Jinlong Gou, Zhijun Qiao, Zhen-Yang Yu, Shihao Sun, Chuanqi Li, Wei-jie Li, Jun Wang, Nan Wang, Zhijia Zhang, Yong Jiang
Vanadium-based oxides with high theoretical capacity are an alternative anode for lithium-ion batteries, but they are still limited by the poor conductivity, large volume change and low active material mass loading. Herein, a 3D continuous C/CuVO3@Cu composite anode with high CuVO3 mass loading is synthesized by the combination of high energy ball milling, nonsolvent induced phase separation and heat treatment. The Cu framework can enhance electron/ion conductivity in coordination with amorphous carbon. Besides, the macropores channels in Cu framework can provide a buffer space for the volume expansion of active material CuVO3 during lithiation/delithiation. As a result, this 3D continuous C/CuVO3@Cu composite anode achieves a high CuVO3 mass loading about 3.8 mg cm−2, delivering a reversible capacity of 479 mAh g−1 at 100 mA g−1 after 120 cycles. More importantly, the long lifespan is achieved with a reversible capacity of 268 mAh g−1 even after 1700 cycles at a high current density of 1000 mA g−1, demonstrating the excellent cycle performance. This work provides a way to develop 3D continuous composite materials anode with extraordinary electrochemistry performance for next generation energy storage devices.
钒基氧化物具有较高的理论容量,是锂离子电池的一种替代阳极,但其电导率差、体积变化大、活性物质质量负荷低等限制了其性能。本文采用高能球磨、非溶剂诱导相分离和热处理相结合的方法,合成了具有高CuVO3质量负载的三维连续C/CuVO3@Cu复合阳极。铜骨架与非晶碳配合可以提高电子/离子的导电性。此外,Cu骨架中的大孔隙通道可以为活性物质CuVO3在锂化/脱蚀过程中的体积膨胀提供缓冲空间。因此,这种3D连续C/CuVO3@Cu复合阳极实现了高CuVO3质量负载,约3.8 mg cm - 2,在100 mA g - 1循环120次后提供479 mAh g - 1的可逆容量。更重要的是,即使在1000 mA g−1的高电流密度下,经过1700次循环后,其可逆容量仍达到268 mAh g−1,证明了优异的循环性能。本研究为下一代储能器件开发具有优异电化学性能的三维连续复合材料阳极提供了一条途径。
{"title":"Architecting 3D continuous C/CuVO3@Cu composite anode for lithium ion storage","authors":"Jinlong Gou, Zhijun Qiao, Zhen-Yang Yu, Shihao Sun, Chuanqi Li, Wei-jie Li, Jun Wang, Nan Wang, Zhijia Zhang, Yong Jiang","doi":"10.1680/jsuin.21.00083","DOIUrl":"https://doi.org/10.1680/jsuin.21.00083","url":null,"abstract":"Vanadium-based oxides with high theoretical capacity are an alternative anode for lithium-ion batteries, but they are still limited by the poor conductivity, large volume change and low active material mass loading. Herein, a 3D continuous C/CuVO3@Cu composite anode with high CuVO3 mass loading is synthesized by the combination of high energy ball milling, nonsolvent induced phase separation and heat treatment. The Cu framework can enhance electron/ion conductivity in coordination with amorphous carbon. Besides, the macropores channels in Cu framework can provide a buffer space for the volume expansion of active material CuVO3 during lithiation/delithiation. As a result, this 3D continuous C/CuVO3@Cu composite anode achieves a high CuVO3 mass loading about 3.8 mg cm−2, delivering a reversible capacity of 479 mAh g−1 at 100 mA g−1 after 120 cycles. More importantly, the long lifespan is achieved with a reversible capacity of 268 mAh g−1 even after 1700 cycles at a high current density of 1000 mA g−1, demonstrating the excellent cycle performance. This work provides a way to develop 3D continuous composite materials anode with extraordinary electrochemistry performance for next generation energy storage devices.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43712861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan-ping Xiao, W. Sun, Minxing Ma, Y. Jia, Cong Zhang, Jing-pei Liu, Tong-qiang Zhang, Zerong Hou
Diamond-like carbon (DLC) films containing single copper (Cu), nickel (Ni) and double Ni/Cu interlayers were fabricated on LY-12 aluminum alloy by electrodeposition. The influences of different interlayers on the microstructure, microhardness, friction and wear properties and electrochemical behavior of the films were investigated respectively. The morphologies results show that the porosity of DLC films was reduced and the particles were refined after the introduction of double interlayer. Raman and XPS results confirm that the amorphous characteristics of DLC films containing nickel and copper interlayers were enhanced, and the content of sp3-C in the films was increased. In addition, the optimal micro-hardness of 210.67 HV was achieved due to the high sp3-C content of double Ni/Cu-DLC film. Meanwhile, the Ni/Cu-DLC film possessed excellent wear resistance which benefits from the synergistic effect of copper and nickel interlayer. The nickel as the supporting layer and copper as the lubricating layer alleviated the wear and friction of the film. Simultaneously, the deposition of double interlayer increased the density of the film, which further prevented the invasion of corrosion ions,so the film had superior electrochemical properties.
{"title":"Electrodeposition, microstructure, friction and electrochemical behavior of diamond-like carbon (DLC) films with Ni/Cu interlayer","authors":"Yan-ping Xiao, W. Sun, Minxing Ma, Y. Jia, Cong Zhang, Jing-pei Liu, Tong-qiang Zhang, Zerong Hou","doi":"10.1680/jsuin.21.00078","DOIUrl":"https://doi.org/10.1680/jsuin.21.00078","url":null,"abstract":"Diamond-like carbon (DLC) films containing single copper (Cu), nickel (Ni) and double Ni/Cu interlayers were fabricated on LY-12 aluminum alloy by electrodeposition. The influences of different interlayers on the microstructure, microhardness, friction and wear properties and electrochemical behavior of the films were investigated respectively. The morphologies results show that the porosity of DLC films was reduced and the particles were refined after the introduction of double interlayer. Raman and XPS results confirm that the amorphous characteristics of DLC films containing nickel and copper interlayers were enhanced, and the content of sp3-C in the films was increased. In addition, the optimal micro-hardness of 210.67 HV was achieved due to the high sp3-C content of double Ni/Cu-DLC film. Meanwhile, the Ni/Cu-DLC film possessed excellent wear resistance which benefits from the synergistic effect of copper and nickel interlayer. The nickel as the supporting layer and copper as the lubricating layer alleviated the wear and friction of the film. Simultaneously, the deposition of double interlayer increased the density of the film, which further prevented the invasion of corrosion ions,so the film had superior electrochemical properties.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45443274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asymmetric ratchet surfaces are used to manipulate drops which has received extensive attention due to their wide potential applications. In this paper, using aluminum sheets as substrates, some hydrophobic ratchet surfaces with different geometric parameters were prepared. The dynamic behavior of drops in the initial movement stage on the tilted surfaces was captured by a high-speed camera. Compared with the behavior on the flat tilted aluminum sheet, the velocity and acceleration of the drop on the tilted ratchet surfaces exhibit nonlinearly characteristics. The forces acting on the drop was analyzed and a theoretical model was proposed to elucidate the dynamic behavior, which was in agreement with our experimental results. Besides, by changing the tilt angle of the substrate, the geometric parameters of ratchets, and the size of drops, the factors that affect the drop movement were discussed.
{"title":"Dynamic characteristics of drops on tilted hydrophobic ratchet surfaces","authors":"Xin-ran Dai, Zhi-hai Jia, Jiao Wang","doi":"10.1680/jsuin.21.00082","DOIUrl":"https://doi.org/10.1680/jsuin.21.00082","url":null,"abstract":"Asymmetric ratchet surfaces are used to manipulate drops which has received extensive attention due to their wide potential applications. In this paper, using aluminum sheets as substrates, some hydrophobic ratchet surfaces with different geometric parameters were prepared. The dynamic behavior of drops in the initial movement stage on the tilted surfaces was captured by a high-speed camera. Compared with the behavior on the flat tilted aluminum sheet, the velocity and acceleration of the drop on the tilted ratchet surfaces exhibit nonlinearly characteristics. The forces acting on the drop was analyzed and a theoretical model was proposed to elucidate the dynamic behavior, which was in agreement with our experimental results. Besides, by changing the tilt angle of the substrate, the geometric parameters of ratchets, and the size of drops, the factors that affect the drop movement were discussed.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44075015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sharks possess numerous biological features such as highly developed senses and efficient liver that have stunned researchers over the past few decades. Including to those, sharks are well known for the ability of their skin to reduce drag force, and prevent adhesion of microorganisms like bacteria. Recently, investigating the anti-biofouling properties of sharkskin and particularly the mechanism of antibacterial activities have been trending and ongoing researches have been conducted to understand the extent of the anti-biofouling and identification of the possible underlying mechanisms. Hence, in this review, we take a look at sharkskin morphology and discoveries thus far regarding its unique attributes and their underlying mechanisms along with possible applications such as cathaters, implantable cardiovascular devices, and medical devices. The focus of this review is the anti-biofouling properties of sharkskin patterned surfaces prepared by biomimicked and bioinspired approaches in healthcare applications.
{"title":"The evolution of anti-bacterial and anti-biofouling properties of sharkskin patterned surfaces","authors":"S. Rostami, B. Garipcan","doi":"10.1680/jsuin.21.00055","DOIUrl":"https://doi.org/10.1680/jsuin.21.00055","url":null,"abstract":"Sharks possess numerous biological features such as highly developed senses and efficient liver that have stunned researchers over the past few decades. Including to those, sharks are well known for the ability of their skin to reduce drag force, and prevent adhesion of microorganisms like bacteria. Recently, investigating the anti-biofouling properties of sharkskin and particularly the mechanism of antibacterial activities have been trending and ongoing researches have been conducted to understand the extent of the anti-biofouling and identification of the possible underlying mechanisms. Hence, in this review, we take a look at sharkskin morphology and discoveries thus far regarding its unique attributes and their underlying mechanisms along with possible applications such as cathaters, implantable cardiovascular devices, and medical devices. The focus of this review is the anti-biofouling properties of sharkskin patterned surfaces prepared by biomimicked and bioinspired approaches in healthcare applications.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45457912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The studies carried out show that the task of ensuring the reliability and expanding the functionality of products operating under multifactorial effects (temperature, force, deformation) can be successfully solved by functionally oriented surface composite materials with thermoelastic martensitic transformations (TMT). The authors proposed the technology of layer-by-layer synthesis of functionally-oriented composite layered materials with TMT in argon environment, implemented on patented equipment in a single technological cycle. This technology determines not only the novelty, but also the economic feasibility of technical solutions. We also suggested step-by-step methods of thermal and thermomechanical treatment of composite layered materials with TMT, which contribute to the structure stabilization while decreasing residual stress. On the basis of complex X-ray diffraction and electron microscopic studies, we determined the structural parameters of High Velocity Oxy-Fuel (HVOF) materials obtained by HVOF with subsequent thermal and thermomechanical treatment and ceramic materials ZrO2-Y2O3-CeO2-Al2O3 stabilized with Al2O3 with subsequent heat treatment. We investigated the microhardness of surface high-entropy and ceramic materials. Tests for "friction-wear" and mechanical high-cycle fatigue of steels with a composite surface laminate showed decrease in the wear rate and increase in the cyclic durability.
{"title":"Functionally-oriented composite layered materials with martensitic transformations","authors":"P. Rusinov, Z. Blednova, G. Kurapov","doi":"10.1680/jsuin.21.00077","DOIUrl":"https://doi.org/10.1680/jsuin.21.00077","url":null,"abstract":"The studies carried out show that the task of ensuring the reliability and expanding the functionality of products operating under multifactorial effects (temperature, force, deformation) can be successfully solved by functionally oriented surface composite materials with thermoelastic martensitic transformations (TMT). The authors proposed the technology of layer-by-layer synthesis of functionally-oriented composite layered materials with TMT in argon environment, implemented on patented equipment in a single technological cycle. This technology determines not only the novelty, but also the economic feasibility of technical solutions. We also suggested step-by-step methods of thermal and thermomechanical treatment of composite layered materials with TMT, which contribute to the structure stabilization while decreasing residual stress. On the basis of complex X-ray diffraction and electron microscopic studies, we determined the structural parameters of High Velocity Oxy-Fuel (HVOF) materials obtained by HVOF with subsequent thermal and thermomechanical treatment and ceramic materials ZrO2-Y2O3-CeO2-Al2O3 stabilized with Al2O3 with subsequent heat treatment. We investigated the microhardness of surface high-entropy and ceramic materials. Tests for \"friction-wear\" and mechanical high-cycle fatigue of steels with a composite surface laminate showed decrease in the wear rate and increase in the cyclic durability.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":"1 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41330038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
X. W. Chen, Pengyuan Ren, D. F. Zhang, J. Hu, C. Wu, D. Liao
In this study, ceramic coatings were prepared on the surface of TC4 titanium alloy by micro-arc oxidation (MAO). The morphology, element distribution and phase composition of MAO coatings were analyzed by SEM, EDS, XRD and other analytical methods. The effect of hexagonal boron nitride(h-BN) doping on wear resistance and corrosion resistance of micro-arc oxidation layer was studied. The results show that the coating is mainly composed of rutile TiO2, anatase TiO2 and a small amount of h-BN. Furthermore, the composite coating containing h-BN was less porous than particle-free coating. The test results show that h-BN doping slightly affects the hardness of the MAO coating, and it is helpful in improving the thickness, corrosion resistance and wear resistance of the coatings. When the amount of h-BN is 3 g/L, the corrosion current density of the coating is the smallest; When the addition of h-BN is 1.5 g/L, the friction coefficient of the coating is the smallest. The wear mechanism was adhesive wear, accompanied by slight abrasive wear.
{"title":"Corrosion and Wear Properties of h-BN Modified TC4 Titanium Alloy Micro-Arc Oxide Coatings","authors":"X. W. Chen, Pengyuan Ren, D. F. Zhang, J. Hu, C. Wu, D. Liao","doi":"10.1680/jsuin.21.00070","DOIUrl":"https://doi.org/10.1680/jsuin.21.00070","url":null,"abstract":"In this study, ceramic coatings were prepared on the surface of TC4 titanium alloy by micro-arc oxidation (MAO). The morphology, element distribution and phase composition of MAO coatings were analyzed by SEM, EDS, XRD and other analytical methods. The effect of hexagonal boron nitride(h-BN) doping on wear resistance and corrosion resistance of micro-arc oxidation layer was studied. The results show that the coating is mainly composed of rutile TiO2, anatase TiO2 and a small amount of h-BN. Furthermore, the composite coating containing h-BN was less porous than particle-free coating. The test results show that h-BN doping slightly affects the hardness of the MAO coating, and it is helpful in improving the thickness, corrosion resistance and wear resistance of the coatings. When the amount of h-BN is 3 g/L, the corrosion current density of the coating is the smallest; When the addition of h-BN is 1.5 g/L, the friction coefficient of the coating is the smallest. The wear mechanism was adhesive wear, accompanied by slight abrasive wear.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48478632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This organic-inorganic hybrid perovskite materials have attracted great attention by virtue of their high absorption coefficient, low cost and simple film deposition technique. Based on these advantages, perovskite solar cells have reached an impressive power conversion efficiency over 25%. However, the low-temperature process inevitably leads to a large number of defects in the perovskite film. These defects would exacerbate the carrier recombination, induce crystal degradation, phase transformation and seriously affect the performance of devices. Studying the defects in perovskite film is of great significance for the development of high-performance perovskite solar cells. Herein, the authors summarise the causes, distribution and features of defects, as well as their effects on the performance of perovskite solar cells. Furthermore, some defect-passivation strategies on perovskite film or the device, including grain boundary passivation, surface passivation, capping layer modification and charge transport layer passivation, are discussed, respectively. Lastly, some remaining challenges in the commercialisation of perovskite solar cells are proposed.
{"title":"Defects and passivation in perovskite solar cells","authors":"Yaobo Li, Zhaohan Li, Fangze Liu, Jing Wei","doi":"10.1680/jsuin.21.00058","DOIUrl":"https://doi.org/10.1680/jsuin.21.00058","url":null,"abstract":"This organic-inorganic hybrid perovskite materials have attracted great attention by virtue of their high absorption coefficient, low cost and simple film deposition technique. Based on these advantages, perovskite solar cells have reached an impressive power conversion efficiency over 25%. However, the low-temperature process inevitably leads to a large number of defects in the perovskite film. These defects would exacerbate the carrier recombination, induce crystal degradation, phase transformation and seriously affect the performance of devices. Studying the defects in perovskite film is of great significance for the development of high-performance perovskite solar cells. Herein, the authors summarise the causes, distribution and features of defects, as well as their effects on the performance of perovskite solar cells. Furthermore, some defect-passivation strategies on perovskite film or the device, including grain boundary passivation, surface passivation, capping layer modification and charge transport layer passivation, are discussed, respectively. Lastly, some remaining challenges in the commercialisation of perovskite solar cells are proposed.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49329146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Kuznetsov, D. Kuznetsova, D. Gabdrakhmanov, S. Lukashenko, Yevgeniy N. Nikitin, L. Zakharova
{"title":"Cationic Amphiphiles Bearing Three Allyl Groups: Self-Organization in Aqueous Solutions and Complexation with Bovine Serum Albumin","authors":"D. Kuznetsov, D. Kuznetsova, D. Gabdrakhmanov, S. Lukashenko, Yevgeniy N. Nikitin, L. Zakharova","doi":"10.1680/jsuin.21.00044","DOIUrl":"https://doi.org/10.1680/jsuin.21.00044","url":null,"abstract":"","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43334533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}