Pub Date : 2023-01-01DOI: 10.1016/j.smaim.2023.04.004
Xiaoyang Liu, Zhengke Wang
Bone regeneration scaffolds loaded with osteoblast-related cells or cytokines exhibit outstanding therapeutic potential during large-scale bone defect repair. However, limited sources of cells, opportune choosing of growth factors and their concentration, as well as immunological rejection, seriously hinder its clinical application. Developing a scaffold that can effectively recruit MSCs in situ and achieve endogenous bone regeneration is a viable strategy. Herein, we report a chitosan-calcium carbonate scaffold with high mineral content and centripetal pore arrangement using a simple in situ mineralization method. In vivo results first time demonstrate that the scaffold with high calcium carbonate content can effectively recruit MSCs near the defect area, induce their osteogenic differentiation, and ultimately accelerate the process of bone regeneration. Considering the accessible preparation and excellent osteogenicity, the chitosan-calcium carbonate scaffold possesses high potential for the therapeutics of massive bone defects.
{"title":"Chitosan-calcium carbonate scaffold with high mineral content and hierarchical structure for bone regeneration","authors":"Xiaoyang Liu, Zhengke Wang","doi":"10.1016/j.smaim.2023.04.004","DOIUrl":"10.1016/j.smaim.2023.04.004","url":null,"abstract":"<div><p>Bone regeneration scaffolds loaded with osteoblast-related cells or cytokines exhibit outstanding therapeutic potential during large-scale bone defect repair. However, limited sources of cells, opportune choosing of growth factors and their concentration, as well as immunological rejection, seriously hinder its clinical application. Developing a scaffold that can effectively recruit MSCs <em>in situ</em> and achieve endogenous bone regeneration is a viable strategy. Herein, we report a chitosan-calcium carbonate scaffold with high mineral content and centripetal pore arrangement using a simple <em>in situ</em> mineralization method. <em>In vivo</em> results first time demonstrate that the scaffold with high calcium carbonate content can effectively recruit MSCs near the defect area, induce their osteogenic differentiation, and ultimately accelerate the process of bone regeneration. Considering the accessible preparation and excellent osteogenicity, the chitosan-calcium carbonate scaffold possesses high potential for the therapeutics of massive bone defects.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 552-561"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43773665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.smaim.2022.10.003
Chi Wang , Han-Shi Zeng , Kai-Xuan Liu , Yi-Na Lin , Hao Yang , Xin-Ying Xie , Dai-Xu Wei , Jian-Wen Ye
The study of synthetic biology focusing on biosensor systems has resulted from a growing interest in developing customized biological devices with desired cellular functions. Recently, biosensors have been used for a variety of medical applications such as disease diagnosis, prevention, rehabilitation, patient health monitoring, and human health management. Meanwhile, the ability to track biomarkers based on biosensors allows researchers and medical practitioners to provide patients with individualized treatment regimens and health management. Biosensors that respond to electrochemical, optical, thermal, piezoelectric and magnetic signals have been developed and utilized for various disease therapies and biomedical applications. This study reviews recent developments in biosensor-based therapeutic tools by sensing diverse biomarkers in many diseases (e.g. cancer, infections, metabolic diseases), such as physical biomarkers (e.g. pressure, temperature) and chemical biomarkers (e.g. dissolved oxygen, glucose). Additionally, we highlight the challenges and problems of biosensor-based therapeutics and possible solutions for biosensor engineering thereof. Current biosensors enable for coarsely programable personal treatment and health management, however, new sensors with optimized dose-response functions, for example, fast response and tight-control performances, could significantly boost versatile uses in medical treatment in the coming future.
{"title":"Biosensor-based therapy powered by synthetic biology","authors":"Chi Wang , Han-Shi Zeng , Kai-Xuan Liu , Yi-Na Lin , Hao Yang , Xin-Ying Xie , Dai-Xu Wei , Jian-Wen Ye","doi":"10.1016/j.smaim.2022.10.003","DOIUrl":"10.1016/j.smaim.2022.10.003","url":null,"abstract":"<div><p>The study of synthetic biology focusing on biosensor systems has resulted from a growing interest in developing customized biological devices with desired cellular functions. Recently, biosensors have been used for a variety of medical applications such as disease diagnosis, prevention, rehabilitation, patient health monitoring, and human health management. Meanwhile, the ability to track biomarkers based on biosensors allows researchers and medical practitioners to provide patients with individualized treatment regimens and health management. Biosensors that respond to electrochemical, optical, thermal, piezoelectric and magnetic signals have been developed and utilized for various disease therapies and biomedical applications. This study reviews recent developments in biosensor-based therapeutic tools by sensing diverse biomarkers in many diseases (e.g. cancer, infections, metabolic diseases), such as physical biomarkers (e.g. pressure, temperature) and chemical biomarkers (e.g. dissolved oxygen, glucose). Additionally, we highlight the challenges and problems of biosensor-based therapeutics and possible solutions for biosensor engineering thereof. Current biosensors enable for coarsely programable personal treatment and health management, however, new sensors with optimized dose-response functions, for example, fast response and tight-control performances, could significantly boost versatile uses in medical treatment in the coming future.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 212-224"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45644253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.smaim.2022.09.006
Rui Ding , Xinbo Wei , Youlan Liu, Yuqing Wang, Zheng Xing, Li Wang, Haifeng Liu, Yubo Fan
Rapid hemostasis and effective healing for the non-compressible liver wounds which are not able to be sewn, especially for those large-area wounds, remain great clinical challenges. In this study, we fabricated epidermal growth factor (EGF)-loaded chitosan microspheres (CM) and then incorporated them into a photo-crosslinking gelatin methacryloyl (GelMA) hydrogel. The results showed that the EGF-loaded CM/GelMA precursor solution could transform into a hydrogel and cease bleeding at laceration sites without external stress. Subsequently, the sustained release of EGF accelerated wound closure and promoted liver regeneration. The in vitro experiments demonstrated that the microsphere/hydrogel composite could promote the proliferation and migration of L02 cells. Moreover, the histological and immunohistological analyses indicated that EGF-CM/GelMA composite could alleviate inflammation in the mouse liver and promote liver remodeling. Overall, this multi-functional microsphere/hydrogel composite will inspire the development of clinical applications for noncompressible hemostasis and successive wound closure.
{"title":"Epidermal growth factor-loaded microspheres/hydrogel composite for instant hemostasis and liver regeneration","authors":"Rui Ding , Xinbo Wei , Youlan Liu, Yuqing Wang, Zheng Xing, Li Wang, Haifeng Liu, Yubo Fan","doi":"10.1016/j.smaim.2022.09.006","DOIUrl":"10.1016/j.smaim.2022.09.006","url":null,"abstract":"<div><p>Rapid hemostasis and effective healing for the non-compressible liver wounds which are not able to be sewn, especially for those large-area wounds, remain great clinical challenges. In this study, we fabricated epidermal growth factor (EGF)-loaded chitosan microspheres (CM) and then incorporated them into a photo-crosslinking gelatin methacryloyl (GelMA) hydrogel. The results showed that the EGF-loaded CM/GelMA precursor solution could transform into a hydrogel and cease bleeding at laceration sites without external stress. Subsequently, the sustained release of EGF accelerated wound closure and promoted liver regeneration. The in vitro experiments demonstrated that the microsphere/hydrogel composite could promote the proliferation and migration of L02 cells. Moreover, the histological and immunohistological analyses indicated that EGF-CM/GelMA composite could alleviate inflammation in the mouse liver and promote liver remodeling. Overall, this multi-functional microsphere/hydrogel composite will inspire the development of clinical applications for noncompressible hemostasis and successive wound closure.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 173-182"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43243822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.smaim.2023.03.002
Isadora Martini Garcia , Lamia Sami Mokeem , Yasmin Shahkarami , Lauren Blum , Victoria Sheraphim , Robert Leonardo , Abdulrahman A. Balhaddad , Mary Anne S. Melo
With the advent of nanotechnology, incorporating nanoscale fillers in dental resins seems promising to improve therapeutic features and provide more excellent physicochemical properties for dental materials. The use of nanotubes has been raised due to their excellent mechanical properties, carry and delivery of drugs capabilities, and bioactive properties. These features depend on the composition of nanotubes and their application. This scoping review aims to describe previous studies about incorporating nanotubes in restorative resin-based materials. The main goals here addresses are: (1) to identify which are the most used nanotubes in the development of these dental materials; (2) to verify which the molecules/particles associated with these nanotubes; (3) to report the objectives of the incorporation of nanotubes to these dental materials and main results. The searches were performed using PubMed and Scopus databases in December 2022, identifying 534 manuscripts. After the selection process, 43 studies were included in the review. We mainly analyzed and discussed the nanotubes' composition, the parental materials in which the nanotubes were incorporated, the purposes of adding these particles to the dental materials, how the materials were analyzed, and the primary studies' outcomes. The outcomes are stimulating and reveal a promising advance in dental resins with the possibility of improving the maintenance of restorations and patients' quality of life. Further studies should address the abovementioned topics to expand the understanding and options of using nanotubes in resin-based restorative materials.
{"title":"Tube-shaped nanostructures for enhancing resin-based dental materials: A landscape of evidence and research advancement","authors":"Isadora Martini Garcia , Lamia Sami Mokeem , Yasmin Shahkarami , Lauren Blum , Victoria Sheraphim , Robert Leonardo , Abdulrahman A. Balhaddad , Mary Anne S. Melo","doi":"10.1016/j.smaim.2023.03.002","DOIUrl":"10.1016/j.smaim.2023.03.002","url":null,"abstract":"<div><p>With the advent of nanotechnology, incorporating nanoscale fillers in dental resins seems promising to improve therapeutic features and provide more excellent physicochemical properties for dental materials. The use of nanotubes has been raised due to their excellent mechanical properties, carry and delivery of drugs capabilities, and bioactive properties. These features depend on the composition of nanotubes and their application. This scoping review aims to describe previous studies about incorporating nanotubes in restorative resin-based materials. The main goals here addresses are: (1) to identify which are the most used nanotubes in the development of these dental materials; (2) to verify which the molecules/particles associated with these nanotubes; (3) to report the objectives of the incorporation of nanotubes to these dental materials and main results. The searches were performed using PubMed and Scopus databases in December 2022, identifying 534 manuscripts. After the selection process, 43 studies were included in the review. We mainly analyzed and discussed the nanotubes' composition, the parental materials in which the nanotubes were incorporated, the purposes of adding these particles to the dental materials, how the materials were analyzed, and the primary studies' outcomes. The outcomes are stimulating and reveal a promising advance in dental resins with the possibility of improving the maintenance of restorations and patients' quality of life. Further studies should address the abovementioned topics to expand the understanding and options of using nanotubes in resin-based restorative materials.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 504-513"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45334109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peripheral nerve injury (PNI) is a common and complex clinical disease with high morbidity, limited treatment options and poor clinical outcomes. Several million cases of PNI in the world every year have brought a heavy burden to the patients and the social economy. Autologous nerve grafting has long been the “gold standard” in the treatment of PNI repair, but it still has some shortcomings, such as donor area injury, limited graft source and mismatch of nerve thickness after transplantation. In recent years, many artificial nerve guidance conduits (NGCs) have emerged for replacing autologous nerve grafts, and their effectiveness has been proven. Currently, there are already clinical products obtained from the European CE Certification, and approved by the Food and Drug Administration (FDA), China Food and Drug Administration (CFDA), Therapeutic Goods Administration (TGA) in Australia, etc. The preparation of NGCs requires interdisciplinary studies and has received considerable attention from researchers in recent years. At present, among emerging and mature manufacturing technologies, textile methods to prepare NGCs are relatively simple and have wide material sources, which has become a hotspot in textile research. This paper mainly reviewed the current situation and recent technological achievements of NGCs that were prepared by textile methods. Several other common methods were also briefly summarized. Furthermore, current NGCs products and their clinical applications were reported. Finally, the future development direction of textile-based NGCs is discussed in this review.
{"title":"Recent advances on nerve guide conduits based on textile methods","authors":"Shihan Gao, Xiangshang Chen, Beining Lu, Kai Meng, Ke-Qin Zhang, Huijing Zhao","doi":"10.1016/j.smaim.2022.12.001","DOIUrl":"10.1016/j.smaim.2022.12.001","url":null,"abstract":"<div><p>Peripheral nerve injury (PNI) is a common and complex clinical disease with high morbidity, limited treatment options and poor clinical outcomes. Several million cases of PNI in the world every year have brought a heavy burden to the patients and the social economy. Autologous nerve grafting has long been the “gold standard” in the treatment of PNI repair, but it still has some shortcomings, such as donor area injury, limited graft source and mismatch of nerve thickness after transplantation. In recent years, many artificial nerve guidance conduits (NGCs) have emerged for replacing autologous nerve grafts, and their effectiveness has been proven. Currently, there are already clinical products obtained from the European CE Certification, and approved by the Food and Drug Administration (FDA), China Food and Drug Administration (CFDA), Therapeutic Goods Administration (TGA) in Australia, etc. The preparation of NGCs requires interdisciplinary studies and has received considerable attention from researchers in recent years. At present, among emerging and mature manufacturing technologies, textile methods to prepare NGCs are relatively simple and have wide material sources, which has become a hotspot in textile research. This paper mainly reviewed the current situation and recent technological achievements of NGCs that were prepared by textile methods. Several other common methods were also briefly summarized. Furthermore, current NGCs products and their clinical applications were reported. Finally, the future development direction of textile-based NGCs is discussed in this review.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 368-383"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46818489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.smaim.2022.07.001
Miao Sun , Jiaxing Gong , Wushi Cui , Congsun Li , Mengfei Yu , Hua Ye , Zhanfeng Cui , Jing Chen , Yong He , An Liu , Huiming Wang
With the development of modern medicine, the research methods of occurrence, development and treatment of orthopedic diseases are developing rapidly. The microenvironment provided by traditional orthopedic research methods differ considerably from the human body, resulting in poor or inconsistent conclusions in previous studies. Microfluidic technology has shown its advantages in the field of orthopedic research, especially in providing bionic mechanical stimulation environment. The microfluidic device can simulate the complex internal environment through the fine and complex structure and perfusion control system, and provide a stable, controllable and efficient culture system. Moreover, it can serve as a manufacturing device, which can produce bone grafts or bone like organs for tissue engineering with bionic structure. It can also simultaneously act as a detection device, which can realize high-throughput detection of small samples at low cost. In addition, we can establish in vitro physiological or pathological models on microfluidic systems to assist in the diagnosis and treatment of orthopedic diseases. This paper reviews the medical application of microfluidic devices in orthopedics.
{"title":"Developments of microfluidics for orthopedic applications: A review","authors":"Miao Sun , Jiaxing Gong , Wushi Cui , Congsun Li , Mengfei Yu , Hua Ye , Zhanfeng Cui , Jing Chen , Yong He , An Liu , Huiming Wang","doi":"10.1016/j.smaim.2022.07.001","DOIUrl":"10.1016/j.smaim.2022.07.001","url":null,"abstract":"<div><p>With the development of modern medicine, the research methods of occurrence, development and treatment of orthopedic diseases are developing rapidly. The microenvironment provided by traditional orthopedic research methods differ considerably from the human body, resulting in poor or inconsistent conclusions in previous studies. Microfluidic technology has shown its advantages in the field of orthopedic research, especially in providing bionic mechanical stimulation environment. The microfluidic device can simulate the complex internal environment through the fine and complex structure and perfusion control system, and provide a stable, controllable and efficient culture system. Moreover, it can serve as a manufacturing device, which can produce bone grafts or bone like organs for tissue engineering with bionic structure. It can also simultaneously act as a detection device, which can realize high-throughput detection of small samples at low cost. In addition, we can establish in vitro physiological or pathological models on microfluidic systems to assist in the diagnosis and treatment of orthopedic diseases. This paper reviews the medical application of microfluidic devices in orthopedics.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 111-122"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48388251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Effective wound care is a major concern as many conventional wound healing methods and materials have failed in facilitating proper healing, instead disrupts the overall healing process, leading to the development of chronic wounds. Advancement in tissue engineering has led to the development of scaffolds; a 3D construct which can be utilized as a template for cell growth and regeneration while preventing infection along with acceleration of the wound healing process. Natural and synthetic polymers are used extensively for scaffold production and hybrid scaffolds are also introduced which constitutes a combination of natural and synthetic polymers. This review highlights the design of scaffolds using different kinds of polymers for skin tissue engineering.
{"title":"Design of 3D smart scaffolds using natural, synthetic and hybrid derived polymers for skin regenerative applications","authors":"Laldinthari Suamte, Akriti Tirkey, Punuri Jayasekhar Babu","doi":"10.1016/j.smaim.2022.09.005","DOIUrl":"10.1016/j.smaim.2022.09.005","url":null,"abstract":"<div><p>Effective wound care is a major concern as many conventional wound healing methods and materials have failed in facilitating proper healing, instead disrupts the overall healing process, leading to the development of chronic wounds. Advancement in tissue engineering has led to the development of scaffolds; a 3D construct which can be utilized as a template for cell growth and regeneration while preventing infection along with acceleration of the wound healing process. Natural and synthetic polymers are used extensively for scaffold production and hybrid scaffolds are also introduced which constitutes a combination of natural and synthetic polymers. This review highlights the design of scaffolds using different kinds of polymers for skin tissue engineering.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 243-256"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43429810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.smaim.2022.11.007
Amna Akhtar , Vahideh Farzam Rad , Ali-Reza Moradi , Muhammad Yar , Masoomeh Bazzar
The nervous system is a crucial part of the human body that is damaged by traumatic injury, stroke, and neurodegenerative diseases. Recent studies also have shown that neurodegenerative diseases are associated with a subsequently increased risk of COVID-19-related death. Presently used pharmacological and therapeutic strategies are only the symptomatic treatments that involve the disruption of axonal tracts and are unable to repair and regenerate damaged CNS tissue thereby leading to significant unmet clinical needs involved in neural degeneration. The use of stem cell based regenerative medicine approaches is also limited due to heavy cost, ethical concerns and graft rejection. To address all these limitations, the neural tissue engineering philosophy has been developed that focuses on exploring and developing smart biomaterials for neural tissue repair and regeneration. A scaffold based upon natural and synthetic polymers has meant a very potential role to mimic the extracellular matrix of cells and permit the growth of different types of cells thereby improving the biological behavior in vitro and in vivo effects. They treat neurological disorders without the classic drug delivery limitations. Among these biopolymers, the collagen-based hydrogel is successfully applied conduits for clinical trials that ultimately replicate the native physiological environment of the neural tissues and control cell behavior and favor the regeneration of the damaged nerve tissue. The main objective of this review is to investigate the recent approaches and applications of next-generation polymeric biomaterials useful in the management of neurodegenerative diseases. We also discuss the outlook of the polymeric scaffolds that could pave the way for successful clinical practices.
{"title":"Emerging polymeric biomaterials and manufacturing-based tissue engineering approaches for neuro regeneration-A critical review on recent effective approaches","authors":"Amna Akhtar , Vahideh Farzam Rad , Ali-Reza Moradi , Muhammad Yar , Masoomeh Bazzar","doi":"10.1016/j.smaim.2022.11.007","DOIUrl":"https://doi.org/10.1016/j.smaim.2022.11.007","url":null,"abstract":"<div><p>The nervous system is a crucial part of the human body that is damaged by traumatic injury, stroke, and neurodegenerative diseases. Recent studies also have shown that neurodegenerative diseases are associated with a subsequently increased risk of COVID-19-related death. Presently used pharmacological and therapeutic strategies are only the symptomatic treatments that involve the disruption of axonal tracts and are unable to repair and regenerate damaged CNS tissue thereby leading to significant unmet clinical needs involved in neural degeneration. The use of stem cell based regenerative medicine approaches is also limited due to heavy cost, ethical concerns and graft rejection. To address all these limitations, the neural tissue engineering philosophy has been developed that focuses on exploring and developing smart biomaterials for neural tissue repair and regeneration. A scaffold based upon natural and synthetic polymers has meant a very potential role to mimic the extracellular matrix of cells and permit the growth of different types of cells thereby improving the biological behavior in <em>vitro</em> and in vivo effects. They treat neurological disorders without the classic drug delivery limitations. Among these biopolymers, the collagen-based hydrogel is successfully applied conduits for clinical trials that ultimately replicate the native physiological environment of the neural tissues and control cell behavior and favor the regeneration of the damaged nerve tissue. The main objective of this review is to investigate the recent approaches and applications of next-generation polymeric biomaterials useful in the management of neurodegenerative diseases. We also discuss the outlook of the polymeric scaffolds that could pave the way for successful clinical practices.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 337-355"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49734962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.smaim.2023.01.003
Chao Yang , Liang Yao , Lei Zhang
Silk sericin (SS) is a byproduct of the silk production process that consists of 18 amino acids and numerous polar groups. SS has a range of unique physical, chemical, and biological properties, such as mechanical strength, antioxidant activity, pH responsiveness, low immunogenicity, biocompatibility, and the ability to promote cell proliferation. These properties make SS useful in various fields, including food and biomedicine. It can also be easily modified into biomaterials through cross-linking, copolymerization, and combination with other polymers. This review summarizes the potential applications of SS-based biomaterials in the food and biomedicine industries, including as food additives, food packaging, in vitro/vivo monitoring, drug delivery systems, and wound healing. In addition, the future development possibilities of SS or SS-based biomaterials are also discussed.
{"title":"Silk sericin-based biomaterials shine in food and pharmaceutical industries","authors":"Chao Yang , Liang Yao , Lei Zhang","doi":"10.1016/j.smaim.2023.01.003","DOIUrl":"10.1016/j.smaim.2023.01.003","url":null,"abstract":"<div><p>Silk sericin (SS) is a byproduct of the silk production process that consists of 18 amino acids and numerous polar groups. SS has a range of unique physical, chemical, and biological properties, such as mechanical strength, antioxidant activity, pH responsiveness, low immunogenicity, biocompatibility, and the ability to promote cell proliferation. These properties make SS useful in various fields, including food and biomedicine. It can also be easily modified into biomaterials through cross-linking, copolymerization, and combination with other polymers. This review summarizes the potential applications of SS-based biomaterials in the food and biomedicine industries, including as food additives, food packaging, <em>in vitro</em>/<em>vivo</em> monitoring, drug delivery systems, and wound healing. In addition, the future development possibilities of SS or SS-based biomaterials are also discussed.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 447-459"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45916828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.smaim.2022.08.004
Wei Zhang , Xingliang Dai , Xu Jin , Muchen Huang , Jie Shan , Xulin Chen , Haisheng Qian , Zenghong Chen , Xianwen Wang
The rapid healing of wounds requires strategies that relieve oxidative stress resulting from overloaded free radicals and which promote angiogenesis, collagen deposition, and re-epithelialization of the wound. Nickel ions have been reported to be correlated with angiogenesis. However, several applications of metal salts or oxides to wounds lead to increased toxicity. The nickel metal-organic framework (Ni MOF) nanorods described herein can slowly release nickel ions, resulting in reduced toxicity and improved wound healing rates. More importantly, the Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2) nanorods with well-defined structures, superior conductivity and many catalytic sites showed superoxide dismutase (SOD)-like enzyme activity and scavenged various free radicals. In addition, the Ni3(HITP)2 nanomaterials contributed to promotion of the migration of fibroblasts, angiogenesis and macrophage polarization from M1 to M2. The aqueous solution of Pluronic F127, a temperature-sensitive, nontoxic and phase-changing hydrogel material, was shown to be an effective choice for injectable and sprayable medical dressings. The Ni3(HITP)2 MOF nanomaterials can be effectively encapsulated with the F127 hydrogel to achieve continuous long-term therapeutic effects. The toxicity test results suggested that the Ni3(HITP)2 MOF nanomaterials exhibited excellent biosafety and no observable toxicity or side effects in mice. Therefore, the Ni3(HITP)2 MOF nanorods hold promising potential in the biomedical field, and this work provides an effective solution to wound therapy.
{"title":"Promotion of wound healing by a thermosensitive and sprayable hydrogel with nanozyme activity and anti-inflammatory properties","authors":"Wei Zhang , Xingliang Dai , Xu Jin , Muchen Huang , Jie Shan , Xulin Chen , Haisheng Qian , Zenghong Chen , Xianwen Wang","doi":"10.1016/j.smaim.2022.08.004","DOIUrl":"10.1016/j.smaim.2022.08.004","url":null,"abstract":"<div><p>The rapid healing of wounds requires strategies that relieve oxidative stress resulting from overloaded free radicals and which promote angiogenesis, collagen deposition, and re-epithelialization of the wound. Nickel ions have been reported to be correlated with angiogenesis. However, several applications of metal salts or oxides to wounds lead to increased toxicity. The nickel metal-organic framework (Ni MOF) nanorods described herein can slowly release nickel ions, resulting in reduced toxicity and improved wound healing rates. More importantly, the Ni<sub>3</sub>(2,3,6,7,10,11-hexaiminotriphenylene)<sub>2</sub> (Ni<sub>3</sub>(HITP)<sub>2</sub>) nanorods with well-defined structures, superior conductivity and many catalytic sites showed superoxide dismutase (SOD)-like enzyme activity and scavenged various free radicals. In addition, the Ni<sub>3</sub>(HITP)<sub>2</sub> nanomaterials contributed to promotion of the migration of fibroblasts, angiogenesis and macrophage polarization from M1 to M2. The aqueous solution of Pluronic F127, a temperature-sensitive, nontoxic and phase-changing hydrogel material, was shown to be an effective choice for injectable and sprayable medical dressings. The Ni<sub>3</sub>(HITP)<sub>2</sub> MOF nanomaterials can be effectively encapsulated with the F127 hydrogel to achieve continuous long-term therapeutic effects. The toxicity test results suggested that the Ni<sub>3</sub>(HITP)<sub>2</sub> MOF nanomaterials exhibited excellent biosafety and no observable toxicity or side effects in mice. Therefore, the Ni<sub>3</sub>(HITP)<sub>2</sub> MOF nanorods hold promising potential in the biomedical field, and this work provides an effective solution to wound therapy.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 134-145"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45504953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}