首页 > 最新文献

Surface Science最新文献

英文 中文
Adsorption of dihalogen molecules X2 (X = F, Cl, Br and I) on the Fe/W(110) substrate 二卤素分子 X2(X=F、Cl、Br 和 I)在 Fe/W(110)基底上的吸附作用
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-06-13 DOI: 10.1016/j.susc.2024.122536
A.L. Okana-Lomanga , G. Dimitri Ngantso , B.R. Malonda-Boungou , A.T. Raji , B. M'Passi-Mabiala

We report on spin-polarized density-functional theory study of adsorption of dihalogen molecules X2 (X = F, Cl, Br and I) on the Fe/W(110) substrate, i.e., X2/Fe/W(110) systems. We considered different molecular orientations and adsorption sites of the halogens and obtained their corresponding ground-state structures. We obtained initial molecular orientation (IMO) and initial adsorption site (IAS), i.e., IMO-IAS combinations that give the minimum energy configurations for each of the X2/Fe/W(110) systems. Our results shows that all the molecules studied in this work are chemisorbed on the Fe surface. Also, the halogen atoms may be adsorbed dissociatively on the hollow sites in such a way that an X2 separates into two X atoms with each of the atoms located at two nearby hollow sites. Similarly, we found IMO-IAS combinations which resulted in a non-dissociative adsorption. In the latter, the pre-relaxed IMO-IAS is maintained even after the structural relaxation. The most stable configuration for the X2 dihalogen molecule in this case is either the top or bridge site while the halogen is in perpendicular orientation to the Fe surface. We conclude therefore that, the final relaxed configurations of the X2 halogen depends on the IMO through which is deposited on the Fe/W(110) substrate. The trend in the adsorption energy EA for the most stable configurations for the dissociative adsorption is EA (F) > EA (Cl) > EA (Br) > EA (I). The trend of EA for non-dissociative adsorption is similar to that of dissociative adsorption, however, the latter is the more energetically favorable. Electronic structure calculations show hybridization between the p and d orbitals of X and Fe atoms respectively. Furthermore, we have found antiferromagnetic coupling between the interfacial W atoms and the Fe overlayer atoms while ferromagnetic coupling is found between the halogens and the Fe atoms. Our work represents a detailed study of adsorption properties of highly reactive halogens in contact with the Fe/W(100) surface.

我们报告了二卤素分子 X2(X = F、Cl、Br 和 I)在 Fe/W(110)基底(即 X2/Fe/W(110) 系统)上吸附的自旋极化密度泛函理论研究。我们考虑了卤素的不同分子取向和吸附位点,并得到了其相应的基态结构。我们得到了初始分子取向(IMO)和初始吸附位点(IAS),即 IMO-IAS 组合,这些组合给出了每个 X2/Fe/W(110) 系统的最小能量构型。我们的研究结果表明,这项工作中研究的所有分子都在铁表面发生了化学吸附。此外,卤素原子可能以离解的方式吸附在空心位点上,从而使一个 X2 分离成两个 X 原子,每个原子都位于附近的两个空心位点上。同样,我们发现 IMO-IAS 组合也会导致非离解吸附。在后者中,即使在结构松弛后,也能保持预先松弛的 IMO-IAS 结构。在这种情况下,X2 二卤素分子最稳定的构型是顶部位点或桥位点,而卤素则与铁表面垂直。因此我们得出结论,X2 卤素的最终弛豫构型取决于沉积在 Fe/W(110)基底上的 IMO。解离吸附的最稳定构型的吸附能 EA 的趋势是 EA (F) > EA (Cl) > EA (Br) > EA (I)。非解离吸附的 EA 变化趋势与解离吸附相似,但后者在能量上更为有利。电子结构计算显示,X 原子和 Fe 原子的 p 和 d 轨道之间分别存在杂化现象。此外,我们还发现了界面 W 原子和铁覆盖层原子之间的反铁磁耦合,而卤素和铁原子之间则存在铁磁耦合。我们的工作是对与 Fe/W(100)表面接触的高活性卤素吸附特性的详细研究。
{"title":"Adsorption of dihalogen molecules X2 (X = F, Cl, Br and I) on the Fe/W(110) substrate","authors":"A.L. Okana-Lomanga ,&nbsp;G. Dimitri Ngantso ,&nbsp;B.R. Malonda-Boungou ,&nbsp;A.T. Raji ,&nbsp;B. M'Passi-Mabiala","doi":"10.1016/j.susc.2024.122536","DOIUrl":"10.1016/j.susc.2024.122536","url":null,"abstract":"<div><p>We report on spin-polarized density-functional theory study of adsorption of dihalogen molecules X<sub>2</sub> (<em>X</em> = <em>F</em>, Cl, Br and I) on the Fe/W(110) substrate, i.e., X<sub>2</sub>/Fe/W(110) systems. We considered different molecular orientations and adsorption sites of the halogens and obtained their corresponding ground-state structures. We obtained initial molecular orientation (IMO) and initial adsorption site (IAS), i.e., IMO-IAS combinations that give the minimum energy configurations for each of the X<sub>2</sub>/Fe/W(110) systems. Our results shows that all the molecules studied in this work are chemisorbed on the Fe surface. Also, the halogen atoms may be adsorbed dissociatively on the <em>hollow</em> sites in such a way that an X<sub>2</sub> separates into two X atoms with each of the atoms located at two nearby <em>hollow</em> sites. Similarly, we found IMO-IAS combinations which resulted in a non-dissociative adsorption. In the latter, the pre-relaxed IMO-IAS is maintained even after the structural relaxation. The most stable configuration for the X<sub>2</sub> dihalogen molecule in this case is either the <em>top</em> or <em>bridge</em> site while the halogen is in perpendicular orientation to the Fe surface. We conclude therefore that, the final relaxed configurations of the X<sub>2</sub> halogen depends on the IMO through which is deposited on the Fe/W(110) substrate. The trend in the adsorption energy E<sub>A</sub> for the most stable configurations for the dissociative adsorption is <em>E<sub>A</sub></em> (F) &gt; <em>E<sub>A</sub></em> (Cl) &gt; <em>E<sub>A</sub></em> (Br) &gt; <em>E<sub>A</sub></em> (I). The trend of <em>E</em><sub>A</sub> for non-dissociative adsorption is similar to that of dissociative adsorption, however, the latter is the more energetically favorable. Electronic structure calculations show hybridization between the <em>p</em> and <em>d</em> orbitals of X and Fe atoms respectively. Furthermore, we have found antiferromagnetic coupling between the interfacial W atoms and the Fe overlayer atoms while ferromagnetic coupling is found between the halogens and the Fe atoms. Our work represents a detailed study of adsorption properties of highly reactive halogens in contact with the Fe/W(100) surface.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"748 ","pages":"Article 122536"},"PeriodicalIF":2.1,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141392085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of coverage dependence of the stretching frequency of CO adsorbed on Pd surfaces at low coverage limits 研究低覆盖极限下钯表面吸附的 CO 拉伸频率的覆盖依赖性
IF 1.9 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-06-12 DOI: 10.1016/j.susc.2024.122534
Talin Avanesian , Zubin Darbari , Marija Iloska , J. Anibal Boscoboinik , Qin Wu

The stretching frequency of the CO bond is a sensitive probe of the local environment of a surface-bound CO molecule, including the adorption site and density, i.e. surface coverage. In this work, we extend our analysis beyond the frequency shift due to differences in adsorption configurations. Using density functional theory (DFT) calculations, we directly explore the correlations between surface coverage and the stretching frequency of adsorbed CO on Pd surfaces. We also perform constant pressure infrared reflection absorption measurements of CO on Pd(111) and use existing relations between pressure and coverage to derive coverage dependency. Both results are compared to previously reported experimental data. Our derived correlations of peak frequency and area with surface coverage can help interpret experimental IR spectra in real time and extract time-dependent concentration data from transient kinetic experiments.

一氧化碳键的拉伸频率是表面结合的一氧化碳分子局部环境的敏感探测器,包括吸附位点和密度,即表面覆盖率。在这项工作中,我们将分析范围扩展到了因吸附构型不同而产生的频率偏移之外。利用密度泛函理论(DFT)计算,我们直接探索了表面覆盖率与钯表面吸附的 CO 拉伸频率之间的相关性。我们还对钯(111)上的 CO 进行了恒压红外反射吸收测量,并利用压力和覆盖率之间的现有关系得出了覆盖率依赖性。这两个结果都与之前报告的实验数据进行了比较。我们推导出的峰值频率和面积与表面覆盖率的相关性有助于实时解释实验红外光谱,并从瞬态动力学实验中提取随时间变化的浓度数据。
{"title":"Investigation of coverage dependence of the stretching frequency of CO adsorbed on Pd surfaces at low coverage limits","authors":"Talin Avanesian ,&nbsp;Zubin Darbari ,&nbsp;Marija Iloska ,&nbsp;J. Anibal Boscoboinik ,&nbsp;Qin Wu","doi":"10.1016/j.susc.2024.122534","DOIUrl":"https://doi.org/10.1016/j.susc.2024.122534","url":null,"abstract":"<div><p>The stretching frequency of the C<img>O bond is a sensitive probe of the local environment of a surface-bound CO molecule, including the adorption site and density, i.e. surface coverage. In this work, we extend our analysis beyond the frequency shift due to differences in adsorption configurations. Using density functional theory (DFT) calculations, we directly explore the correlations between surface coverage and the stretching frequency of adsorbed CO on Pd surfaces. We also perform constant pressure infrared reflection absorption measurements of CO on Pd(111) and use existing relations between pressure and coverage to derive coverage dependency. Both results are compared to previously reported experimental data. Our derived correlations of peak frequency and area with surface coverage can help interpret experimental IR spectra in real time and extract time-dependent concentration data from transient kinetic experiments.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"748 ","pages":"Article 122534"},"PeriodicalIF":1.9,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141333373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methanol gas sensing properties of transition metals (V, Cr, and Mn)-doped BC3 flake 掺杂过渡金属(V、Cr 和 Mn)的 BC3 薄片的甲醇气体传感特性
IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-06-08 DOI: 10.1016/j.susc.2024.122535
Yathrib Ajaj , Saade Abdalkareem Jasim , Ehab Salam Hussein , Yasir W. Issa , Carlos Alberto Alban Hurtado , Yazen.M. Alawaideh , Mohammed Al-Bahrani , Hamad Almujibah , Rahadian Zainul

Volatile organic compounds (VOCs) cause a considerable risk to human life, and it is vital to introduce highly efficient VOC biosensors. Methanol (CH3OH) was identified as a vital biomarker, showing significant elevation in both lung cancer and COVID-19 patients. Two-dimensional (2D) semiconductor gas sensors offer benefits such as excellent sensitivity, resistance to high temperatures and stability. In the present study, we explored methanol adsorption on the pristine and transition metal (TM)-doped (Sc, Ti, V, Cr, and Mn) C3B 2D flakes with the density functional theory (DFT) technique. Our results revealed that the V-, Cr-, and Mn-doped C3B show larger adsorption energy values as compared to the pristine C3B surface. The change of band gap energy of surfaces after methanol adsorption is obtained between 40 and 400 %. Besides, results show that methanol has a quick recovery at room temperature. The work function variation of studied flakes upon methanol adsorption has been also investigated and results show that V-, Cr-, and Mn-doped C3B systems are sensitive to methanol gas molecule. This work suggests that the C3B-based flakes can be used as a biosensor to identify VOC biomarkers such as methanol.

挥发性有机化合物(VOCs)对人类生命造成巨大威胁,因此引入高效的 VOC 生物传感器至关重要。甲醇(CH3OH)被确定为一种重要的生物标志物,在肺癌和 COVID-19 患者中都显示出显著的升高。二维(2D)半导体气体传感器具有灵敏度高、耐高温和稳定性好等优点。在本研究中,我们利用密度泛函理论(DFT)技术探讨了原始和掺杂过渡金属(TM)(Sc、Ti、V、Cr 和 Mn)的 C3B 二维薄片对甲醇的吸附。结果表明,与原始 C3B 表面相比,掺杂 V、Cr 和 Mn 的 C3B 显示出更大的吸附能值。表面吸附甲醇后的带隙能变化在 40% 到 400% 之间。此外,研究结果表明,甲醇在室温下会迅速恢复。还研究了所研究的薄片在吸附甲醇后的功函数变化,结果表明掺 V、Cr 和 Mn 的 C3B 系统对甲醇气体分子很敏感。这项工作表明,基于 C3B 的薄片可用作生物传感器来识别甲醇等挥发性有机化合物生物标记物。
{"title":"Methanol gas sensing properties of transition metals (V, Cr, and Mn)-doped BC3 flake","authors":"Yathrib Ajaj ,&nbsp;Saade Abdalkareem Jasim ,&nbsp;Ehab Salam Hussein ,&nbsp;Yasir W. Issa ,&nbsp;Carlos Alberto Alban Hurtado ,&nbsp;Yazen.M. Alawaideh ,&nbsp;Mohammed Al-Bahrani ,&nbsp;Hamad Almujibah ,&nbsp;Rahadian Zainul","doi":"10.1016/j.susc.2024.122535","DOIUrl":"10.1016/j.susc.2024.122535","url":null,"abstract":"<div><p>Volatile organic compounds (VOCs) cause a considerable risk to human life, and it is vital to introduce highly efficient VOC biosensors. Methanol (CH<sub>3</sub>OH) was identified as a vital biomarker, showing significant elevation in both lung cancer and COVID-19 patients. Two-dimensional (2D) semiconductor gas sensors offer benefits such as excellent sensitivity, resistance to high temperatures and stability. In the present study, we explored methanol adsorption on the pristine and transition metal (TM)-doped (<em>Sc</em>, Ti, V, Cr, and Mn) C3B 2D flakes with the density functional theory (DFT) technique. Our results revealed that the V-, Cr-, and Mn-doped C3B show larger adsorption energy values as compared to the pristine C3B surface. The change of band gap energy of surfaces after methanol adsorption is obtained between 40 and 400 %. Besides, results show that methanol has a quick recovery at room temperature. The work function variation of studied flakes upon methanol adsorption has been also investigated and results show that V-, Cr-, and Mn-doped C3B systems are sensitive to methanol gas molecule. This work suggests that the C3B-based flakes can be used as a biosensor to identify VOC biomarkers such as methanol.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"748 ","pages":"Article 122535"},"PeriodicalIF":2.1,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141401869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adsorption and disproportionation of carbon monoxide on faceted-gold surfaces and edges 一氧化碳在刻面金表面和边缘的吸附和歧化作用
IF 1.9 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-06-07 DOI: 10.1016/j.susc.2024.122533
David Khayata, Gil M. Repa, Lisa A. Fredin

Localized surface plasmons (LSP) on faceted surfaces of gold nanoparticles enable carbon monoxide disproportionation to be driven at room temperature. In order to expand the known surfaces that catalyze this reaction, we explore the adsorption of carbon monoxide at top, long bridge, short bridge, and hole sites on gold (100), (110), (111), (211), and (311) faceted surfaces, as well as the reaction barriers for disproportionation at the lowest energy adsorption site on each surface and edges between two (311) surfaces and (100) and (110) surfaces. Generally, the less atomically dense, higher index facets promote both good adsorption and reactivity, and the edges show lower barriers for disproportionation. For most of the explored surfaces, adsorption directly on top of a gold atom is most favorable. The lowest activation energy for carbon monoxide disproportionation to amorphous carbon and carbon dioxide is predicted for two carbon monoxides adsorbed on top of atoms on the (311)/(311) edge.

金纳米粒子刻面表面上的局部表面等离子体(LSP)可在室温下驱动一氧化碳歧化反应。为了扩展催化这一反应的已知表面,我们探索了一氧化碳在金(100)、(110)、(111)、(211)和(311)刻面表面的顶点、长桥、短桥和孔点的吸附情况,以及在每个表面上能量最低的吸附点和两个(311)表面与(100)和(110)表面之间边缘的歧化反应壁垒。一般来说,原子密度较低、指数较高的刻面具有良好的吸附性和反应性,而边缘的歧化障碍较低。对于大多数已研究过的表面来说,直接吸附在金原子上是最有利的。根据预测,吸附在 (311)/(311) 边缘原子顶部的两种一氧化碳歧化成无定形碳和二氧化碳的活化能最低。
{"title":"Adsorption and disproportionation of carbon monoxide on faceted-gold surfaces and edges","authors":"David Khayata,&nbsp;Gil M. Repa,&nbsp;Lisa A. Fredin","doi":"10.1016/j.susc.2024.122533","DOIUrl":"https://doi.org/10.1016/j.susc.2024.122533","url":null,"abstract":"<div><p>Localized surface plasmons (LSP) on faceted surfaces of gold nanoparticles enable carbon monoxide disproportionation to be driven at room temperature. In order to expand the known surfaces that catalyze this reaction, we explore the adsorption of carbon monoxide at top, long bridge, short bridge, and hole sites on gold (100), (110), (111), (211), and (311) faceted surfaces, as well as the reaction barriers for disproportionation at the lowest energy adsorption site on each surface and edges between two (311) surfaces and (100) and (110) surfaces. Generally, the less atomically dense, higher index facets promote both good adsorption and reactivity, and the edges show lower barriers for disproportionation. For most of the explored surfaces, adsorption directly on top of a gold atom is most favorable. The lowest activation energy for carbon monoxide disproportionation to amorphous carbon and carbon dioxide is predicted for two carbon monoxides adsorbed on top of atoms on the (311)/(311) edge.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"748 ","pages":"Article 122533"},"PeriodicalIF":1.9,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bismuth as a buffer layer for metal contact with silicon carbide studied by In situ photoelectron spectroscopy 通过原位光电子能谱研究铋作为金属与碳化硅接触的缓冲层
IF 1.9 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-06-06 DOI: 10.1016/j.susc.2024.122530
Xiangrui Geng , Yishui Ding , Sisheng Duan , Wei Chen

Silicon carbide (SiC) is a promising third-generation semiconductor due to its wide bandgap. However, the high Schottky barrier and metal-induced gap states (MIGS) at the metal/SiC interface present significant challenges for device fabrication, leading to high contact resistance and poor current delivery. This study proposes the use of bismuth (Bi), with its semimetallic properties and gap-state saturation effect, as a contact buffer layer to address these issues. We conducted a systematic investigation of the chemical and electronic characteristics of the Pt/Bi/4H-SiC(0001) system, fabricated via molecular beam epitaxy (MBE), using in situ X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). Our findings reveal weak bonding between the Bi buffer layer and the 4H-SiC(0001) surface, resulting in a slight downward band bending effect and the formation of a substantial dipole across the Bi/4H-SiC(0001) interface. Moreover, UPS spectra indicate a reduction in the work function of Pt/Bi/4H-SiC(0001), suggesting the potential for achieving low contact resistance. Notably, the Pt/Bi/4H-SiC(0001) system remains stable when exposed to 1.6×109 Langmuir of oxygen at room temperature, while a bare Bi buffer layer undergoes partial oxidation. These results provide a comprehensive understanding of the Pt/Bi/4H-SiC(0001) interfaces and strategies for improving metal/SiC contacts.

碳化硅(SiC)因其宽带隙而成为前景广阔的第三代半导体。然而,金属/碳化硅界面上的高肖特基势垒和金属诱导间隙态(MIGS)给器件制造带来了巨大挑战,导致接触电阻大、电流传输差。本研究提出使用具有半金属特性和间隙态饱和效应的铋(Bi)作为接触缓冲层来解决这些问题。我们利用原位 X 射线光电子能谱 (XPS) 和紫外光电子能谱 (UPS) 对通过分子束外延 (MBE) 制造的 Pt/Bi/4H-SiC(0001) 系统的化学和电子特性进行了系统研究。我们的研究结果表明,铋缓冲层和 4H-SiC(0001) 表面之间的结合力很弱,导致了轻微的向下带弯曲效应,并在铋/4H-SiC(0001) 界面上形成了大量偶极子。此外,UPS 光谱显示,Pt/Bi/4H-SiC(0001) 的功函数有所降低,这表明它具有实现低接触电阻的潜力。值得注意的是,Pt/Bi/4H-SiC(0001) 系统在室温下暴露于 1.6×109 朗缪尔氧时保持稳定,而裸铋缓冲层则会发生部分氧化。这些结果提供了对 Pt/Bi/4H-SiC(0001) 界面的全面了解,以及改进金属/SiC 接触的策略。
{"title":"Bismuth as a buffer layer for metal contact with silicon carbide studied by In situ photoelectron spectroscopy","authors":"Xiangrui Geng ,&nbsp;Yishui Ding ,&nbsp;Sisheng Duan ,&nbsp;Wei Chen","doi":"10.1016/j.susc.2024.122530","DOIUrl":"https://doi.org/10.1016/j.susc.2024.122530","url":null,"abstract":"<div><p>Silicon carbide (SiC) is a promising third-generation semiconductor due to its wide bandgap. However, the high Schottky barrier and metal-induced gap states (MIGS) at the metal/SiC interface present significant challenges for device fabrication, leading to high contact resistance and poor current delivery. This study proposes the use of bismuth (Bi), with its semimetallic properties and gap-state saturation effect, as a contact buffer layer to address these issues. We conducted a systematic investigation of the chemical and electronic characteristics of the Pt/Bi/4H-SiC(0001) system, fabricated via molecular beam epitaxy (MBE), using <em>in situ</em> X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). Our findings reveal weak bonding between the Bi buffer layer and the 4H-SiC(0001) surface, resulting in a slight downward band bending effect and the formation of a substantial dipole across the Bi/4H-SiC(0001) interface. Moreover, UPS spectra indicate a reduction in the work function of Pt/Bi/4H-SiC(0001), suggesting the potential for achieving low contact resistance. Notably, the Pt/Bi/4H-SiC(0001) system remains stable when exposed to 1.6×10<sup>9</sup> Langmuir of oxygen at room temperature, while a bare Bi buffer layer undergoes partial oxidation. These results provide a comprehensive understanding of the Pt/Bi/4H-SiC(0001) interfaces and strategies for improving metal/SiC contacts.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"748 ","pages":"Article 122530"},"PeriodicalIF":1.9,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141313194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Competition between silicon, beryllium and phosphorus atoms in the formation of surface chemical compounds on (101¯0) Re 硅、铍和磷原子在 (101¯0) Re 表面化合物形成过程中的竞争
IF 1.9 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-06-04 DOI: 10.1016/j.susc.2024.122523
E.V. Rut'kov, E.Y. Afanas'eva, N.R. Gall

High-temperature joint adsorption has been studied of three different adsorbates, Si, Be, and P on the (101¯0) Re face. All three adsorbates form surface compounds with the stoichiometry ReX, where X is Si, Be, and P. In joint adsorption, one of the adsorbates is displaced into the bulk, into the dissolved state. The processes are observed at a temperature sufficient for diffusion in the bulk, 1100–1300 K. Displacement occurs in an atom-to-atom mode, and it has a “cyclic nature”: silicon displaces phosphorus, beryllium displaces silicon, and phosphorus - beryllium.

我们研究了三种不同吸附剂 Si、Be 和 P 在 (101¯0) Re 面上的高温联合吸附。在联合吸附过程中,其中一种吸附剂被转移到体液中,进入溶解状态。位移以原子到原子的方式发生,具有 "循环性质":硅位移到磷,铍位移到硅,磷位移到铍。
{"title":"Competition between silicon, beryllium and phosphorus atoms in the formation of surface chemical compounds on (101¯0) Re","authors":"E.V. Rut'kov,&nbsp;E.Y. Afanas'eva,&nbsp;N.R. Gall","doi":"10.1016/j.susc.2024.122523","DOIUrl":"https://doi.org/10.1016/j.susc.2024.122523","url":null,"abstract":"<div><p>High-temperature joint adsorption has been studied of three different adsorbates, Si, Be, and P on the <span><math><mrow><mo>(</mo><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow><mo>)</mo></mrow></math></span> Re face. All three adsorbates form surface compounds with the stoichiometry ReX, where X is Si, Be, and P. In joint adsorption, one of the adsorbates is displaced into the bulk, into the dissolved state. The processes are observed at a temperature sufficient for diffusion in the bulk, 1100–1300 K. Displacement occurs in an atom-to-atom mode, and it has a “cyclic nature”: silicon displaces phosphorus, beryllium displaces silicon, and phosphorus - beryllium.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"748 ","pages":"Article 122523"},"PeriodicalIF":1.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141289435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic and magnetic properties of Mn-doped and Mn-X (F, Cl, Br, I) co-doped modulated monolayer SnSe2 掺锰和 Mn-X(F、Cl、Br、I)共掺调制单层 SnSe2 的电子和磁特性
IF 1.9 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-05-22 DOI: 10.1016/j.susc.2024.122511
Mengting Ma , Guili Liu , Guoying Zhang

The density functional theory is employed for learning the modulation of the electronic structure and magnetic properties of monolayer SnSe2 by an Mn atom and by co-doping an Mn atom with a halogen atom. It is found that intrinsic SnSe2 is nonmagnetic, which is consistent with the properties of semiconductors. Following Mn atom doping, the doped system is magnetic and the magnetic moments are primarily responsible for the Mn atom. After co-doping the Mn atom with halogen atoms, the doped system's total magnetic moments are decreased. The examination of the electronic structure demonstrates that the doping of the Mn atom and the co-doping of the Mn atom with halogen atoms lead to the introduction of impurity energy levels into the doped system, which appear only in the spin-up part and do not cross the Fermi energy level. There is asymmetry between the spin-up and spin-down energy bands and the doped system exhibits magnetic semiconductor properties. The hybridization of the p-orbitals of the halogen atoms and the 3d orbitals of the Mn atom is primarily responsible for the introduction of impurity energy levels in the energy bands of the doped system. In the Mn-doped system, ionic bonds were shaped between Mn and Se. In the co-doped system, strong ionic bonds were shaped between the Mn atom and F, Cl atoms, and covalent bonds were shaped between the Mn atom and Br, I atoms.

利用密度泛函理论研究了锰原子以及锰原子与卤素原子共掺杂对单层 SnSe2 电子结构和磁性能的调制。研究发现,本征 SnSe2 无磁性,这与半导体的特性相符。掺杂锰原子后,掺杂体系具有磁性,磁矩主要由锰原子产生。在锰原子与卤素原子共掺杂后,掺杂体系的总磁矩减小。对电子结构的研究表明,锰原子的掺杂和锰原子与卤素原子的共掺杂导致在掺杂体系中引入了杂质能级,这些杂质能级只出现在自旋上升部分,不跨越费米能级。自旋上升能带和自旋下降能带之间不对称,掺杂体系表现出磁性半导体特性。卤原子的 p 轨道和锰原子的 3d 轨道的杂化是在掺杂体系能带中引入杂质能级的主要原因。在掺锰体系中,锰和硒之间形成了离子键。在共掺杂体系中,Mn 原子与 F、Cl 原子间形成了强离子键,Mn 原子与 Br、I 原子间形成了共价键。
{"title":"Electronic and magnetic properties of Mn-doped and Mn-X (F, Cl, Br, I) co-doped modulated monolayer SnSe2","authors":"Mengting Ma ,&nbsp;Guili Liu ,&nbsp;Guoying Zhang","doi":"10.1016/j.susc.2024.122511","DOIUrl":"10.1016/j.susc.2024.122511","url":null,"abstract":"<div><p>The density functional theory is employed for learning the modulation of the electronic structure and magnetic properties of monolayer SnSe<sub>2</sub> by an Mn atom and by co-doping an Mn atom with a halogen atom. It is found that intrinsic SnSe<sub>2</sub> is nonmagnetic, which is consistent with the properties of semiconductors. Following Mn atom doping, the doped system is magnetic and the magnetic moments are primarily responsible for the Mn atom. After co-doping the Mn atom with halogen atoms, the doped system's total magnetic moments are decreased. The examination of the electronic structure demonstrates that the doping of the Mn atom and the co-doping of the Mn atom with halogen atoms lead to the introduction of impurity energy levels into the doped system, which appear only in the spin-up part and do not cross the Fermi energy level. There is asymmetry between the spin-up and spin-down energy bands and the doped system exhibits magnetic semiconductor properties. The hybridization of the p-orbitals of the halogen atoms and the 3d orbitals of the Mn atom is primarily responsible for the introduction of impurity energy levels in the energy bands of the doped system. In the Mn-doped system, ionic bonds were shaped between Mn and Se. In the co-doped system, strong ionic bonds were shaped between the Mn atom and F, Cl atoms, and covalent bonds were shaped between the Mn atom and Br, I atoms.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"748 ","pages":"Article 122511"},"PeriodicalIF":1.9,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141139228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal structure and shape selection in the growth of 3D metallic crystallites on layered materials: Fe on MoS2 在层状材料上生长三维金属晶体时的晶体结构和形状选择:MoS2 上的铁
IF 1.9 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-05-22 DOI: 10.1016/j.susc.2024.122522
Dapeng Jing , Yong Han , Marek Kolmer , Michael C. Tringides , James W. Evans

Nucleation and growth of supported 3D metal clusters or crystallites during deposition on MoS2, or on other weakly-adhering layered materials, can potentially produce diverse growth shapes, and even crystal structures differing from the bulk metal. For Fe deposition on MoS2, SEM and AFM observations reveal three distinct crystallite shapes. By comparison with atomistic structure models incorporating realistic Fe-MoS2 interface structures, we conclude that these are: triangular fcc(111) pyramids with sloped {100} side facets; bcc(110) A-frame tents with sloped {100} side facets; and bcc(110) mesas with vertical {100} and {110} side facets. The following picture is proposed for the competitive formation of clusters and crystallites with different structures: (i) small nanoclusters formed at the onset of deposition exhibit facile fluxional dynamics allowing sampling of different crystal structures and shapes; (ii) sufficient fluxionality implies a Boltzmann distribution of sampled structures, and thus coexistence of different structures follows from the demonstrated similar energies for those structures; (iii) growing clusters reach a threshold size above which the characteristic time scale for restructuring exceeds that for cluster growth. Thereafter, clusters are locked-in to a specific crystal structure and shape as revealed by imaging of larger crystallites. Despite a penalty for fcc(111) over bcc(111) pyramids based on bulk energetics, favorable surface and interface energies makes them preferable for smaller sizes.

在 MoS2 或其他弱粘附层状材料上沉积过程中,受支撑的三维金属团簇或晶粒的成核和生长可能会产生不同的生长形状,甚至产生不同于块状金属的晶体结构。在 MoS2 上沉积铁时,扫描电子显微镜(SEM)和原子力显微镜(AFM)的观察结果显示了三种不同的晶粒形状。通过与包含现实的 Fe-MoS2 界面结构的原子论结构模型进行比较,我们得出以下结论:具有倾斜{100}侧刻面的三角形 fcc(111) 金字塔;具有倾斜{100}侧刻面的 bcc(110) A 型帐篷;以及具有垂直{100}和{110}侧刻面的 bcc(110) 介面。以下是不同结构的晶簇和晶粒的竞争性形成过程:(i) 沉积开始时形成的小纳米团簇表现出便利的通量动力学,允许对不同晶体结构和形状进行采样;(ii) 足够的通量意味着采样结构的玻尔兹曼分布,因此不同结构的共存是由这些结构的相似能量决定的;(iii) 生长中的团簇会达到一个阈值尺寸,在该尺寸之上,重组的特征时间尺度会超过团簇生长的特征时间尺度。此后,正如较大晶体的成像所显示的那样,晶簇被锁定在特定的晶体结构和形状上。尽管根据块体能量学,fcc(111) 金字塔比 bcc(111) 金字塔的能量低,但有利的表面和界面能量使它们更适合较小的尺寸。
{"title":"Crystal structure and shape selection in the growth of 3D metallic crystallites on layered materials: Fe on MoS2","authors":"Dapeng Jing ,&nbsp;Yong Han ,&nbsp;Marek Kolmer ,&nbsp;Michael C. Tringides ,&nbsp;James W. Evans","doi":"10.1016/j.susc.2024.122522","DOIUrl":"10.1016/j.susc.2024.122522","url":null,"abstract":"<div><p>Nucleation and growth of supported 3D metal clusters or crystallites during deposition on MoS<sub>2</sub>, or on other weakly-adhering layered materials, can potentially produce diverse growth shapes, and even crystal structures differing from the bulk metal. For Fe deposition on MoS<sub>2</sub>, SEM and AFM observations reveal three distinct crystallite shapes. By comparison with atomistic structure models incorporating realistic Fe-MoS<sub>2</sub> interface structures, we conclude that these are: triangular fcc(111) pyramids with sloped {100} side facets; bcc(110) A-frame tents with sloped {100} side facets; and bcc(110) mesas with vertical {100} and {110} side facets. The following picture is proposed for the competitive formation of clusters and crystallites with different structures: (i) small nanoclusters formed at the onset of deposition exhibit facile fluxional dynamics allowing sampling of different crystal structures and shapes; (ii) sufficient fluxionality implies a Boltzmann distribution of sampled structures, and thus coexistence of different structures follows from the demonstrated similar energies for those structures; (iii) growing clusters reach a threshold size above which the characteristic time scale for restructuring exceeds that for cluster growth. Thereafter, clusters are locked-in to a specific crystal structure and shape as revealed by imaging of larger crystallites. Despite a penalty for fcc(111) over bcc(111) pyramids based on bulk energetics, favorable surface and interface energies makes them preferable for smaller sizes.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"747 ","pages":"Article 122522"},"PeriodicalIF":1.9,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141135275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tellurization of Pd(111) revisited: Formation of a TePd2 surface alloy but no PdTe2 monolayer 钯(111)的碲化再探:形成 TePd2 表面合金但没有 PdTe<mml:math xmlns:mml="http://www.w3
IF 1.9 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-05-18 DOI: 10.1016/j.susc.2024.122519
Eric Engel, Alexander Wegerich, Andreas Raabgrund, M. Alexander Schneider

In a recent publication [2D Materials, 8, 045033 (2021)], it was reported that the growth of a monolayer PdTe2 in ultra-high vacuum could be achieved by deposition of tellurium on a palladium (111) crystal surface and subsequent thermal annealing. By means of low-energy electron diffraction intensity (LEED-IV) structural analysis, we show that the obtained 3×3R30° superstructure is in fact a TePd2 surface alloy. Attempts to produce a PdTe2 layer in ultra-high vacuum by increasing the Te content on the surface were not successful.

最近发表的一篇论文[2D Materials, 8, 045033 (2021)]报道,通过在钯(111)晶体表面沉积碲并随后进行热退火,可以在超高真空中生长出单层钯碲。通过低能电子衍射强度(LEED-IV)结构分析,我们发现所获得的 3×3R30° 超结构实际上是 TePd2 表面合金。通过增加表面的 Te 含量在超高真空中生成 PdTe2 层的尝试并不成功。
{"title":"Tellurization of Pd(111) revisited: Formation of a TePd2 surface alloy but no PdTe2 monolayer","authors":"Eric Engel,&nbsp;Alexander Wegerich,&nbsp;Andreas Raabgrund,&nbsp;M. Alexander Schneider","doi":"10.1016/j.susc.2024.122519","DOIUrl":"10.1016/j.susc.2024.122519","url":null,"abstract":"<div><p>In a recent publication [2D Materials, <strong>8</strong>, 045033 (2021)], it was reported that the growth of a monolayer PdTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> in ultra-high vacuum could be achieved by deposition of tellurium on a palladium (111) crystal surface and subsequent thermal annealing. By means of low-energy electron diffraction intensity (LEED-IV) structural analysis, we show that the obtained <span><math><mrow><mfenced><mrow><msqrt><mrow><mn>3</mn></mrow></msqrt><mo>×</mo><msqrt><mrow><mn>3</mn></mrow></msqrt></mrow></mfenced><mtext>R30</mtext><mo>°</mo></mrow></math></span> superstructure is in fact a TePd<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> surface alloy. Attempts to produce a PdTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> layer in ultra-high vacuum by increasing the Te content on the surface were not successful.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"748 ","pages":"Article 122519"},"PeriodicalIF":1.9,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039602824000700/pdfft?md5=f004cf4053bd9c7f1b9d296768eca9d4&pid=1-s2.0-S0039602824000700-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141133054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling the phase boundaries in Cu(100)-(2√2 × √2)R45°-O missing row reconstruction (MRR) structure Cu(100)-(2√2 × √2)R45°-O缺行重构 (MRR) 结构中的相界建模
IF 1.9 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-05-17 DOI: 10.1016/j.susc.2024.122508
Yu Liu, Rui Zhao, Weiwen Meng, Yanmin Zhang, Xuan Wang, Hengshan Qiu

Although the structure of Cu(100)-(22×2)R45°-O missing row reconstruction (MRR) has been well-established for decades, the detailed structure of its various boundaries remains an untilled area due to the difficulties in obtaining atomically resolved images. Herein, atomic arrangement of the phase boundaries existing in MRR structure was modeled on the basis of scanning tunneling microscopy (STM) investigations. By determining the periodicity and unit structure of MRR in STM images and extending them to boundary region, several types of phase boundaries were identified, resulted respectively from: (1) the mismatch between c(2 × 2)-O patches, (2) the regulation by step edges, and (3) the mismatch between Cu missing rows (MRs). With the modeled structure, it was revealed that the types of the c(2 × 2)-O mismatch induced phase boundaries (OMIPBs) are mainly dominated by the oxygen exposure and in-diffusion barrier. The step edge regulated phase boundaries (SERPBs) are always terminated with Cu-O chain and may represent an intermediate growth stage to larger MRR structure. Comparatively, Cu MRs mismatch is often reconciled by the differently oriented domains between them. As a result, the Cu MRs mismatch induced phase boundaries (CMRMIPBs) are only occasionally observed as Cu-O chains between mismatched Cu MRs that encounter shoulder-to-shoulder. For all studied boundaries, the surrounding MRR domains exhibit obvious orientation preference through inclined packing along the SP direction with the degree closely related with the width of the boundaries.

虽然 Cu(100)-(22×2)R45°-O 缺行重构(MRR)结构已被证实了几十年,但由于难以获得原子分辨率图像,其各种边界的详细结构仍是一个尚未开发的领域。本文以扫描隧道显微镜(STM)研究为基础,对 MRR 结构中存在的相界的原子排列进行了建模。通过确定 STM 图像中 MRR 的周期性和单元结构并将其扩展到边界区域,确定了几种类型的相界,分别来自:(1) c(2 × 2)-O 补丁之间的错配;(2) 阶梯边缘的调节;(3) 铜缺失行 (MR) 之间的错配。模型结构显示,c(2 × 2)-O 错配诱导相界(OMIPBs)的类型主要受氧暴露和内扩散障碍的影响。阶跃边调节相界(SERPBs)总是以 Cu-O 链终止,可能代表了较大 MRR 结构的中间生长阶段。相比之下,Cu MRs 的不匹配通常是通过它们之间不同取向的畴来调和的。因此,Cu MRs 错配诱导相界(CMRMIPBs)只是偶尔被观察到,在错配的 Cu MRs 之间出现肩并肩的 Cu-O 链。在所有研究的边界中,周围的 MRR 结构域通过沿 SP 方向的倾斜堆积表现出明显的取向偏好,其程度与边界的宽度密切相关。
{"title":"Modeling the phase boundaries in Cu(100)-(2√2 × √2)R45°-O missing row reconstruction (MRR) structure","authors":"Yu Liu,&nbsp;Rui Zhao,&nbsp;Weiwen Meng,&nbsp;Yanmin Zhang,&nbsp;Xuan Wang,&nbsp;Hengshan Qiu","doi":"10.1016/j.susc.2024.122508","DOIUrl":"10.1016/j.susc.2024.122508","url":null,"abstract":"<div><p>Although the structure of Cu(100)-(<span><math><mrow><mn>2</mn><msqrt><mn>2</mn></msqrt><mrow><mspace></mspace><mo>×</mo><mspace></mspace></mrow><msqrt><mn>2</mn></msqrt></mrow></math></span>)<em>R</em>45°-O missing row reconstruction (MRR) has been well-established for decades, the detailed structure of its various boundaries remains an untilled area due to the difficulties in obtaining atomically resolved images. Herein, atomic arrangement of the phase boundaries existing in MRR structure was modeled on the basis of scanning tunneling microscopy (STM) investigations. By determining the periodicity and unit structure of MRR in STM images and extending them to boundary region, several types of phase boundaries were identified, resulted respectively from: (1) the mismatch between <em>c</em>(2 × 2)-O patches, (2) the regulation by step edges, and (3) the mismatch between Cu missing rows (MRs). With the modeled structure, it was revealed that the types of the <em>c</em>(2 × 2)-O mismatch induced phase boundaries (OMIPBs) are mainly dominated by the oxygen exposure and in-diffusion barrier. The step edge regulated phase boundaries (SERPBs) are always terminated with Cu-O chain and may represent an intermediate growth stage to larger MRR structure. Comparatively, Cu MRs mismatch is often reconciled by the differently oriented domains between them. As a result, the Cu MRs mismatch induced phase boundaries (CMRMIPBs) are only occasionally observed as Cu-O chains between mismatched Cu MRs that encounter shoulder-to-shoulder. For all studied boundaries, the surrounding MRR domains exhibit obvious orientation preference through inclined packing along the SP direction with the degree closely related with the width of the boundaries.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"747 ","pages":"Article 122508"},"PeriodicalIF":1.9,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141025205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Surface Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1