首页 > 最新文献

Smart Materials in Medicine最新文献

英文 中文
Application of mesenchymal stem cell exosomes in the treatment of skin wounds 间充质干细胞外泌体在皮肤创伤治疗中的应用
Q1 Engineering Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2023.04.006
Xinyu Zhao , Wei Zhang , Junjuan Fan , Xulin Chen , Xianwen Wang

Mesenchymal stem cell exosomes (MSC-Exos) are a type of cell vesicle with biological function secreted by mesenchymal stem cells (MSCs). In tissue repair, MSC-Exos are more effective than MSCs, and they can be used as a cell-free alternative therapy to MSCs. This therapeutic system has a stable membrane structure that is coated with proteins, miRNAs, mRNA, lncRNA, DNA, and other macromolecular active substances. These molecules have a powerful effect on tissue regeneration. MSC-Exos can regulate the biological function of target cells through direct recognition, membrane fusion, and secretion of communication mediators. Skin wound healing consists mainly of blood coagulation, inflammation response, cell proliferation, and tissue remodeling. By regulating the four stages of wound healing, MSC-Exos effectively reduce tissue inflammation, reduce the immune response, promote enhanced cell migration and angiogenesis and regulate tissue remodeling, thus shortening the healing time and reducing scar formation. A variety of biological factors, genetic material and signaling pathways are involved in this process. This article reviews the efficacy and mechanism of MSC-Exos in promoting skin tissue repair.

间充质干细胞外泌体(Mesenchymal stem cell exosome, MSC-Exos)是间充质干细胞(Mesenchymal stem cells, MSCs)分泌的一类具有生物学功能的细胞囊泡。在组织修复中,MSC-Exos比MSCs更有效,它们可以作为MSCs的无细胞替代疗法。该治疗系统具有稳定的膜结构,膜上包裹有蛋白质、mirna、mRNA、lncRNA、DNA等大分子活性物质。这些分子对组织再生有强大的作用。MSC-Exos可以通过直接识别、膜融合、分泌通讯介质等方式调节靶细胞的生物学功能。皮肤创面愈合主要包括血液凝固、炎症反应、细胞增殖和组织重塑。MSC-Exos通过调节创面愈合的四个阶段,有效减轻组织炎症,降低免疫反应,促进细胞迁移和血管生成增强,调节组织重塑,从而缩短愈合时间,减少瘢痕形成。这一过程涉及多种生物因素、遗传物质和信号通路。本文就MSC-Exos促进皮肤组织修复的作用及机制进行综述。
{"title":"Application of mesenchymal stem cell exosomes in the treatment of skin wounds","authors":"Xinyu Zhao ,&nbsp;Wei Zhang ,&nbsp;Junjuan Fan ,&nbsp;Xulin Chen ,&nbsp;Xianwen Wang","doi":"10.1016/j.smaim.2023.04.006","DOIUrl":"10.1016/j.smaim.2023.04.006","url":null,"abstract":"<div><p>Mesenchymal stem cell exosomes (MSC-Exos) are a type of cell vesicle with biological function secreted by mesenchymal stem cells (MSCs). In tissue repair, MSC-Exos are more effective than MSCs, and they can be used as a cell-free alternative therapy to MSCs. This therapeutic system has a stable membrane structure that is coated with proteins, miRNAs, mRNA, lncRNA, DNA, and other macromolecular active substances. These molecules have a powerful effect on tissue regeneration. MSC-Exos can regulate the biological function of target cells through direct recognition, membrane fusion, and secretion of communication mediators. Skin wound healing consists mainly of blood coagulation, inflammation response, cell proliferation, and tissue remodeling. By regulating the four stages of wound healing, MSC-Exos effectively reduce tissue inflammation, reduce the immune response, promote enhanced cell migration and angiogenesis and regulate tissue remodeling, thus shortening the healing time and reducing scar formation. A variety of biological factors, genetic material and signaling pathways are involved in this process. This article reviews the efficacy and mechanism of MSC-Exos in promoting skin tissue repair.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45255078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Biofabrication of natural Au/bacterial cellulose hydrogel for bone tissue regeneration via in-situ fermentation 原位发酵制备用于骨组织再生的天然金/细菌纤维素水凝胶
Q1 Engineering Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2022.06.001
Caoxing Huang , Qing Ye , Jian Dong , Lan Li , Min Wang , Yunyang Zhang , Yibo Zhang , Xucai Wang , Peng Wang , Qing Jiang

Bacterial cellulose (BC) possesses the desirable properties of biocompatibility, high porosity, high surface area and noticeable mechanical strength as a scaffold in bone tissue engineering. However, the lack of osteogenic activity restricts its application. In this study, gold nanoparticles (GNPs) with excellent osteogenic differentiation ability were incorporated into the network of BC hydrogel (Au/BC hydrogels) by the in-situ fermentation. The effects of GNPs on physicochemical properties of BC hydrogel and subsequently in vitro osteogenic differentiation and in vivo bone regeneration of Au/BC hydrogels were comprehensively investigated. The results showed that the increased feeding amounts of GNPs could remarkablly enhance the Au/BC hydrogels with better mechanical properties, higher porosity, larger surface area, and biocompatibility. The sustainable release of GNPs endowed the hydrogels with an outstanding biological activity in facilitating osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs). Mechanism research showed that autophagy might be a potential pathway for Au/BC hydrogels-induced osteogenic differentiation of hBMSCs. In addition, Au/BC hydrogel exhibited an excellent in vivo bone repair performance in a rabbit model of femoral defect, which was evidenced by the significant newly bone formation. Overall, the multifunctional Au/BC hydrogels fabricated by in-situ fermentation could serve as a good scaffold for promoting bone tissue regeneration in clinic.

细菌纤维素(BC)作为骨组织工程的支架材料,具有良好的生物相容性、高孔隙率、高表面积和显著的机械强度。然而,缺乏成骨活性限制了其应用。在本研究中,通过原位发酵将具有优异成骨分化能力的金纳米粒子(GNPs)掺入BC水凝胶(Au/BC水凝胶)的网络中。全面研究了GNPs对BC水凝胶理化性质的影响,以及随后Au/BC水凝胶的体外成骨分化和体内骨再生。结果表明,增加GNPs的加入量可以显著增强Au/BC水凝胶的力学性能、孔隙率、表面积和生物相容性。GNPs的可持续释放使水凝胶在促进人骨髓源性间充质干细胞(hBMSCs)的成骨分化方面具有突出的生物活性。机制研究表明,自噬可能是Au/BC水凝胶诱导hBMSCs成骨分化的潜在途径。此外,Au/BC水凝胶在兔股骨缺损模型中表现出优异的体内骨修复性能,这可以通过显著的新骨形成来证明。总之,通过原位发酵制备的多功能Au/BC水凝胶可以在临床上作为促进骨组织再生的良好支架。
{"title":"Biofabrication of natural Au/bacterial cellulose hydrogel for bone tissue regeneration via in-situ fermentation","authors":"Caoxing Huang ,&nbsp;Qing Ye ,&nbsp;Jian Dong ,&nbsp;Lan Li ,&nbsp;Min Wang ,&nbsp;Yunyang Zhang ,&nbsp;Yibo Zhang ,&nbsp;Xucai Wang ,&nbsp;Peng Wang ,&nbsp;Qing Jiang","doi":"10.1016/j.smaim.2022.06.001","DOIUrl":"https://doi.org/10.1016/j.smaim.2022.06.001","url":null,"abstract":"<div><p>Bacterial cellulose (BC) possesses the desirable properties of biocompatibility, high porosity, high surface area and noticeable mechanical strength as a scaffold in bone tissue engineering. However, the lack of osteogenic activity restricts its application. In this study, gold nanoparticles (GNPs) with excellent osteogenic differentiation ability were incorporated into the network of BC hydrogel (Au/BC hydrogels) by the in-situ fermentation. The effects of GNPs on physicochemical properties of BC hydrogel and subsequently <em>in vitro</em> osteogenic differentiation and <em>in vivo</em> bone regeneration of Au/BC hydrogels were comprehensively investigated. The results showed that the increased feeding amounts of GNPs could remarkablly enhance the Au/BC hydrogels with better mechanical properties, higher porosity, larger surface area, and biocompatibility. The sustainable release of GNPs endowed the hydrogels with an outstanding biological activity in facilitating osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs). Mechanism research showed that autophagy might be a potential pathway for Au/BC hydrogels-induced osteogenic differentiation of hBMSCs. In addition, Au/BC hydrogel exhibited an excellent <em>in vivo</em> bone repair performance in a rabbit model of femoral defect, which was evidenced by the significant newly bone formation. Overall, the multifunctional Au/BC hydrogels fabricated by in-situ fermentation could serve as a good scaffold for promoting bone tissue regeneration in clinic.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49716760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reactive oxygen species-sensitive materials: A promising strategy for regulating inflammation and favoring tissue regeneration 活性氧物种敏感材料:调节炎症和促进组织再生的有前途的策略
Q1 Engineering Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2023.01.004
Jing Zhou , Chao Fang , Chao Rong , Tao Luo , Junjie Liu , Kun Zhang
{"title":"Reactive oxygen species-sensitive materials: A promising strategy for regulating inflammation and favoring tissue regeneration","authors":"Jing Zhou ,&nbsp;Chao Fang ,&nbsp;Chao Rong ,&nbsp;Tao Luo ,&nbsp;Junjie Liu ,&nbsp;Kun Zhang","doi":"10.1016/j.smaim.2023.01.004","DOIUrl":"https://doi.org/10.1016/j.smaim.2023.01.004","url":null,"abstract":"","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49717127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Chitosan-calcium carbonate scaffold with high mineral content and hierarchical structure for bone regeneration 高矿物质、分级结构的壳聚糖-碳酸钙骨再生支架
Q1 Engineering Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2023.04.004
Xiaoyang Liu, Zhengke Wang

Bone regeneration scaffolds loaded with osteoblast-related cells or cytokines exhibit outstanding therapeutic potential during large-scale bone defect repair. However, limited sources of cells, opportune choosing of growth factors and their concentration, as well as immunological rejection, seriously hinder its clinical application. Developing a scaffold that can effectively recruit MSCs in situ and achieve endogenous bone regeneration is a viable strategy. Herein, we report a chitosan-calcium carbonate scaffold with high mineral content and centripetal pore arrangement using a simple in situ mineralization method. In vivo results first time demonstrate that the scaffold with high calcium carbonate content can effectively recruit MSCs near the defect area, induce their osteogenic differentiation, and ultimately accelerate the process of bone regeneration. Considering the accessible preparation and excellent osteogenicity, the chitosan-calcium carbonate scaffold possesses high potential for the therapeutics of massive bone defects.

载成骨细胞相关细胞或细胞因子的骨再生支架在大规模骨缺损修复中表现出突出的治疗潜力。然而,细胞来源有限、生长因子及其浓度选择不当、免疫排斥等因素严重阻碍了其临床应用。开发一种能够原位有效募集MSCs并实现内源性骨再生的支架是一种可行的策略。在此,我们报告了一个壳聚糖-碳酸钙支架具有高矿物质含量和向心孔排列使用简单的原位矿化方法。体内实验结果首次证明,高碳酸钙含量的支架能够有效募集缺损区域附近的MSCs,诱导其成骨分化,最终加速骨再生过程。壳聚糖-碳酸钙支架材料制备方便,成骨性好,在治疗大面积骨缺损方面具有很大的应用潜力。
{"title":"Chitosan-calcium carbonate scaffold with high mineral content and hierarchical structure for bone regeneration","authors":"Xiaoyang Liu,&nbsp;Zhengke Wang","doi":"10.1016/j.smaim.2023.04.004","DOIUrl":"10.1016/j.smaim.2023.04.004","url":null,"abstract":"<div><p>Bone regeneration scaffolds loaded with osteoblast-related cells or cytokines exhibit outstanding therapeutic potential during large-scale bone defect repair. However, limited sources of cells, opportune choosing of growth factors and their concentration, as well as immunological rejection, seriously hinder its clinical application. Developing a scaffold that can effectively recruit MSCs <em>in situ</em> and achieve endogenous bone regeneration is a viable strategy. Herein, we report a chitosan-calcium carbonate scaffold with high mineral content and centripetal pore arrangement using a simple <em>in situ</em> mineralization method. <em>In vivo</em> results first time demonstrate that the scaffold with high calcium carbonate content can effectively recruit MSCs near the defect area, induce their osteogenic differentiation, and ultimately accelerate the process of bone regeneration. Considering the accessible preparation and excellent osteogenicity, the chitosan-calcium carbonate scaffold possesses high potential for the therapeutics of massive bone defects.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43773665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Biosensor-based therapy powered by synthetic biology 基于合成生物学的生物传感器疗法
Q1 Engineering Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2022.10.003
Chi Wang , Han-Shi Zeng , Kai-Xuan Liu , Yi-Na Lin , Hao Yang , Xin-Ying Xie , Dai-Xu Wei , Jian-Wen Ye

The study of synthetic biology focusing on biosensor systems has resulted from a growing interest in developing customized biological devices with desired cellular functions. Recently, biosensors have been used for a variety of medical applications such as disease diagnosis, prevention, rehabilitation, patient health monitoring, and human health management. Meanwhile, the ability to track biomarkers based on biosensors allows researchers and medical practitioners to provide patients with individualized treatment regimens and health management. Biosensors that respond to electrochemical, optical, thermal, piezoelectric and magnetic signals have been developed and utilized for various disease therapies and biomedical applications. This study reviews recent developments in biosensor-based therapeutic tools by sensing diverse biomarkers in many diseases (e.g. cancer, infections, metabolic diseases), such as physical biomarkers (e.g. pressure, temperature) and chemical biomarkers (e.g. dissolved oxygen, glucose). Additionally, we highlight the challenges and problems of biosensor-based therapeutics and possible solutions for biosensor engineering thereof. Current biosensors enable for coarsely programable personal treatment and health management, however, new sensors with optimized dose-response functions, for example, fast response and tight-control performances, could significantly boost versatile uses in medical treatment in the coming future.

合成生物学的研究重点是生物传感器系统,这是由于人们对开发具有所需细胞功能的定制生物设备越来越感兴趣。近年来,生物传感器已广泛应用于疾病诊断、预防、康复、患者健康监测、人体健康管理等医疗领域。同时,追踪基于生物传感器的生物标记物的能力使研究人员和医疗从业者能够为患者提供个性化的治疗方案和健康管理。对电化学、光学、热、压电和磁信号作出反应的生物传感器已被开发并用于各种疾病治疗和生物医学应用。本研究综述了基于生物传感器的治疗工具的最新进展,通过传感多种生物标志物在许多疾病(如癌症,感染,代谢性疾病),如物理生物标志物(如压力,温度)和化学生物标志物(如溶解氧,葡萄糖)。此外,我们强调了基于生物传感器的治疗方法的挑战和问题,以及生物传感器工程的可能解决方案。目前的生物传感器能够实现大致可编程的个人治疗和健康管理,然而,具有优化剂量响应功能的新型传感器,例如,快速响应和严格控制性能,可以在未来显著促进医疗的多用途应用。
{"title":"Biosensor-based therapy powered by synthetic biology","authors":"Chi Wang ,&nbsp;Han-Shi Zeng ,&nbsp;Kai-Xuan Liu ,&nbsp;Yi-Na Lin ,&nbsp;Hao Yang ,&nbsp;Xin-Ying Xie ,&nbsp;Dai-Xu Wei ,&nbsp;Jian-Wen Ye","doi":"10.1016/j.smaim.2022.10.003","DOIUrl":"10.1016/j.smaim.2022.10.003","url":null,"abstract":"<div><p>The study of synthetic biology focusing on biosensor systems has resulted from a growing interest in developing customized biological devices with desired cellular functions. Recently, biosensors have been used for a variety of medical applications such as disease diagnosis, prevention, rehabilitation, patient health monitoring, and human health management. Meanwhile, the ability to track biomarkers based on biosensors allows researchers and medical practitioners to provide patients with individualized treatment regimens and health management. Biosensors that respond to electrochemical, optical, thermal, piezoelectric and magnetic signals have been developed and utilized for various disease therapies and biomedical applications. This study reviews recent developments in biosensor-based therapeutic tools by sensing diverse biomarkers in many diseases (e.g. cancer, infections, metabolic diseases), such as physical biomarkers (e.g. pressure, temperature) and chemical biomarkers (e.g. dissolved oxygen, glucose). Additionally, we highlight the challenges and problems of biosensor-based therapeutics and possible solutions for biosensor engineering thereof. Current biosensors enable for coarsely programable personal treatment and health management, however, new sensors with optimized dose-response functions, for example, fast response and tight-control performances, could significantly boost versatile uses in medical treatment in the coming future.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45644253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Epidermal growth factor-loaded microspheres/hydrogel composite for instant hemostasis and liver regeneration 表皮生长因子负载微球/水凝胶复合材料用于即时止血和肝脏再生
Q1 Engineering Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2022.09.006
Rui Ding , Xinbo Wei , Youlan Liu, Yuqing Wang, Zheng Xing, Li Wang, Haifeng Liu, Yubo Fan

Rapid hemostasis and effective healing for the non-compressible liver wounds which are not able to be sewn, especially for those large-area wounds, remain great clinical challenges. In this study, we fabricated epidermal growth factor (EGF)-loaded chitosan microspheres (CM) and then incorporated them into a photo-crosslinking gelatin methacryloyl (GelMA) hydrogel. The results showed that the EGF-loaded CM/GelMA precursor solution could transform into a hydrogel and cease bleeding at laceration sites without external stress. Subsequently, the sustained release of EGF accelerated wound closure and promoted liver regeneration. The in vitro experiments demonstrated that the microsphere/hydrogel composite could promote the proliferation and migration of L02 ​cells. Moreover, the histological and immunohistological analyses indicated that EGF-CM/GelMA composite could alleviate inflammation in the mouse liver and promote liver remodeling. Overall, this multi-functional microsphere/hydrogel composite will inspire the development of clinical applications for noncompressible hemostasis and successive wound closure.

对于无法缝合的不可压缩性肝伤口,特别是大面积肝伤口的快速止血和有效愈合,仍然是临床面临的巨大挑战。本研究制备了负载表皮生长因子(EGF)的壳聚糖微球(CM),并将其加入光交联明胶甲基丙烯酰(GelMA)水凝胶中。结果表明,负载egf的CM/GelMA前体溶液可以转化为水凝胶,并在无外部应力的情况下在撕裂处止血。随后,EGF的持续释放加速伤口愈合,促进肝脏再生。体外实验表明,微球/水凝胶复合材料能促进L02细胞的增殖和迁移。此外,组织学和免疫组织学分析表明,EGF-CM/GelMA复合物可以减轻小鼠肝脏炎症,促进肝脏重塑。总之,这种多功能微球/水凝胶复合材料将激发不可压缩止血和连续伤口闭合的临床应用的发展。
{"title":"Epidermal growth factor-loaded microspheres/hydrogel composite for instant hemostasis and liver regeneration","authors":"Rui Ding ,&nbsp;Xinbo Wei ,&nbsp;Youlan Liu,&nbsp;Yuqing Wang,&nbsp;Zheng Xing,&nbsp;Li Wang,&nbsp;Haifeng Liu,&nbsp;Yubo Fan","doi":"10.1016/j.smaim.2022.09.006","DOIUrl":"10.1016/j.smaim.2022.09.006","url":null,"abstract":"<div><p>Rapid hemostasis and effective healing for the non-compressible liver wounds which are not able to be sewn, especially for those large-area wounds, remain great clinical challenges. In this study, we fabricated epidermal growth factor (EGF)-loaded chitosan microspheres (CM) and then incorporated them into a photo-crosslinking gelatin methacryloyl (GelMA) hydrogel. The results showed that the EGF-loaded CM/GelMA precursor solution could transform into a hydrogel and cease bleeding at laceration sites without external stress. Subsequently, the sustained release of EGF accelerated wound closure and promoted liver regeneration. The in vitro experiments demonstrated that the microsphere/hydrogel composite could promote the proliferation and migration of L02 ​cells. Moreover, the histological and immunohistological analyses indicated that EGF-CM/GelMA composite could alleviate inflammation in the mouse liver and promote liver remodeling. Overall, this multi-functional microsphere/hydrogel composite will inspire the development of clinical applications for noncompressible hemostasis and successive wound closure.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43243822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Tube-shaped nanostructures for enhancing resin-based dental materials: A landscape of evidence and research advancement 增强树脂基牙科材料的管状纳米结构:证据和研究进展
Q1 Engineering Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2023.03.002
Isadora Martini Garcia , Lamia Sami Mokeem , Yasmin Shahkarami , Lauren Blum , Victoria Sheraphim , Robert Leonardo , Abdulrahman A. Balhaddad , Mary Anne S. Melo

With the advent of nanotechnology, incorporating nanoscale fillers in dental resins seems promising to improve therapeutic features and provide more excellent physicochemical properties for dental materials. The use of nanotubes has been raised due to their excellent mechanical properties, carry and delivery of drugs capabilities, and bioactive properties. These features depend on the composition of nanotubes and their application. This scoping review aims to describe previous studies about incorporating nanotubes in restorative resin-based materials. The main goals here addresses are: (1) to identify which are the most used nanotubes in the development of these dental materials; (2) to verify which the molecules/particles associated with these nanotubes; (3) to report the objectives of the incorporation of nanotubes to these dental materials and main results. The searches were performed using PubMed and Scopus databases in December 2022, identifying 534 manuscripts. After the selection process, 43 studies were included in the review. We mainly analyzed and discussed the nanotubes' composition, the parental materials in which the nanotubes were incorporated, the purposes of adding these particles to the dental materials, how the materials were analyzed, and the primary studies' outcomes. The outcomes are stimulating and reveal a promising advance in dental resins with the possibility of improving the maintenance of restorations and patients' quality of life. Further studies should address the abovementioned topics to expand the understanding and options of using nanotubes in resin-based restorative materials.

随着纳米技术的出现,在牙科树脂中加入纳米级填料有望改善牙科材料的治疗特性,并为牙科材料提供更优异的物理化学性能。纳米管由于其优异的机械性能、携带和输送药物的能力以及生物活性特性而得到了广泛的应用。这些特性取决于纳米管的组成及其应用。本文综述了在修复性树脂基材料中加入纳米管的研究进展。本文的主要目标是:(1)确定哪些是在这些牙科材料的开发中使用最多的纳米管;(2)验证与这些纳米管相关的分子/粒子;(3)报道纳米管掺入口腔材料的目的及主要结果。检索于2022年12月使用PubMed和Scopus数据库进行,确定了534篇手稿。经过筛选,43项研究被纳入综述。我们主要分析和讨论了纳米管的组成、纳米管的母材、纳米管加入口腔材料的目的、纳米管的分析方法以及初步的研究结果。结果是令人兴奋的,揭示了牙科树脂有希望的进步,有可能改善修复体的维护和患者的生活质量。进一步的研究应该解决上述问题,以扩大对纳米管在树脂基修复材料中使用的理解和选择。
{"title":"Tube-shaped nanostructures for enhancing resin-based dental materials: A landscape of evidence and research advancement","authors":"Isadora Martini Garcia ,&nbsp;Lamia Sami Mokeem ,&nbsp;Yasmin Shahkarami ,&nbsp;Lauren Blum ,&nbsp;Victoria Sheraphim ,&nbsp;Robert Leonardo ,&nbsp;Abdulrahman A. Balhaddad ,&nbsp;Mary Anne S. Melo","doi":"10.1016/j.smaim.2023.03.002","DOIUrl":"10.1016/j.smaim.2023.03.002","url":null,"abstract":"<div><p>With the advent of nanotechnology, incorporating nanoscale fillers in dental resins seems promising to improve therapeutic features and provide more excellent physicochemical properties for dental materials. The use of nanotubes has been raised due to their excellent mechanical properties, carry and delivery of drugs capabilities, and bioactive properties. These features depend on the composition of nanotubes and their application. This scoping review aims to describe previous studies about incorporating nanotubes in restorative resin-based materials. The main goals here addresses are: (1) to identify which are the most used nanotubes in the development of these dental materials; (2) to verify which the molecules/particles associated with these nanotubes; (3) to report the objectives of the incorporation of nanotubes to these dental materials and main results. The searches were performed using PubMed and Scopus databases in December 2022, identifying 534 manuscripts. After the selection process, 43 studies were included in the review. We mainly analyzed and discussed the nanotubes' composition, the parental materials in which the nanotubes were incorporated, the purposes of adding these particles to the dental materials, how the materials were analyzed, and the primary studies' outcomes. The outcomes are stimulating and reveal a promising advance in dental resins with the possibility of improving the maintenance of restorations and patients' quality of life. Further studies should address the abovementioned topics to expand the understanding and options of using nanotubes in resin-based restorative materials.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45334109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances on nerve guide conduits based on textile methods 基于纺织方法的神经导管研究进展
Q1 Engineering Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2022.12.001
Shihan Gao, Xiangshang Chen, Beining Lu, Kai Meng, Ke-Qin Zhang, Huijing Zhao

Peripheral nerve injury (PNI) is a common and complex clinical disease with high morbidity, limited treatment options and poor clinical outcomes. Several million cases of PNI in the world every year have brought a heavy burden to the patients and the social economy. Autologous nerve grafting has long been the “gold standard” in the treatment of PNI repair, but it still has some shortcomings, such as donor area injury, limited graft source and mismatch of nerve thickness after transplantation. In recent years, many artificial nerve guidance conduits (NGCs) have emerged for replacing autologous nerve grafts, and their effectiveness has been proven. Currently, there are already clinical products obtained from the European CE Certification, and approved by the Food and Drug Administration (FDA), China Food and Drug Administration (CFDA), Therapeutic Goods Administration (TGA) in Australia, etc. The preparation of NGCs requires interdisciplinary studies and has received considerable attention from researchers in recent years. At present, among emerging and mature manufacturing technologies, textile methods to prepare NGCs are relatively simple and have wide material sources, which has become a hotspot in textile research. This paper mainly reviewed the current situation and recent technological achievements of NGCs that were prepared by textile methods. Several other common methods were also briefly summarized. Furthermore, current NGCs products and their clinical applications were reported. Finally, the future development direction of textile-based NGCs is discussed in this review.

周围神经损伤(PNI)是一种常见而复杂的临床疾病,发病率高,治疗方案有限,临床疗效差。全球每年有数百万例PNI病例,给患者和社会经济带来了沉重的负担。自体神经移植一直是治疗PNI修复的“金标准”,但仍存在供体区损伤、移植物来源受限、移植后神经粗细不匹配等缺点。近年来,出现了许多人工神经引导导管(NGCs)来替代自体神经移植物,其有效性已得到证实。目前已经有临床产品获得了欧洲CE认证,并获得了美国食品药品监督管理局(FDA)、中国食品药品监督管理局(CFDA)、澳大利亚治疗用品管理局(TGA)等的批准。NGCs的制备需要跨学科的研究,近年来受到了研究人员的广泛关注。目前,在新兴和成熟的制造技术中,纺织方法制备NGCs相对简单,材料来源广泛,已成为纺织研究的热点。本文主要综述了纺织法制备NGCs的现状和最新技术成果。还简要总结了其他几种常用方法。并对目前NGCs产品及其临床应用进行了综述。最后,对纺织基NGCs的未来发展方向进行了展望。
{"title":"Recent advances on nerve guide conduits based on textile methods","authors":"Shihan Gao,&nbsp;Xiangshang Chen,&nbsp;Beining Lu,&nbsp;Kai Meng,&nbsp;Ke-Qin Zhang,&nbsp;Huijing Zhao","doi":"10.1016/j.smaim.2022.12.001","DOIUrl":"10.1016/j.smaim.2022.12.001","url":null,"abstract":"<div><p>Peripheral nerve injury (PNI) is a common and complex clinical disease with high morbidity, limited treatment options and poor clinical outcomes. Several million cases of PNI in the world every year have brought a heavy burden to the patients and the social economy. Autologous nerve grafting has long been the “gold standard” in the treatment of PNI repair, but it still has some shortcomings, such as donor area injury, limited graft source and mismatch of nerve thickness after transplantation. In recent years, many artificial nerve guidance conduits (NGCs) have emerged for replacing autologous nerve grafts, and their effectiveness has been proven. Currently, there are already clinical products obtained from the European CE Certification, and approved by the Food and Drug Administration (FDA), China Food and Drug Administration (CFDA), Therapeutic Goods Administration (TGA) in Australia, etc. The preparation of NGCs requires interdisciplinary studies and has received considerable attention from researchers in recent years. At present, among emerging and mature manufacturing technologies, textile methods to prepare NGCs are relatively simple and have wide material sources, which has become a hotspot in textile research. This paper mainly reviewed the current situation and recent technological achievements of NGCs that were prepared by textile methods. Several other common methods were also briefly summarized. Furthermore, current NGCs products and their clinical applications were reported. Finally, the future development direction of textile-based NGCs is discussed in this review.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46818489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Developments of microfluidics for orthopedic applications: A review 微流体在骨科应用中的发展综述
Q1 Engineering Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2022.07.001
Miao Sun , Jiaxing Gong , Wushi Cui , Congsun Li , Mengfei Yu , Hua Ye , Zhanfeng Cui , Jing Chen , Yong He , An Liu , Huiming Wang

With the development of modern medicine, the research methods of occurrence, development and treatment of orthopedic diseases are developing rapidly. The microenvironment provided by traditional orthopedic research methods differ considerably from the human body, resulting in poor or inconsistent conclusions in previous studies. Microfluidic technology has shown its advantages in the field of orthopedic research, especially in providing bionic mechanical stimulation environment. The microfluidic device can simulate the complex internal environment through the fine and complex structure and perfusion control system, and provide a stable, controllable and efficient culture system. Moreover, it can serve as a manufacturing device, which can produce bone grafts or bone like organs for tissue engineering with bionic structure. It can also simultaneously act as a detection device, which can realize high-throughput detection of small samples at low cost. In addition, we can establish in vitro physiological or pathological models on microfluidic systems to assist in the diagnosis and treatment of orthopedic diseases. This paper reviews the medical application of microfluidic devices in orthopedics.

随着现代医学的发展,骨科疾病的发生、发展和治疗的研究方法也在迅速发展。传统骨科研究方法提供的微环境与人体存在较大差异,导致以往研究结论不佳或不一致。微流控技术在骨科研究领域,特别是在提供仿生机械刺激环境方面已显示出其优势。微流控装置可以通过精细复杂的结构和灌注控制系统模拟复杂的内部环境,提供稳定、可控、高效的培养系统。此外,它还可以作为一种制造装置,用于生产具有仿生结构的组织工程的骨移植物或骨样器官。也可同时作为检测装置,以低成本实现小样本的高通量检测。此外,我们还可以在体外建立微流控系统的生理或病理模型,以辅助骨科疾病的诊断和治疗。本文综述了微流控装置在骨科中的应用。
{"title":"Developments of microfluidics for orthopedic applications: A review","authors":"Miao Sun ,&nbsp;Jiaxing Gong ,&nbsp;Wushi Cui ,&nbsp;Congsun Li ,&nbsp;Mengfei Yu ,&nbsp;Hua Ye ,&nbsp;Zhanfeng Cui ,&nbsp;Jing Chen ,&nbsp;Yong He ,&nbsp;An Liu ,&nbsp;Huiming Wang","doi":"10.1016/j.smaim.2022.07.001","DOIUrl":"10.1016/j.smaim.2022.07.001","url":null,"abstract":"<div><p>With the development of modern medicine, the research methods of occurrence, development and treatment of orthopedic diseases are developing rapidly. The microenvironment provided by traditional orthopedic research methods differ considerably from the human body, resulting in poor or inconsistent conclusions in previous studies. Microfluidic technology has shown its advantages in the field of orthopedic research, especially in providing bionic mechanical stimulation environment. The microfluidic device can simulate the complex internal environment through the fine and complex structure and perfusion control system, and provide a stable, controllable and efficient culture system. Moreover, it can serve as a manufacturing device, which can produce bone grafts or bone like organs for tissue engineering with bionic structure. It can also simultaneously act as a detection device, which can realize high-throughput detection of small samples at low cost. In addition, we can establish in vitro physiological or pathological models on microfluidic systems to assist in the diagnosis and treatment of orthopedic diseases. This paper reviews the medical application of microfluidic devices in orthopedics.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48388251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Design of 3D smart scaffolds using natural, synthetic and hybrid derived polymers for skin regenerative applications 使用天然、合成和混合衍生聚合物设计用于皮肤再生应用的3D智能支架
Q1 Engineering Pub Date : 2023-01-01 DOI: 10.1016/j.smaim.2022.09.005
Laldinthari Suamte, Akriti Tirkey, Punuri Jayasekhar Babu

Effective wound care is a major concern as many conventional wound healing methods and materials have failed in facilitating proper healing, instead disrupts the overall healing process, leading to the development of chronic wounds. Advancement in tissue engineering has led to the development of scaffolds; a 3D construct which can be utilized as a template for cell growth and regeneration while preventing infection along with acceleration of the wound healing process. Natural and synthetic polymers are used extensively for scaffold production and hybrid scaffolds are also introduced which constitutes a combination of natural and synthetic polymers. This review highlights the design of scaffolds using different kinds of polymers for skin tissue engineering.

有效的伤口护理是一个主要问题,因为许多传统的伤口愈合方法和材料在促进适当愈合方面失败了,相反,破坏了整体愈合过程,导致慢性伤口的发展。组织工程的进步导致了支架的发展;这是一种3D结构,可以用作细胞生长和再生的模板,同时防止感染,加速伤口愈合过程。天然聚合物和合成聚合物被广泛用于支架的生产,同时也介绍了由天然聚合物和合成聚合物组成的杂化支架。本文综述了不同类型聚合物用于皮肤组织工程支架的设计。
{"title":"Design of 3D smart scaffolds using natural, synthetic and hybrid derived polymers for skin regenerative applications","authors":"Laldinthari Suamte,&nbsp;Akriti Tirkey,&nbsp;Punuri Jayasekhar Babu","doi":"10.1016/j.smaim.2022.09.005","DOIUrl":"10.1016/j.smaim.2022.09.005","url":null,"abstract":"<div><p>Effective wound care is a major concern as many conventional wound healing methods and materials have failed in facilitating proper healing, instead disrupts the overall healing process, leading to the development of chronic wounds. Advancement in tissue engineering has led to the development of scaffolds; a 3D construct which can be utilized as a template for cell growth and regeneration while preventing infection along with acceleration of the wound healing process. Natural and synthetic polymers are used extensively for scaffold production and hybrid scaffolds are also introduced which constitutes a combination of natural and synthetic polymers. This review highlights the design of scaffolds using different kinds of polymers for skin tissue engineering.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43429810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
期刊
Smart Materials in Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1