswick, Canada, and different types of reference materials, such as IAEA-470, oyster soft tissue and IAEA-A-12, and animal bones. 226Ra recovery of 105 ± 3% (n = 6) was achieved for IAEA-A-12 (animal bones), the closest available reference material to shell with a recommended value for 226Ra. Resin performances were investigated using 226Ra standard solution and real samples: each set of columns could be used more than 100 times without any significant reduction in Ra preconcentration efficiency. Although the method proposed and validated in this work was developed for oysters, it could easily be applied to other matrices by adjusting the volume of digestate run on the resins to avoid their oversaturation.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"96 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135893300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}