首页 > 最新文献

Structure最新文献

英文 中文
Trace_y: Software algorithms for structural analysis of individual helical filaments by three-dimensional contact point reconstruction atomic force microscopy 用三维接触点重建原子力显微镜对单个螺旋细丝进行结构分析的软件算法
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-05 DOI: 10.1016/j.str.2024.11.007
Wei-Feng Xue
Atomic force microscopy (AFM) is a powerful and increasingly accessible technology that has a wide range of bio-imaging applications. AFM is capable of producing detailed three-dimensional topographical images with high signal-to-noise ratio, which enables the structural features of individual molecules to be studied without the need for ensemble averaging. Here, a software tool Trace_y, designed to reconstruct the three-dimensional surface envelopes of individual helical filament structures from topographical AFM images, is presented. Workflow using Trace_y is demonstrated on the structural analysis of individual helical amyloid protein fibrils where the assembly mechanism of heterogeneous, complex and diverse fibril populations due to structural polymorphism is not understood. The algorithms presented here allow structural information encoded in topographical AFM height images to be extracted and understood as three-dimensional (3D) contact point clouds. This approach will facilitate the use of AFM in structural biology to understand molecular structures and behaviors at individual molecule level.
原子力显微镜(AFM)是一种功能强大且日益普及的技术,具有广泛的生物成像应用。AFM能够产生具有高信噪比的详细的三维地形图像,这使得无需集合平均即可研究单个分子的结构特征。本文介绍了一种软件工具Trace_y,用于从地形AFM图像中重建单个螺旋细丝结构的三维表面包络。使用Trace_y对单个螺旋淀粉样蛋白原纤维的结构分析进行了工作流演示,其中由于结构多态性而导致的异质,复杂和多样化的原纤维群体的组装机制尚不清楚。本文提出的算法允许在地形AFM高度图像中编码的结构信息被提取并理解为三维(3D)接触点云。这种方法将促进AFM在结构生物学中的应用,以在单个分子水平上理解分子结构和行为。
{"title":"Trace_y: Software algorithms for structural analysis of individual helical filaments by three-dimensional contact point reconstruction atomic force microscopy","authors":"Wei-Feng Xue","doi":"10.1016/j.str.2024.11.007","DOIUrl":"https://doi.org/10.1016/j.str.2024.11.007","url":null,"abstract":"Atomic force microscopy (AFM) is a powerful and increasingly accessible technology that has a wide range of bio-imaging applications. AFM is capable of producing detailed three-dimensional topographical images with high signal-to-noise ratio, which enables the structural features of individual molecules to be studied without the need for ensemble averaging. Here, a software tool Trace_y, designed to reconstruct the three-dimensional surface envelopes of individual helical filament structures from topographical AFM images, is presented. Workflow using Trace_y is demonstrated on the structural analysis of individual helical amyloid protein fibrils where the assembly mechanism of heterogeneous, complex and diverse fibril populations due to structural polymorphism is not understood. The algorithms presented here allow structural information encoded in topographical AFM height images to be extracted and understood as three-dimensional (3D) contact point clouds. This approach will facilitate the use of AFM in structural biology to understand molecular structures and behaviors at individual molecule level.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"12 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The universal Rhs shell structure accommodates various toxins inside and different functional decorations on the outside 通用的Rhs外壳结构内部容纳各种毒素,外部容纳不同的功能装饰
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-05 DOI: 10.1016/j.str.2024.11.003
In this issue of Structure, Kielkopf et al.1 report the crystal structures of Rhs proteins that are genetically fused to the type VI secretion system …
在这一期的《结构》中,Kielkopf et al.1报道了与VI型分泌系统基因融合的Rhs蛋白的晶体结构。
{"title":"The universal Rhs shell structure accommodates various toxins inside and different functional decorations on the outside","authors":"","doi":"10.1016/j.str.2024.11.003","DOIUrl":"https://doi.org/10.1016/j.str.2024.11.003","url":null,"abstract":"In this issue of Structure, Kielkopf et al.1 report the crystal structures of Rhs proteins that are genetically fused to the type VI secretion system …","PeriodicalId":22168,"journal":{"name":"Structure","volume":"3 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanistic and structural insights into EstS1 esterase: A potent broad-spectrum phthalate diester degrading enzyme 机制和结构洞察到EstS1酯酶:一个有效的广谱邻苯二甲酸二酯降解酶
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-05 DOI: 10.1016/j.str.2024.11.006
Shalja Verma, Shweta Choudhary, Kamble Amith Kumar, Jai Krishna Mahto, Anil Kumar Vamsi K, Ishani Mishra, Vellanki Bhanu Prakash, Debabrata Sircar, Shailly Tomar, Ashwani Kumar Sharma, Jitin Singla, Pravindra Kumar
Phthalate diesters are important pollutants and act as endocrine disruptors. While certain bacterial esterases have been identified for phthalate diesters degradation to monoesters, their structural and mechanistic characteristics remain largely unexplored. Here, we highlight the potential of the thermostable and pH-tolerant EstS1 esterase from Sulfobacillus acidophilus DSM10332 to degrade high molecular weight bis(2-ethylhexyl) phthalate (DEHP) by combining biophysical and biochemical approaches along with high-resolution EstS1 crystal structures of the apo form and with bound substrates, products, and their analogs to elucidate its mechanism. The catalytic tunnel mediates entry and exit of the substrate and product, respectively. The centralized Ser-His-Asp triad performs catalysis by a bi-bi ping-pong mechanism, forming a tetrahedral intermediate. Mutagenesis analysis showed that the Met207Ala mutation abolished DEHP binding at the active site, confirming its essential role in supporting catalysis. These findings underscore EstS1 as a promising tool for advancing technologies aimed at phthalate diesters biodegradation.
邻苯二甲酸二酯是重要的污染物,具有内分泌干扰作用。虽然已确定某些细菌酯酶可将邻苯二甲酸二酯降解为单酯,但其结构和机制特征仍未得到充分研究。在这里,我们强调了来自嗜酸硫杆菌DSM10332的耐热耐ph EstS1酯酶的潜力,通过结合生物物理和生化方法,以及载子形式的高分辨率EstS1晶体结构,结合底物、产物和它们的类似物来阐明其机制。催化通道分别介导底物和产物的进入和排出。集中的Ser-His-Asp三联体通过双向乒乓机制进行催化,形成四面体中间体。诱变分析表明,Met207Ala突变消除了DEHP在活性位点的结合,证实了其在支持催化中的重要作用。这些发现强调了EstS1作为推进邻苯二甲酸二酯生物降解技术的一个有前途的工具。
{"title":"Mechanistic and structural insights into EstS1 esterase: A potent broad-spectrum phthalate diester degrading enzyme","authors":"Shalja Verma, Shweta Choudhary, Kamble Amith Kumar, Jai Krishna Mahto, Anil Kumar Vamsi K, Ishani Mishra, Vellanki Bhanu Prakash, Debabrata Sircar, Shailly Tomar, Ashwani Kumar Sharma, Jitin Singla, Pravindra Kumar","doi":"10.1016/j.str.2024.11.006","DOIUrl":"https://doi.org/10.1016/j.str.2024.11.006","url":null,"abstract":"Phthalate diesters are important pollutants and act as endocrine disruptors. While certain bacterial esterases have been identified for phthalate diesters degradation to monoesters, their structural and mechanistic characteristics remain largely unexplored. Here, we highlight the potential of the thermostable and pH-tolerant EstS1 esterase from <em>Sulfobacillus acidophilus</em> DSM10332 to degrade high molecular weight bis(2-ethylhexyl) phthalate (DEHP) by combining biophysical and biochemical approaches along with high-resolution EstS1 crystal structures of the apo form and with bound substrates, products, and their analogs to elucidate its mechanism. The catalytic tunnel mediates entry and exit of the substrate and product, respectively. The centralized Ser-His-Asp triad performs catalysis by a bi-bi ping-pong mechanism, forming a tetrahedral intermediate. Mutagenesis analysis showed that the Met207Ala mutation abolished DEHP binding at the active site, confirming its essential role in supporting catalysis. These findings underscore EstS1 as a promising tool for advancing technologies aimed at phthalate diesters biodegradation.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"31 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does the structure of transthyretin amyloid fibrils vary depending on the organ of accumulation? 转甲状腺素淀粉样原纤维的结构是否因器官的积累而异?
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-05 DOI: 10.1016/j.str.2024.11.002
Mineyuki Mizuguchi
In this issue of Structure, Nguyen et al.1 reveal that amyloid fibrils of the transthyretin (TTR) V30M variant from the heart and nerves of the same patient exhibit structural homogeneity. This finding is crucial for advancing our understanding of V30M-TTR amyloid deposition, which leads to fatal ATTRv amyloidosis.
在本期的《结构》杂志上,Nguyen等人1发现来自同一患者的心脏和神经的转甲状腺素(TTR) V30M变体的淀粉样原纤维具有结构同质性。这一发现对于提高我们对V30M-TTR淀粉样蛋白沉积的理解至关重要,V30M-TTR淀粉样蛋白沉积导致致命的ATTRv淀粉样变性。
{"title":"Does the structure of transthyretin amyloid fibrils vary depending on the organ of accumulation?","authors":"Mineyuki Mizuguchi","doi":"10.1016/j.str.2024.11.002","DOIUrl":"https://doi.org/10.1016/j.str.2024.11.002","url":null,"abstract":"In this issue of <em>Structure</em>, Nguyen et al.<span><span><sup>1</sup></span></span> reveal that amyloid fibrils of the transthyretin (TTR) V30M variant from the heart and nerves of the same patient exhibit structural homogeneity. This finding is crucial for advancing our understanding of V30M-TTR amyloid deposition, which leads to fatal ATTRv amyloidosis.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"78 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A finger that gets in the way: When binding isn’t just about the bound state 一个碍手碍脚的手指:当绑定不仅仅是绑定状态时
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-05 DOI: 10.1016/j.str.2024.11.001
David Neuhaus, Katherine Stott
In this issue of Structure, Viennet et al.1 report a study characterizing the DNA binding by a three-zinc-finger fragment from the transcription factor BCL11A, with the unusual feature that an interfinger interaction in the free protein is disrupted during binding, which provides a positive entropic contribution that enhances the affinity.
在本期的《结构》杂志上,Viennet等人报道了一项研究,描述了转录因子BCL11A的三锌指片段与DNA的结合,其不寻常的特征是游离蛋白中的指间相互作用在结合过程中被破坏,这提供了一个正熵贡献,增强了亲和力。
{"title":"A finger that gets in the way: When binding isn’t just about the bound state","authors":"David Neuhaus, Katherine Stott","doi":"10.1016/j.str.2024.11.001","DOIUrl":"https://doi.org/10.1016/j.str.2024.11.001","url":null,"abstract":"In this issue of <em>Structure</em>, Viennet et al.<span><span><sup>1</sup></span></span> report a study characterizing the DNA binding by a three-zinc-finger fragment from the transcription factor BCL11A, with the unusual feature that an interfinger interaction in the free protein is disrupted during binding, which provides a positive entropic contribution that enhances the affinity.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"5 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structures of TASK-1 and TASK-3 K2P channels provide insight into their gating and dysfunction in disease 任务-1和任务-3 K2P通道的结构提供了对其门控和疾病功能障碍的深入了解
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-04 DOI: 10.1016/j.str.2024.11.005
Peter Rory Hall, Thibault Jouen-Tachoire, Marcus Schewe, Peter Proks, Thomas Baukrowitz, Elisabeth P. Carpenter, Simon Newstead, Karin E.J. Rödström, Stephen J. Tucker
TASK-1 and TASK-3 are pH-sensitive two-pore domain (K2P/KCNK) K+ channels. Their functional roles make them promising targets for treatment of multiple disorders including sleep apnea, pain, and atrial fibrillation. Mutations in these channels are also associated with neurodevelopmental and hypertensive disorders. A previous crystal structure of TASK-1 revealed a lower “X-gate” as a hotspot for missense gain-of-function (GoF) mutations associated with DDSA (developmental delay with sleep apnea). However, the mechanisms of gating in TASK channels are still not fully understood. Here, we resolve structures for both human TASK-1 and TASK-3 by cryoelectron microscopy (cryo-EM), as well as a recurrent TASK-3 variant (G236R) associated with KCNK9 imprinting syndrome (KIS) (formerly known as Birk-Barel syndrome). Combined with functional studies of the X-gating mechanism, we provide evidence for how a highly conserved gating mechanism becomes defective in disease, and also provide further insight into the pathway of conformational changes that underlie the pH-dependent inhibition of TASK channel activity.
TASK-1和TASK-3是ph敏感的双孔域(K2P/KCNK) K+通道。它们的功能作用使它们成为治疗多种疾病的有希望的靶点,包括睡眠呼吸暂停、疼痛和心房颤动。这些通道的突变也与神经发育和高血压疾病有关。先前的TASK-1晶体结构显示,较低的“x门”是与DDSA(发育迟缓伴睡眠呼吸暂停)相关的错误意义功能获得(GoF)突变的热点。然而,在TASK通道中的门控机制仍然没有被完全理解。在这里,我们通过低温电子显微镜(cro - em)分析了人类TASK-1和TASK-3的结构,以及与KCNK9印迹综合征(KIS)(以前称为Birk-Barel综合征)相关的复发性TASK-3变体(G236R)。结合对x -门控机制的功能研究,我们为高度保守的门控机制如何在疾病中出现缺陷提供了证据,并进一步深入了解了ph依赖性抑制TASK通道活性的构象变化途径。
{"title":"Structures of TASK-1 and TASK-3 K2P channels provide insight into their gating and dysfunction in disease","authors":"Peter Rory Hall, Thibault Jouen-Tachoire, Marcus Schewe, Peter Proks, Thomas Baukrowitz, Elisabeth P. Carpenter, Simon Newstead, Karin E.J. Rödström, Stephen J. Tucker","doi":"10.1016/j.str.2024.11.005","DOIUrl":"https://doi.org/10.1016/j.str.2024.11.005","url":null,"abstract":"TASK-1 and TASK-3 are pH-sensitive two-pore domain (K2P/<em>KCNK</em>) K<sup>+</sup> channels. Their functional roles make them promising targets for treatment of multiple disorders including sleep apnea, pain, and atrial fibrillation. Mutations in these channels are also associated with neurodevelopmental and hypertensive disorders. A previous crystal structure of TASK-1 revealed a lower “X-gate” as a hotspot for missense gain-of-function (GoF) mutations associated with DDSA (developmental delay with sleep apnea). However, the mechanisms of gating in TASK channels are still not fully understood. Here, we resolve structures for both human TASK-1 and TASK-3 by cryoelectron microscopy (cryo-EM), as well as a recurrent TASK-3 variant (G236R) associated with <em>KCNK9</em> imprinting syndrome (KIS) (formerly known as Birk-Barel syndrome). Combined with functional studies of the X-gating mechanism, we provide evidence for how a highly conserved gating mechanism becomes defective in disease, and also provide further insight into the pathway of conformational changes that underlie the pH-dependent inhibition of TASK channel activity.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"37 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142763464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the structural proteome of an Alzheimer’s disease rat brain model 揭示阿尔茨海默病大鼠脑模型的结构蛋白质组
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-29 DOI: 10.1016/j.str.2024.11.004
Elnaz Khalili Samani, S.M. Naimul Hasan, Matthew Waas, Alexander F.A. Keszei, Xiaoxiao Xu, Mahtab Heydari, Mary Elizabeth Hill, JoAnne McLaurin, Thomas Kislinger, Mohammad T. Mazhab-Jafari
Studying native protein structures at near-atomic resolution in a crowded environment presents challenges. Consequently, understanding the structural intricacies of proteins within pathologically affected tissues often relies on mass spectrometry and proteomic analysis. Here, we utilized cryoelectron microscopy (cryo-EM) and the Build and Retrieve (BaR) method to investigate protein complexes’ structural characteristics such as post-translational modification, active site occupancy, and arrested conformational state in Alzheimer’s disease (AD) using brain lysate from a rat model (TgF344-AD). Our findings reveal novel insights into the architecture of these complexes, corroborated through mass spectrometry analysis. Interestingly, it has been shown that the dysfunction of these protein complexes extends beyond AD, implicating them in cancer, as well as other neurodegenerative disorders such as Parkinson’s disease, Huntington’s disease, and schizophrenia. By elucidating these structural details, our work not only enhances our understanding of disease pathology but also suggests new avenues for future approaches in therapeutic intervention.
在拥挤的环境中以接近原子的分辨率研究天然蛋白质结构提出了挑战。因此,了解病理影响组织内蛋白质结构的复杂性往往依赖于质谱和蛋白质组学分析。在这里,我们利用冷冻电镜(cro - em)和构建和检索(BaR)方法,利用大鼠模型(TgF344-AD)的脑裂解液,研究了阿尔茨海默病(AD)中蛋白质复合物的结构特征,如翻译后修饰、活性位点占用和捕获构象状态。我们的发现揭示了对这些复合物结构的新见解,并通过质谱分析得到证实。有趣的是,研究表明,这些蛋白复合物的功能障碍不仅限于阿尔茨海默病,还涉及癌症以及其他神经退行性疾病,如帕金森病、亨廷顿病和精神分裂症。通过阐明这些结构细节,我们的工作不仅增强了我们对疾病病理学的理解,而且为未来的治疗干预方法提供了新的途径。
{"title":"Unveiling the structural proteome of an Alzheimer’s disease rat brain model","authors":"Elnaz Khalili Samani, S.M. Naimul Hasan, Matthew Waas, Alexander F.A. Keszei, Xiaoxiao Xu, Mahtab Heydari, Mary Elizabeth Hill, JoAnne McLaurin, Thomas Kislinger, Mohammad T. Mazhab-Jafari","doi":"10.1016/j.str.2024.11.004","DOIUrl":"https://doi.org/10.1016/j.str.2024.11.004","url":null,"abstract":"Studying native protein structures at near-atomic resolution in a crowded environment presents challenges. Consequently, understanding the structural intricacies of proteins within pathologically affected tissues often relies on mass spectrometry and proteomic analysis. Here, we utilized cryoelectron microscopy (cryo-EM) and the Build and Retrieve (BaR) method to investigate protein complexes’ structural characteristics such as post-translational modification, active site occupancy, and arrested conformational state in Alzheimer’s disease (AD) using brain lysate from a rat model (TgF344-AD). Our findings reveal novel insights into the architecture of these complexes, corroborated through mass spectrometry analysis. Interestingly, it has been shown that the dysfunction of these protein complexes extends beyond AD, implicating them in cancer, as well as other neurodegenerative disorders such as Parkinson’s disease, Huntington’s disease, and schizophrenia. By elucidating these structural details, our work not only enhances our understanding of disease pathology but also suggests new avenues for future approaches in therapeutic intervention.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"9 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142742585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein translocation through α-helical channels and insertases 蛋白质通过α螺旋通道和插入酶进行转运
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-25 DOI: 10.1016/j.str.2024.10.032
Jingxia Chen, Xueyin Zhou, Yuqi Yang, Long Li
Protein translocation systems are essential for distributing proteins across various lipid membranes in cells. Cellular membranes, such as the endoplasmic reticulum (ER) membrane and mitochondrial inner membrane, require highly regulated protein translocation machineries that specifically allow the passage of protein polypeptides while blocking smaller molecules like ions and water. Key translocation systems include the Sec translocation channel, the protein insertases of the Oxa1 superfamily, and the translocases of the mitochondrial inner membrane (TIM). These machineries utilize different mechanisms to create pathways for proteins to move across membranes while preventing ion leakage during the dynamic translocation processes. In this review, we highlight recent advances in our understanding of these α-helical translocation machineries and examine their structures, mechanisms, and regulation. We also discuss the therapeutic potential of these translocation pathways and summarize the progress in drug development targeting these systems for treating diseases.
蛋白质转运系统对蛋白质在细胞内各种脂质膜上的分布至关重要。细胞膜(如内质网(ER)膜和线粒体内膜)需要高度调节的蛋白质转运机制,这些机制专门允许蛋白质多肽通过,同时阻挡离子和水等小分子。关键的易位系统包括 Sec 易位通道、Oxa1 超家族的蛋白插入酶和线粒体内膜的易位酶(TIM)。这些机制利用不同的机制为蛋白质跨膜移动创造途径,同时在动态转运过程中防止离子泄漏。在这篇综述中,我们将重点介绍在了解这些 α-螺旋转运机制方面的最新进展,并研究它们的结构、机制和调控。我们还讨论了这些转运途径的治疗潜力,并总结了针对这些系统治疗疾病的药物开发进展。
{"title":"Protein translocation through α-helical channels and insertases","authors":"Jingxia Chen, Xueyin Zhou, Yuqi Yang, Long Li","doi":"10.1016/j.str.2024.10.032","DOIUrl":"https://doi.org/10.1016/j.str.2024.10.032","url":null,"abstract":"Protein translocation systems are essential for distributing proteins across various lipid membranes in cells. Cellular membranes, such as the endoplasmic reticulum (ER) membrane and mitochondrial inner membrane, require highly regulated protein translocation machineries that specifically allow the passage of protein polypeptides while blocking smaller molecules like ions and water. Key translocation systems include the Sec translocation channel, the protein insertases of the Oxa1 superfamily, and the translocases of the mitochondrial inner membrane (TIM). These machineries utilize different mechanisms to create pathways for proteins to move across membranes while preventing ion leakage during the dynamic translocation processes. In this review, we highlight recent advances in our understanding of these α-helical translocation machineries and examine their structures, mechanisms, and regulation. We also discuss the therapeutic potential of these translocation pathways and summarize the progress in drug development targeting these systems for treating diseases.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"80 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142696627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The kinetoplastid kinetochore protein KKT23 acetyltransferase is a structural homolog of GCN5 that acetylates the histone H2A C-terminal tail 核原生动物动点蛋白 KKT23 乙酰基转移酶是 GCN5 的结构同源物,它能使组蛋白 H2A C 端尾乙酰化
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-22 DOI: 10.1016/j.str.2024.10.031
Patryk Ludzia, Midori Ishii, Gauri Deák, Christos Spanos, Marcus D. Wilson, Christina Redfield, Bungo Akiyoshi
The kinetochore is the macromolecular protein machine that drives chromosome segregation in eukaryotes. In an evolutionarily divergent group of organisms called kinetoplastids, kinetochores are built using a unique set of proteins (KKT1–25 and KKIP1–12). KKT23 is a constitutively localized kinetochore protein containing a C-terminal acetyltransferase domain of unknown function. Here, using X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, we have determined the structure and dynamics of the KKT23 acetyltransferase domain from Trypanosoma brucei and found that it is structurally similar to the GCN5 histone acetyltransferase domain. We find that KKT23 can acetylate the C-terminal tail of histone H2A and that knockdown of KKT23 results in decreased H2A acetylation levels in T. brucei. Finally, we have determined the crystal structure of the N-terminal region of KKT23 and shown that it interacts with KKT22. Our study provides important insights into the structure and function of the unique kinetochore acetyltransferase in trypanosomes.
动核是真核生物中驱动染色体分离的大分子蛋白质机器。在进化过程中出现分化的一类生物(称为动点细胞)中,动点由一组独特的蛋白质(KKT1-25 和 KKIP1-12)构建。KKT23 是一种组成型定位的动点核蛋白,含有一个功能未知的 C 端乙酰转移酶结构域。在这里,我们利用 X 射线晶体学和核磁共振(NMR)光谱测定了布氏锥虫 KKT23 乙酰转移酶结构域的结构和动力学,发现它在结构上与 GCN5 组蛋白乙酰转移酶结构域相似。我们发现 KKT23 能使组蛋白 H2A 的 C 端尾乙酰化,而且敲除 KKT23 会导致布氏锥虫 H2A 乙酰化水平下降。最后,我们测定了 KKT23 N 端区域的晶体结构,并证明它与 KKT22 相互作用。我们的研究对锥虫中独特的动点核乙酰转移酶的结构和功能提供了重要的见解。
{"title":"The kinetoplastid kinetochore protein KKT23 acetyltransferase is a structural homolog of GCN5 that acetylates the histone H2A C-terminal tail","authors":"Patryk Ludzia, Midori Ishii, Gauri Deák, Christos Spanos, Marcus D. Wilson, Christina Redfield, Bungo Akiyoshi","doi":"10.1016/j.str.2024.10.031","DOIUrl":"https://doi.org/10.1016/j.str.2024.10.031","url":null,"abstract":"The kinetochore is the macromolecular protein machine that drives chromosome segregation in eukaryotes. In an evolutionarily divergent group of organisms called kinetoplastids, kinetochores are built using a unique set of proteins (KKT1–25 and KKIP1–12). KKT23 is a constitutively localized kinetochore protein containing a C-terminal acetyltransferase domain of unknown function. Here, using X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, we have determined the structure and dynamics of the KKT23 acetyltransferase domain from <em>Trypanosoma brucei</em> and found that it is structurally similar to the GCN5 histone acetyltransferase domain. We find that KKT23 can acetylate the C-terminal tail of histone H2A and that knockdown of KKT23 results in decreased H2A acetylation levels in <em>T. brucei</em>. Finally, we have determined the crystal structure of the N-terminal region of KKT23 and shown that it interacts with KKT22. Our study provides important insights into the structure and function of the unique kinetochore acetyltransferase in trypanosomes.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"11 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142690706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure and dynamics of the active site of hen egg-white lysozyme from atomic resolution neutron crystallography 通过原子分辨率中子晶体学研究母鸡卵白溶菌酶活性位点的结构和动力学特征
IF 5.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-21 DOI: 10.1016/j.str.2024.10.030
Joao Ramos, Valerie Laux, Sax A. Mason, Marie-Hélène Lemée, Matthew W. Bowler, Kay Diederichs, Michael Haertlein, V. Trevor Forsyth, Estelle Mossou, Sine Larsen, Annette E. Langkilde
Hen egg-white lysozyme (HEWL) is a widely used model protein in crystallographic studies and its enzymatic mechanism has been extensively investigated for decades. Despite this, the interaction between the reaction intermediate and the catalytic Asp52, as well as the orientation of Asn44 and Asn46 side chains, remain ambiguous. Here, we report the crystal structures of perdeuterated HEWL and D2O buffer-exchanged HEWL from 0.91 and 1.1 Å resolution neutron diffraction data, respectively. These structures were obtained at room temperature and acidic pH, representing the active state of the enzyme. The unambiguous assignment of hydrogen positions based on the neutron scattering length density maps elucidates the roles of Asn44, Asn46, Asn59, and nearby water molecules in the stabilization of Asp52. Additionally, the identification of hydrogen positions reveals unique details of lysozyme’s folding, hydrogen (H)/deuterium (D) exchange, and side chain disorder.
母鸡卵白溶菌酶(HEWL)是晶体学研究中广泛使用的模型蛋白质,几十年来,人们对其酶学机制进行了广泛研究。尽管如此,反应中间体与催化剂 Asp52 之间的相互作用以及 Asn44 和 Asn46 侧链的取向仍然模糊不清。在此,我们分别从 0.91 和 1.1 Å 分辨率的中子衍射数据中报告了氚化 HEWL 和 D2O 缓冲交换 HEWL 的晶体结构。这些结构是在室温和酸性 pH 下获得的,代表了酶的活性状态。基于中子散射长度密度图的氢位置的明确分配阐明了 Asn44、Asn46、Asn59 和附近水分子在稳定 Asp52 中的作用。此外,氢位置的确定揭示了溶菌酶折叠、氢(H)/氘(D)交换和侧链紊乱的独特细节。
{"title":"Structure and dynamics of the active site of hen egg-white lysozyme from atomic resolution neutron crystallography","authors":"Joao Ramos, Valerie Laux, Sax A. Mason, Marie-Hélène Lemée, Matthew W. Bowler, Kay Diederichs, Michael Haertlein, V. Trevor Forsyth, Estelle Mossou, Sine Larsen, Annette E. Langkilde","doi":"10.1016/j.str.2024.10.030","DOIUrl":"https://doi.org/10.1016/j.str.2024.10.030","url":null,"abstract":"Hen egg-white lysozyme (HEWL) is a widely used model protein in crystallographic studies and its enzymatic mechanism has been extensively investigated for decades. Despite this, the interaction between the reaction intermediate and the catalytic Asp52, as well as the orientation of Asn44 and Asn46 side chains, remain ambiguous. Here, we report the crystal structures of perdeuterated HEWL and D<sub>2</sub>O buffer-exchanged HEWL from 0.91 and 1.1 Å resolution neutron diffraction data, respectively. These structures were obtained at room temperature and acidic pH, representing the active state of the enzyme. The unambiguous assignment of hydrogen positions based on the neutron scattering length density maps elucidates the roles of Asn44, Asn46, Asn59, and nearby water molecules in the stabilization of Asp52. Additionally, the identification of hydrogen positions reveals unique details of lysozyme’s folding, hydrogen (H)/deuterium (D) exchange, and side chain disorder.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"99 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Structure
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1