Partial discharges in SF6 circuit breakers decompose SF6 into low-fluorine gases, which react with trace moisture to form corrosive acids, degrading contacts and impairing arc quenching capacity, necessitating a 24/7 monitoring system for early detection and prevention. In this work, carbon boronitride (BC6N) monolayer is investigated for potential application of SF6 decomposed gases SO2, SO2F2, SOF2, H2S, and HF through DFT calculations. Adsorption performance through adsorption energy, charge density difference, density of states, while sensitivity through band structures, work function and transport transmission and recovery through recovery time calculations are evaluated. Results show that pristine BC6N is weakly absorbing the gas molecules, however, BC6N decorated with Fe and Co atoms chemisorbs the gas molecules with enhanced adsorption energy -1.01 to -1.61 eV and -0.95 to -1.58 eV respectively. Diffusion energy barrier calculation confirms that Fe and Co atoms don’t make clusters. Sensitivity of Fe/BC6N and Co/BC6N to gas molecules respectively follows: (67.5 % and 72.9 %) for SO2F2> (70.8 % and 65 %) for SOF2> (68.7 % and 62.5 %) for SO2> (64.5 % and 57.5 %) for H2S> (58.3 % and 50 %) for HF. Recovery time calculations results show that strongest adsorbed SO2F2 molecule takes 117.5 h to be desorbed at 498 K temperature, which is considerably shortened to 1.69 nanoseconds upon UV exposure. Our proposed substrates can actively adsorb, sense and instantaneously desorb the target gas molecules, proving that Fe/BC6N and Co/BC6N can potentially be highly sensitive and reusable gas sensors.
扫码关注我们
求助内容:
应助结果提醒方式:
