首页 > 最新文献

Plant Biotechnology Journal最新文献

英文 中文
ScDB: A comprehensive database dedicated to Saccharum, facilitating functional genomics and molecular biology studies in sugarcane ScDB:蔗糖专用综合数据库,促进甘蔗功能基因组学和分子生物学研究
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-30 DOI: 10.1111/pbi.14457
Siyuan Chen, Xiaoxi Feng, Zhe Zhang, Xiuting Hua, Qing Zhang, Chengjie Chen, Jiawei Li, Xiaojing Liu, Chenyu Weng, Baoshan Chen, Muqing Zhang, Wei Yao, Haibao Tang, Ray Ming, Jisen Zhang
<p>Sugarcane is the world's important sugar crop, serving as the primary feedstock for the production of sugar and biofuels. Modern sugarcane cultivar resulting from deliberate interspecific hybridization between <i>Saccharum officinarum</i> and <i>Saccharum spontaneum</i>. The utilization of wild resources is essential for the development of high-quality sugarcane varieties, and the genomic and omics analyses of these materials provide valuable insights into their molecular mechanisms. However, the complexity of the sugarcane genome has historically presented challenges for researchers. In our previous studies, we led the efforts to assemble the genome of a haploid <i>S. spontaneum</i> AP85-441 (Zhang <i>et al</i>., <span>2018</span>) and pioneered the approach to tackle a complex autopolyploid at allele-level resolution. We then traced the origins of <i>Saccharum</i> and mapped the chromosomal evolution in <i>S. spontaneum</i> Np-X (Zhang <i>et al</i>., <span>2022</span>). Additionally, we successfully assembled a complete, gap-free diploid <i>Erianthus rufipilus</i> YN2009-3 genome, shedding light on the genomic footprints of evolution in the highly polyploid <i>Saccharum</i> (Wang <i>et al</i>., <span>2023</span>). Meanwhile, we are proud to present the genome of <i>Saccharum</i> hybrid XTT22, considered the most significant achievement in sugarcane research. Our work is currently accepted and will soon be online (Zhang <i>et al</i>., <i>Nature Genetics</i>). In addition, other teams have similarly worked on genome research in the Sugarcane. This year, the genomes of modern sugarcane R570 and ZZ1 were published by A. D'Hont's team and Muqing Zhang's team, respectively (Bao <i>et al</i>., <span>2024</span>; Healey <i>et al</i>., <span>2024</span>).</p><p>Building upon this foundation, we are pleased to introduce ScDB (<i>Saccharum</i> genomic database, https://sugarcane.gxu.edu.cn/scdb), the first user-friendly multi-omics database for six <i>Saccharum</i> species (AP85-441, Np-X, LA-Purple, XTT22, R570, ZZ1) and a <i>Erianthus rufipilus</i> (YN2009-3). ScDB currently comprises a total of 38.91 Gb of genomic assembly sequences, encompassing 1 366 608 genes. Additionally, ScDB includes 24 transcriptome projects involving over 300 sugarcane samples and approximately 2.5 TB of data. Furthermore, 12 online functions that are frequently used by users have been developed to facilitate the use of ScDB, include ‘Gene Search’, ‘Orthologous Gene Search’, ‘Synteny Block’, ‘Genome Browser’, ‘Gene Expression’, ‘Co-expression Network’, ‘Blast’, ‘Primer’, ‘Sequence Fetch’, ‘Transcription Factors’, ‘Protein Interaction Network’, ‘Profile Inference’ (Figure 1a).</p><figure><picture><source media="(min-width: 1650px)" srcset="/cms/asset/af07cd8d-7988-4899-b1c8-cd096eee0bb1/pbi14457-fig-0001-m.jpg"/><img alt="Details are in the caption following the image" data-lg-src="/cms/asset/af07cd8d-7988-4899-b1c8-cd096eee0bb1/pbi14457-fig-0001-m.jpg" loading="lazy" src
合成块 "可用于快速检查大型同源基因片段和染色体内的进化和多样性(图 1d)。基因组浏览器 "工具提供了一个快速、交互式的基因组浏览器,用于在基因组框架下浏览大规模高通量测序数据。"转录组学模块 "提供了基因表达(图 1e)和共表达基因网络的搜索和可视化功能。在 "基因表达 "中,用户可以方便地访问一系列基因的表达数据。用户可以自由选择自己喜欢的研究,选择表达单位(每百万转录本或每百万片段),并根据自己的喜好定制热图的配色方案。"工具 "模块包括 "Blast"、"Primer"、"Sequence Fetch"、"转录因子"、"蛋白质相互作用网络 "和 "Profile Inference "等功能。Blast "工具利用不同的数据集进行同源性搜索。引物 "是引物设计工具。序列提取 "可用于从指定区域提取染色体序列。在 "转录因子 "中,我们使用 iTAK(Zheng 等人,2016 年)软件识别了蔗糖树种和 Erianthus rufipilus 的转录因子家族和激酶家族,用户可以点击任何转录因子家族或激酶家族的名称,查看该家族包含的所有基因列表,还可以搜索该基因所属的基因家族。在 "蛋白质相互作用网络 "中,用户可以通过基因 ID 搜索特定基因的蛋白质相互作用网络。搜索结果以表格形式呈现,可以 CSV 文件格式保存,也可以可视化为交互式网络图,还可以 SVG 图像格式保存。用户可以在 "Profile Inference "中通过匹配基因 ID、基因名称和蛋白质序列来搜索 Jaspar 数据库中的主题,并下载 meme 格式文件,用于与从基因详细信息页面获得的上游序列进行结合预测(图 1f)。下载 "模块提供染色体数据和注释的下载。总之,我们介绍的 ScDB 包含六个蔗糖物种和 Erianthus rufipilus 的基因组组装、注释和转录组数据。为了提高数据获取和分析的可用性和效率,ScDB 还提供了一套方便的搜索、分析和可视化模块。未来,ScDB 还将继续更新,增加更多的甘蔗基因组数据和其他层面的 omics 数据(蛋白质组学、表观遗传学、ncRNA 等),以及更多的数据分析工具,以确保它成为一个功能强大、可持续发展的甘蔗数据收集和分析平台。
{"title":"ScDB: A comprehensive database dedicated to Saccharum, facilitating functional genomics and molecular biology studies in sugarcane","authors":"Siyuan Chen, Xiaoxi Feng, Zhe Zhang, Xiuting Hua, Qing Zhang, Chengjie Chen, Jiawei Li, Xiaojing Liu, Chenyu Weng, Baoshan Chen, Muqing Zhang, Wei Yao, Haibao Tang, Ray Ming, Jisen Zhang","doi":"10.1111/pbi.14457","DOIUrl":"https://doi.org/10.1111/pbi.14457","url":null,"abstract":"&lt;p&gt;Sugarcane is the world's important sugar crop, serving as the primary feedstock for the production of sugar and biofuels. Modern sugarcane cultivar resulting from deliberate interspecific hybridization between &lt;i&gt;Saccharum officinarum&lt;/i&gt; and &lt;i&gt;Saccharum spontaneum&lt;/i&gt;. The utilization of wild resources is essential for the development of high-quality sugarcane varieties, and the genomic and omics analyses of these materials provide valuable insights into their molecular mechanisms. However, the complexity of the sugarcane genome has historically presented challenges for researchers. In our previous studies, we led the efforts to assemble the genome of a haploid &lt;i&gt;S. spontaneum&lt;/i&gt; AP85-441 (Zhang &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2018&lt;/span&gt;) and pioneered the approach to tackle a complex autopolyploid at allele-level resolution. We then traced the origins of &lt;i&gt;Saccharum&lt;/i&gt; and mapped the chromosomal evolution in &lt;i&gt;S. spontaneum&lt;/i&gt; Np-X (Zhang &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2022&lt;/span&gt;). Additionally, we successfully assembled a complete, gap-free diploid &lt;i&gt;Erianthus rufipilus&lt;/i&gt; YN2009-3 genome, shedding light on the genomic footprints of evolution in the highly polyploid &lt;i&gt;Saccharum&lt;/i&gt; (Wang &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;). Meanwhile, we are proud to present the genome of &lt;i&gt;Saccharum&lt;/i&gt; hybrid XTT22, considered the most significant achievement in sugarcane research. Our work is currently accepted and will soon be online (Zhang &lt;i&gt;et al&lt;/i&gt;., &lt;i&gt;Nature Genetics&lt;/i&gt;). In addition, other teams have similarly worked on genome research in the Sugarcane. This year, the genomes of modern sugarcane R570 and ZZ1 were published by A. D'Hont's team and Muqing Zhang's team, respectively (Bao &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2024&lt;/span&gt;; Healey &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2024&lt;/span&gt;).&lt;/p&gt;\u0000&lt;p&gt;Building upon this foundation, we are pleased to introduce ScDB (&lt;i&gt;Saccharum&lt;/i&gt; genomic database, https://sugarcane.gxu.edu.cn/scdb), the first user-friendly multi-omics database for six &lt;i&gt;Saccharum&lt;/i&gt; species (AP85-441, Np-X, LA-Purple, XTT22, R570, ZZ1) and a &lt;i&gt;Erianthus rufipilus&lt;/i&gt; (YN2009-3). ScDB currently comprises a total of 38.91 Gb of genomic assembly sequences, encompassing 1 366 608 genes. Additionally, ScDB includes 24 transcriptome projects involving over 300 sugarcane samples and approximately 2.5 TB of data. Furthermore, 12 online functions that are frequently used by users have been developed to facilitate the use of ScDB, include ‘Gene Search’, ‘Orthologous Gene Search’, ‘Synteny Block’, ‘Genome Browser’, ‘Gene Expression’, ‘Co-expression Network’, ‘Blast’, ‘Primer’, ‘Sequence Fetch’, ‘Transcription Factors’, ‘Protein Interaction Network’, ‘Profile Inference’ (Figure 1a).&lt;/p&gt;\u0000&lt;figure&gt;&lt;picture&gt;\u0000&lt;source media=\"(min-width: 1650px)\" srcset=\"/cms/asset/af07cd8d-7988-4899-b1c8-cd096eee0bb1/pbi14457-fig-0001-m.jpg\"/&gt;&lt;img alt=\"Details are in the caption following the image\" data-lg-src=\"/cms/asset/af07cd8d-7988-4899-b1c8-cd096eee0bb1/pbi14457-fig-0001-m.jpg\" loading=\"lazy\" src","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"7 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AaMYC3 bridges the regulation of glandular trichome density and artemisinin biosynthesis in Artemisia annua. AaMYC3 是调控黄花蒿腺毛密度和青蒿素生物合成的桥梁。
IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-27 DOI: 10.1111/pbi.14449
Mingyuan Yuan, Yinguo Sheng, Jingjing Bao, Wenkai Wu, Guibin Nie, Lingjian Wang, Junfeng Cao

Artemisinin, the well-known natural product for treating malaria, is biosynthesised and stored in the glandular-secreting trichomes (GSTs) of Artemisia annua. While numerous efforts have clarified artemisinin metabolism and regulation, the molecular association between artemisinin biosynthesis and GST development remains elusive. Here, we identified AaMYC3, a bHLH transcription factor of A. annua, induced by jasmonic acid (JA), which simultaneously regulates GST density and artemisinin biosynthesis. Overexpressing AaMYC3 led to a substantial increase in GST density and artemisinin accumulation. Conversely, in the RNAi-AaMYC3 lines, both GST density and artemisinin content were markedly reduced. Through RNA-seq and analyses conducted both in vivo and in vitro, AaMYC3 not only directly activates AaHD1 transcription, initiating GST development, but also up-regulates the expression of artemisinin biosynthetic genes, including CYP71AV1 and ALDH1, thereby promoting artemisinin production. Furthermore, AaMYC3 acts as a co-activator, interacting with AabHLH1 and AabHLH113, to trigger the transcription of two crucial enzymes in the artemisinin biosynthesis pathway, ADS and DBR2, ultimately boosting yield. Our findings highlight a critical connection between GST initiation and artemisinin biosynthesis in A. annua, providing a new target for molecular design breeding of traditional Chinese medicine.

青蒿素是众所周知的治疗疟疾的天然产物,它是在黄花蒿的腺分泌毛状体(GST)中生物合成和储存的。尽管许多研究已阐明了青蒿素的代谢和调控,但青蒿素的生物合成与 GST 的发育之间的分子关联仍然难以捉摸。在这里,我们发现了 AaMYC3,它是青蒿的一种 bHLH 转录因子,由茉莉酸(JA)诱导,同时调节 GST 密度和青蒿素的生物合成。过量表达 AaMYC3 会导致 GST 密度和青蒿素积累大幅增加。相反,在 RNAi-AaMYC3 株系中,GST 密度和青蒿素含量都明显降低。通过体内和体外的 RNA-seq 和分析,AaMYC3 不仅能直接激活 AaHD1 的转录,启动 GST 的发育,还能上调青蒿素生物合成基因(包括 CYP71AV1 和 ALDH1)的表达,从而促进青蒿素的产生。此外,AaMYC3 作为共激活因子,与 AabHLH1 和 AabHLH113 相互作用,触发青蒿素生物合成途径中两个关键酶 ADS 和 DBR2 的转录,最终提高产量。我们的研究结果突显了 GST 启动与青蒿素生物合成之间的关键联系,为中药分子设计育种提供了一个新靶标。
{"title":"AaMYC3 bridges the regulation of glandular trichome density and artemisinin biosynthesis in Artemisia annua.","authors":"Mingyuan Yuan, Yinguo Sheng, Jingjing Bao, Wenkai Wu, Guibin Nie, Lingjian Wang, Junfeng Cao","doi":"10.1111/pbi.14449","DOIUrl":"https://doi.org/10.1111/pbi.14449","url":null,"abstract":"<p><p>Artemisinin, the well-known natural product for treating malaria, is biosynthesised and stored in the glandular-secreting trichomes (GSTs) of Artemisia annua. While numerous efforts have clarified artemisinin metabolism and regulation, the molecular association between artemisinin biosynthesis and GST development remains elusive. Here, we identified AaMYC3, a bHLH transcription factor of A. annua, induced by jasmonic acid (JA), which simultaneously regulates GST density and artemisinin biosynthesis. Overexpressing AaMYC3 led to a substantial increase in GST density and artemisinin accumulation. Conversely, in the RNAi-AaMYC3 lines, both GST density and artemisinin content were markedly reduced. Through RNA-seq and analyses conducted both in vivo and in vitro, AaMYC3 not only directly activates AaHD1 transcription, initiating GST development, but also up-regulates the expression of artemisinin biosynthetic genes, including CYP71AV1 and ALDH1, thereby promoting artemisinin production. Furthermore, AaMYC3 acts as a co-activator, interacting with AabHLH1 and AabHLH113, to trigger the transcription of two crucial enzymes in the artemisinin biosynthesis pathway, ADS and DBR2, ultimately boosting yield. Our findings highlight a critical connection between GST initiation and artemisinin biosynthesis in A. annua, providing a new target for molecular design breeding of traditional Chinese medicine.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural variation in the Tn1a promoter regulates tillering in rice. Tn1a 启动子的自然变异调控水稻分蘖。
IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-27 DOI: 10.1111/pbi.14453
Tao Yang, Xiaoqian Ma, Quan Zhang, Lin Li, Rui Zhu, An Zeng, Wanying Liu, Haixia Liu, Yulong Wang, Shichen Han, Najeeb Ullah Khan, Jinjie Li, Zichao Li, Zhanying Zhang, Hongliang Zhang

Rice tillering is an important agronomic trait that influences plant architecture and ultimately affects yield. This can be genetically improved by mining favourable variations in genes associated with tillering. Based on a previous study on dynamic tiller number, we cloned the gene Tiller number 1a (Tn1a), which encodes a membrane-localised protein containing the C2 domain that negatively regulates tillering in rice. A 272 bp insertion/deletion at 387 bp upstream of the start codon in the Tn1a promoter confers a differential transcriptional response and results in a change in tiller number. Moreover, the TCP family transcription factors Tb2 and TCP21 repress the Tn1a promoter activity by binding to the TCP recognition site within the 272 bp indel. In addition, we identified that Tn1a may affect the intracellular K+ content by interacting with a cation-chloride cotransporter (OsCCC1), thereby affecting the expression of downstream tillering-related genes. The Tn1a+272 bp allele, associated with high tillering, might have been preferably preserved in rice varieties in potassium-poor regions during domestication. The discovery of Tn1a is of great significance for further elucidating the genetic basis of tillering characteristics in rice and provides a new and favourable allele for promoting the geographic adaptation of rice to soil potassium.

水稻分蘖是一个重要的农艺性状,会影响植株结构并最终影响产量。通过挖掘与分蘖相关的基因中的有利变异,可以从基因上改善这一性状。基于之前对动态分蘖数的研究,我们克隆了分蘖数 1a(Tn1a)基因,该基因编码一种含有 C2 结构域的膜定位蛋白,对水稻的分蘖具有负调控作用。在 Tn1a 启动子起始密码子上游 387 bp 处插入/缺失 272 bp 可产生不同的转录反应,并导致分蘖数的变化。此外,TCP 家族转录因子 Tb2 和 TCP21 通过与 272 bp 缺口内的 TCP 识别位点结合,抑制了 Tn1a 启动子的活性。此外,我们还发现 Tn1a 可能通过与阳离子-氯化物共转运体(OsCCC1)相互作用来影响细胞内 K+ 的含量,从而影响下游分蘖相关基因的表达。与高分蘖相关的 Tn1a+272 bp 等位基因可能在驯化过程中优先保留在贫钾地区的水稻品种中。Tn1a 的发现对进一步阐明水稻分蘖特性的遗传基础具有重要意义,并为促进水稻对土壤钾的地理适应提供了一个新的有利等位基因。
{"title":"Natural variation in the Tn1a promoter regulates tillering in rice.","authors":"Tao Yang, Xiaoqian Ma, Quan Zhang, Lin Li, Rui Zhu, An Zeng, Wanying Liu, Haixia Liu, Yulong Wang, Shichen Han, Najeeb Ullah Khan, Jinjie Li, Zichao Li, Zhanying Zhang, Hongliang Zhang","doi":"10.1111/pbi.14453","DOIUrl":"https://doi.org/10.1111/pbi.14453","url":null,"abstract":"<p><p>Rice tillering is an important agronomic trait that influences plant architecture and ultimately affects yield. This can be genetically improved by mining favourable variations in genes associated with tillering. Based on a previous study on dynamic tiller number, we cloned the gene Tiller number 1a (Tn1a), which encodes a membrane-localised protein containing the C2 domain that negatively regulates tillering in rice. A 272 bp insertion/deletion at 387 bp upstream of the start codon in the Tn1a promoter confers a differential transcriptional response and results in a change in tiller number. Moreover, the TCP family transcription factors Tb2 and TCP21 repress the Tn1a promoter activity by binding to the TCP recognition site within the 272 bp indel. In addition, we identified that Tn1a may affect the intracellular K<sup>+</sup> content by interacting with a cation-chloride cotransporter (OsCCC1), thereby affecting the expression of downstream tillering-related genes. The Tn1a<sup>+272 bp</sup> allele, associated with high tillering, might have been preferably preserved in rice varieties in potassium-poor regions during domestication. The discovery of Tn1a is of great significance for further elucidating the genetic basis of tillering characteristics in rice and provides a new and favourable allele for promoting the geographic adaptation of rice to soil potassium.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SUBSTANDARD STARCH GRAIN7 regulates starch grain size and endosperm development in rice. 标准淀粉粒7调节水稻的淀粉粒大小和胚乳发育。
IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-24 DOI: 10.1111/pbi.14444
Haigang Yan, Yulong Ren, Binglei Zhang, Jie Jin, Feilong Du, Zhuangzhuang Shan, Yushuang Fu, Yun Zhu, Xin Wang, Changyuan Zhu, Yue Cai, Jie Zhang, Fan Wang, Xiao Zhang, Rongqi Wang, Yongxiang Wang, Hancong Xu, Ling Jiang, Xi Liu, Shanshan Zhu, Qibing Lin, Cailin Lei, Zhijun Cheng, Yihua Wang, Wenwei Zhang, Jianmin Wan

Starch is synthesized as insoluble, semicrystalline particles within plant chloroplast and amyloplast, which are referred to as starch grains (SGs). The size and morphology of SGs in the cereal endosperm are diverse and species-specific, representing a key determinant of the suitability of starch for industrial applications. However, the molecular mechanisms modulating SG size in cereal endosperm remain elusive. Here, we functionally characterized the rice (Oryza sativa) mutant substandard starch grain7 (ssg7), which exhibits enlarged SGs and defective endosperm development. SSG7 encodes a plant-specific DUF1001 domain-containing protein homologous to Arabidopsis (Arabidopsis thaliana) CRUMPLED LEAF (AtCRL). SSG7 localizes to the amyloplast membrane in developing endosperm. Several lines of evidence suggest that SSG7 functions together with SSG4 and SSG6, known as two regulators essential for SG development, to control SG size, by interacting with translocon-associated components, which unveils a molecular link between SG development and protein import. Genetically, SSG7 acts synergistically with SSG4 and appears to be functional redundancy with SSG6 in modulating SG size and endosperm development. Collectively, our findings uncover a multimeric functional protein complex involved in SG development in rice. SSG7 represents a promising target gene for the biotechnological modification of SG size, particularly for breeding programs aimed at improving starch quality.

淀粉是在植物叶绿体和淀粉体中合成的不溶性半结晶颗粒,被称为淀粉粒(SGs)。谷物胚乳中淀粉粒的大小和形态多种多样,具有物种特异性,是决定淀粉是否适合工业应用的关键因素。然而,谷物胚乳中调节 SG 大小的分子机制仍然难以捉摸。在这里,我们对水稻(Oryza sativa)突变体 substandard starch grain7(ssg7)进行了功能鉴定,该突变体表现出增大的 SG 和胚乳发育缺陷。SSG7 编码一种植物特异的含 DUF1001 结构域的蛋白质,与拟南芥(Arabidopsis thaliana)的 CRUMPLED LEAF(AtCRL)同源。SSG7 定位于发育中胚乳的淀粉膜上。一些证据表明,SSG7 与 SSG4 和 SSG6(SSG4 和 SSG6 是对 SG 发育至关重要的两个调控因子)一起,通过与易位相关组分相互作用来控制 SG 的大小,这揭示了 SG 发育与蛋白质导入之间的分子联系。从遗传学角度看,SSG7 与 SSG4 起着协同作用,在调节 SG 大小和胚乳发育方面似乎与 SSG6 存在功能冗余。总之,我们的发现揭示了一个参与水稻 SG 发育的多聚功能蛋白复合物。SSG7 是生物技术改造 SG 大小的一个很有前景的目标基因,尤其适用于旨在提高淀粉质量的育种计划。
{"title":"SUBSTANDARD STARCH GRAIN7 regulates starch grain size and endosperm development in rice.","authors":"Haigang Yan, Yulong Ren, Binglei Zhang, Jie Jin, Feilong Du, Zhuangzhuang Shan, Yushuang Fu, Yun Zhu, Xin Wang, Changyuan Zhu, Yue Cai, Jie Zhang, Fan Wang, Xiao Zhang, Rongqi Wang, Yongxiang Wang, Hancong Xu, Ling Jiang, Xi Liu, Shanshan Zhu, Qibing Lin, Cailin Lei, Zhijun Cheng, Yihua Wang, Wenwei Zhang, Jianmin Wan","doi":"10.1111/pbi.14444","DOIUrl":"https://doi.org/10.1111/pbi.14444","url":null,"abstract":"<p><p>Starch is synthesized as insoluble, semicrystalline particles within plant chloroplast and amyloplast, which are referred to as starch grains (SGs). The size and morphology of SGs in the cereal endosperm are diverse and species-specific, representing a key determinant of the suitability of starch for industrial applications. However, the molecular mechanisms modulating SG size in cereal endosperm remain elusive. Here, we functionally characterized the rice (Oryza sativa) mutant substandard starch grain7 (ssg7), which exhibits enlarged SGs and defective endosperm development. SSG7 encodes a plant-specific DUF1001 domain-containing protein homologous to Arabidopsis (Arabidopsis thaliana) CRUMPLED LEAF (AtCRL). SSG7 localizes to the amyloplast membrane in developing endosperm. Several lines of evidence suggest that SSG7 functions together with SSG4 and SSG6, known as two regulators essential for SG development, to control SG size, by interacting with translocon-associated components, which unveils a molecular link between SG development and protein import. Genetically, SSG7 acts synergistically with SSG4 and appears to be functional redundancy with SSG6 in modulating SG size and endosperm development. Collectively, our findings uncover a multimeric functional protein complex involved in SG development in rice. SSG7 represents a promising target gene for the biotechnological modification of SG size, particularly for breeding programs aimed at improving starch quality.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A resource for functional investigation of miRNAs in rice responses to viral infection. 水稻对病毒感染反应中 miRNA 的功能研究资源。
IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-24 DOI: 10.1111/pbi.14455
Baogang Zhang, Xiong Zhang, Wenji Li, Dezhuo Pan, Baining Ma, Xinhui Duan, Chaoyi Dong, Lu Wang, Mingfu Zhao, Shanshan Zhao, Shuai Zhang, Jianguo Wu
{"title":"A resource for functional investigation of miRNAs in rice responses to viral infection.","authors":"Baogang Zhang, Xiong Zhang, Wenji Li, Dezhuo Pan, Baining Ma, Xinhui Duan, Chaoyi Dong, Lu Wang, Mingfu Zhao, Shanshan Zhao, Shuai Zhang, Jianguo Wu","doi":"10.1111/pbi.14455","DOIUrl":"https://doi.org/10.1111/pbi.14455","url":null,"abstract":"","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplex Expression Cassette Assembly: A flexible and versatile method for building complex genetic circuits in conventional vectors. 多重表达盒组装:在传统载体中构建复杂基因回路的灵活多变方法。
IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-23 DOI: 10.1111/pbi.14454
Xun Jiang, Zhuoxiang Zhang, Xiuming Wu, Changmei Li, Xuan Sun, Yiting Li, Aixia Chang, Aiguo Yang, Changqing Yang

The manipulation of multiple transcription units for simultaneous and coordinated expression is not only key to building complex genetic circuits to accomplish diverse functions in synthetic biology, but is also important in crop breeding for significantly improved productivity and overall performance. However, building constructs with multiple independent transcription units for fine-tuned and coordinated regulation is complicated and time-consuming. Here, we introduce the Multiplex Expression Cassette Assembly (MECA) method, which modifies canonical vectors compatible with Golden Gate Assembly, and then uses them to produce multi-cassette constructs. By embedding the junction syntax in primers that are used to amplify functional elements, MECA is able to make complex constructs using only one intermediate vector and one destination vector via two rounds of one-pot Golden Gate assembly reactions, without the need for dedicated vectors and a coherent library of standardized modules. As a proof-of-concept, we modified eukaryotic and prokaryotic expression vectors to generate constructs for transient expression of green fluorescent protein and β-glucuronidase in Nicotiana benthamiana, genome editing to block monoterpene metabolism in tomato glandular trichomes, production of betanin in tobacco and synthesis of β-carotene in Escherichia coli. Additionally, we engineered the stable production of thymol and carvacrol, bioactive compounds from Lamiaceae family plants, in glandular trichomes of tobacco. These results demonstrate that MECA is a flexible, efficient and versatile method for building complex genetic circuits, which will not only play a critical role in plant synthetic biology, but also facilitate improving agronomic traits and pyramiding traits for the development of next-generation elite crops.

操纵多个转录单元进行同步协调表达,不仅是构建复杂遗传回路以实现合成生物学中各种功能的关键,而且对于作物育种以显著提高生产力和整体性能也非常重要。然而,构建具有多个独立转录单元的构建体以进行微调和协调调控既复杂又耗时。在这里,我们介绍了多重表达盒组装(MECA)方法,它可以修改与金门组装兼容的标准载体,然后利用它们来生产多盒构建体。通过在用于扩增功能元件的引物中嵌入连接语法,MECA 能够通过两轮一锅金门组装反应,只用一个中间载体和一个目的载体就能制造出复杂的构建体,而不需要专用载体和连贯的标准化模块库。作为概念验证,我们修改了真核生物和原核生物表达载体,生成了在烟草中瞬时表达绿色荧光蛋白和β-葡糖醛酸酶的构建体、阻断番茄腺毛中单萜烯代谢的基因组编辑、烟草中甜菜宁的生产以及大肠杆菌中β-胡萝卜素的合成。此外,我们还在烟草腺毛中设计了百里酚和香芹酚的稳定生产,这两种化合物是来自腊梅科植物的生物活性化合物。这些结果表明,MECA 是构建复杂遗传回路的一种灵活、高效和多用途的方法,它不仅将在植物合成生物学中发挥关键作用,还将促进农艺性状的改良和性状金字塔化,从而开发出下一代精英作物。
{"title":"Multiplex Expression Cassette Assembly: A flexible and versatile method for building complex genetic circuits in conventional vectors.","authors":"Xun Jiang, Zhuoxiang Zhang, Xiuming Wu, Changmei Li, Xuan Sun, Yiting Li, Aixia Chang, Aiguo Yang, Changqing Yang","doi":"10.1111/pbi.14454","DOIUrl":"https://doi.org/10.1111/pbi.14454","url":null,"abstract":"<p><p>The manipulation of multiple transcription units for simultaneous and coordinated expression is not only key to building complex genetic circuits to accomplish diverse functions in synthetic biology, but is also important in crop breeding for significantly improved productivity and overall performance. However, building constructs with multiple independent transcription units for fine-tuned and coordinated regulation is complicated and time-consuming. Here, we introduce the Multiplex Expression Cassette Assembly (MECA) method, which modifies canonical vectors compatible with Golden Gate Assembly, and then uses them to produce multi-cassette constructs. By embedding the junction syntax in primers that are used to amplify functional elements, MECA is able to make complex constructs using only one intermediate vector and one destination vector via two rounds of one-pot Golden Gate assembly reactions, without the need for dedicated vectors and a coherent library of standardized modules. As a proof-of-concept, we modified eukaryotic and prokaryotic expression vectors to generate constructs for transient expression of green fluorescent protein and β-glucuronidase in Nicotiana benthamiana, genome editing to block monoterpene metabolism in tomato glandular trichomes, production of betanin in tobacco and synthesis of β-carotene in Escherichia coli. Additionally, we engineered the stable production of thymol and carvacrol, bioactive compounds from Lamiaceae family plants, in glandular trichomes of tobacco. These results demonstrate that MECA is a flexible, efficient and versatile method for building complex genetic circuits, which will not only play a critical role in plant synthetic biology, but also facilitate improving agronomic traits and pyramiding traits for the development of next-generation elite crops.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MdWRKY31-MdNAC7 regulatory network: orchestrating fruit softening by modulating cell wall-modifying enzyme MdXTH2 in response to ethylene signalling. MdWRKY31-MdNAC7调控网络:通过调节细胞壁修饰酶MdXTH2响应乙烯信号来协调果实软化。
IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-23 DOI: 10.1111/pbi.14445
Jia-Hui Wang, Quan Sun, Chang-Ning Ma, Meng-Meng Wei, Chu-Kun Wang, Yu-Wen Zhao, Wen-Yan Wang, Da-Gang Hu

Softening in fruit adversely impacts their edible quality and commercial value, leading to substantial economic losses during fruit ripening, long-term storage, long-distance transportation, and marketing. As the apple fruit demonstrates climacteric respiration, its firmness decreases with increasing ethylene release rate during fruit ripening and postharvest storage. However, the molecular mechanisms underlying ethylene-mediated regulation of fruit softening in apple remain poorly understood. In this study, we identified a WRKY transcription factor (TF) MdWRKY31, which is repressed by ethylene treatment. Using transgenic approaches, we found that overexpression of MdWRKY31 delays softening by negatively regulating xyloglucan endotransglucosylase/hydrolases 2 (MdXTH2) expression. Yeast one-hybrid (Y1H), electrophoretic mobility shift (EMSA), and dual-luciferase assays further suggested that MdWRKY31 directly binds to the MdXTH2 promoter via a W-box element and represses its transcription. Transient overexpression of ethylene-induced MdNAC7, a NAC TF, in apple fruit promoted softening by decreasing cellulose content and increasing water-soluble pectin content in fruit. MdNAC7 interacted with MdWRKY31 to form a protein complex, and their interaction decreased the transcriptional repression of MdWRKY31 on MdXTH2. Furthermore, MdNAC7 does not directly regulate MdXTH2 expression, but the protein complex formed with MdWRKY31 hinders MdWRKY31 from binding to the promoter of MdXTH2. Our findings underscore the significance of the regulatory complex NAC7-WRKY31 in ethylene-responsive signalling, connecting the ethylene signal to XTH2 expression to promote fruit softening. This sheds light on the intricate mechanisms governing apple fruit firmness and opens avenues for enhancing fruit quality and reducing economic losses associated with softening.

果实变软会对其食用品质和商业价值产生不利影响,从而在果实成熟、长期贮藏、长途运输和销售过程中造成巨大的经济损失。苹果果实在成熟和采后贮藏过程中,由于表现出气候性呼吸作用,其硬度会随着乙烯释放率的增加而降低。然而,人们对乙烯介导的苹果果实软化调控的分子机制仍然知之甚少。在这项研究中,我们发现了一种 WRKY 转录因子(TF)MdWRKY31,它受到乙烯处理的抑制。利用转基因方法,我们发现过表达 MdWRKY31 可通过负调控木聚糖内转糖基酶/水解酶 2 (MdXTH2) 的表达来延迟软化。酵母单杂交(Y1H)、电泳迁移(EMSA)和双荧光素酶测定进一步表明,MdWRKY31通过W-box元件直接与MdXTH2启动子结合并抑制其转录。在苹果果实中瞬时过表达乙烯诱导的 MdNAC7(一种 NAC TF)可降低果实中纤维素含量,增加水溶性果胶含量,从而促进果实软化。MdNAC7 与 MdWRKY31 相互作用形成蛋白复合物,它们的相互作用降低了 MdWRKY31 对 MdXTH2 的转录抑制作用。此外,MdNAC7 并不直接调控 MdXTH2 的表达,但与 MdWRKY31 形成的蛋白复合物阻碍了 MdWRKY31 与 MdXTH2 启动子的结合。我们的发现强调了 NAC7-WRKY31 调节复合物在乙烯响应信号中的重要作用,它将乙烯信号与 XTH2 表达联系起来,促进果实软化。这揭示了影响苹果果实硬度的复杂机制,为提高果实质量和减少软化带来的经济损失开辟了途径。
{"title":"MdWRKY31-MdNAC7 regulatory network: orchestrating fruit softening by modulating cell wall-modifying enzyme MdXTH2 in response to ethylene signalling.","authors":"Jia-Hui Wang, Quan Sun, Chang-Ning Ma, Meng-Meng Wei, Chu-Kun Wang, Yu-Wen Zhao, Wen-Yan Wang, Da-Gang Hu","doi":"10.1111/pbi.14445","DOIUrl":"https://doi.org/10.1111/pbi.14445","url":null,"abstract":"<p><p>Softening in fruit adversely impacts their edible quality and commercial value, leading to substantial economic losses during fruit ripening, long-term storage, long-distance transportation, and marketing. As the apple fruit demonstrates climacteric respiration, its firmness decreases with increasing ethylene release rate during fruit ripening and postharvest storage. However, the molecular mechanisms underlying ethylene-mediated regulation of fruit softening in apple remain poorly understood. In this study, we identified a WRKY transcription factor (TF) MdWRKY31, which is repressed by ethylene treatment. Using transgenic approaches, we found that overexpression of MdWRKY31 delays softening by negatively regulating xyloglucan endotransglucosylase/hydrolases 2 (MdXTH2) expression. Yeast one-hybrid (Y1H), electrophoretic mobility shift (EMSA), and dual-luciferase assays further suggested that MdWRKY31 directly binds to the MdXTH2 promoter via a W-box element and represses its transcription. Transient overexpression of ethylene-induced MdNAC7, a NAC TF, in apple fruit promoted softening by decreasing cellulose content and increasing water-soluble pectin content in fruit. MdNAC7 interacted with MdWRKY31 to form a protein complex, and their interaction decreased the transcriptional repression of MdWRKY31 on MdXTH2. Furthermore, MdNAC7 does not directly regulate MdXTH2 expression, but the protein complex formed with MdWRKY31 hinders MdWRKY31 from binding to the promoter of MdXTH2. Our findings underscore the significance of the regulatory complex NAC7-WRKY31 in ethylene-responsive signalling, connecting the ethylene signal to XTH2 expression to promote fruit softening. This sheds light on the intricate mechanisms governing apple fruit firmness and opens avenues for enhancing fruit quality and reducing economic losses associated with softening.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DEAD-box RNA helicase RH20 positively regulates RNAi-based antiviral immunity in plants by associating with SGS3/RDR6 bodies. DEAD-box RNA 螺旋酶 RH20 通过与 SGS3/RDR6 体结合,积极调控植物中基于 RNAi 的抗病毒免疫。
IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-21 DOI: 10.1111/pbi.14448
Zhiyan Wen, Rujian Hu, Qinglin Pi, Dingliang Zhang, Jiangning Duan, Zhen Li, Qian Li, Xiaoyun Zhao, Meng Yang, Xiaofei Zhao, Deshui Liu, Zhen Su, Dawei Li, Yongliang Zhang

RNA silencing plays a crucial role in defending against viral infections in diverse eukaryotic hosts. Despite extensive studies on core components of the antiviral RNAi pathway such as DCLs, AGOs and RDRs proteins, host factors involved in antiviral RNAi remain incompletely understood. In this study, we employed the proximity labelling approach to identify the host factors required for antiviral RNAi in Nicotiana benthamiana. Using the barley stripe mosaic virus (BSMV)-encoded γb, a viral suppressor of RNA silencing (VSR), as the bait protein, we identified the DEAD-box RNA helicase RH20, a broadly conserved protein in plants and animals with a homologous human protein known as DDX5. We demonstrated the interaction between RH20 and BSMV γb. Knockdown or knockout of RH20 attenuates the accumulation of viral small interfering RNAs, leading to increased susceptibility to BSMV, while overexpression of RH20 enhances resistance to BSMV, a process requiring the cytoplasmic localization and RNA-binding activity of RH20. In addition to BSMV, RH20 also negatively regulates the infection of several other positive-sense RNA viruses, suggesting the broad-spectrum antiviral activity of RH20. Mechanistic analysis revealed the colocalization and interaction of RH20 with SGS3/RDR6, and disruption of either SGS3 or RDR6 undermines the antiviral function of RH20, suggesting RH20 as a new component of the SGS3/RDR6 bodies. As a counter-defence, BSMV γb VSR subverts the RH20-mediated antiviral defence by interfering with the RH20-SGS3 interaction. Our results uncover RH20 as a new positive regulator of antiviral RNAi and provide new potential targets for controlling plant viral diseases.

RNA 沉默在多种真核生物宿主抵御病毒感染的过程中发挥着至关重要的作用。尽管对抗病毒 RNAi 途径的核心成分(如 DCLs、AGOs 和 RDRs 蛋白)进行了广泛的研究,但对参与抗病毒 RNAi 的宿主因子仍不甚了解。在这项研究中,我们采用了近距离标记法来确定烟草属植物抗病毒 RNAi 所需的宿主因子。以大麦条纹花叶病毒(BSMV)编码的γb(一种病毒性 RNA 沉默抑制因子(VSR))为诱饵蛋白,我们鉴定了 DEAD-box RNA 螺旋酶 RH20,这是一种在植物和动物中广泛保守的蛋白,与人类蛋白 DDX5 同源。我们证明了 RH20 与 BSMV γb 之间的相互作用。RH20的基因敲除或基因敲除会减少病毒小干扰RNA的积累,从而导致对BSMV的易感性增加,而RH20的过表达则会增强对BSMV的抗性,这一过程需要RH20的细胞质定位和RNA结合活性。除 BSMV 外,RH20 还能负向调节其他几种正义 RNA 病毒的感染,这表明 RH20 具有广谱抗病毒活性。机理分析表明,RH20与SGS3/RDR6共定位并相互作用,破坏SGS3或RDR6都会削弱RH20的抗病毒功能,这表明RH20是SGS3/RDR6机构的新组成部分。作为一种反防御手段,BSMV γb VSR 通过干扰 RH20-SGS3 的相互作用来颠覆 RH20 介导的抗病毒防御。我们的研究结果发现 RH20 是抗病毒 RNAi 的一个新的正调控因子,为控制植物病毒病提供了新的潜在靶标。
{"title":"DEAD-box RNA helicase RH20 positively regulates RNAi-based antiviral immunity in plants by associating with SGS3/RDR6 bodies.","authors":"Zhiyan Wen, Rujian Hu, Qinglin Pi, Dingliang Zhang, Jiangning Duan, Zhen Li, Qian Li, Xiaoyun Zhao, Meng Yang, Xiaofei Zhao, Deshui Liu, Zhen Su, Dawei Li, Yongliang Zhang","doi":"10.1111/pbi.14448","DOIUrl":"https://doi.org/10.1111/pbi.14448","url":null,"abstract":"<p><p>RNA silencing plays a crucial role in defending against viral infections in diverse eukaryotic hosts. Despite extensive studies on core components of the antiviral RNAi pathway such as DCLs, AGOs and RDRs proteins, host factors involved in antiviral RNAi remain incompletely understood. In this study, we employed the proximity labelling approach to identify the host factors required for antiviral RNAi in Nicotiana benthamiana. Using the barley stripe mosaic virus (BSMV)-encoded γb, a viral suppressor of RNA silencing (VSR), as the bait protein, we identified the DEAD-box RNA helicase RH20, a broadly conserved protein in plants and animals with a homologous human protein known as DDX5. We demonstrated the interaction between RH20 and BSMV γb. Knockdown or knockout of RH20 attenuates the accumulation of viral small interfering RNAs, leading to increased susceptibility to BSMV, while overexpression of RH20 enhances resistance to BSMV, a process requiring the cytoplasmic localization and RNA-binding activity of RH20. In addition to BSMV, RH20 also negatively regulates the infection of several other positive-sense RNA viruses, suggesting the broad-spectrum antiviral activity of RH20. Mechanistic analysis revealed the colocalization and interaction of RH20 with SGS3/RDR6, and disruption of either SGS3 or RDR6 undermines the antiviral function of RH20, suggesting RH20 as a new component of the SGS3/RDR6 bodies. As a counter-defence, BSMV γb VSR subverts the RH20-mediated antiviral defence by interfering with the RH20-SGS3 interaction. Our results uncover RH20 as a new positive regulator of antiviral RNAi and provide new potential targets for controlling plant viral diseases.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142015819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editing and genome-wide analysis upstream open reading frames contributes to enhancing salt tolerance in tomato. 编辑和全基因组分析上游开放阅读框有助于提高番茄的耐盐性。
IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-20 DOI: 10.1111/pbi.14450
Chunping Jia, Juan Wang, Bin Guo, Tao Yang, Haitao Yang, Baike Wang, Qinghui Yu

The salinization of soil constitutes a substantial hindrance to the advancement of sustainable agriculture. Our research seeks to elucidate the role of a Rab GTPase-activating protein (RabGAP) family member, SlRabGAP22, in salt tolerance and its translational regulation under salt stress in tomatoes, employing gene-editing techniques and ribosome profiling methodologies. Findings demonstrate that SlRabGAP22 acts as a positive regulator of tomato salt tolerance, with four predicted upstream open reading frames (uORFs) classified into three categories. Functional uORFs were found to be negative regulation. Editing these uORFs along with altering their classifications and characteristics mitigated the inhibitory effects on primary ORFs and fine-tuned gene expression. Enhanced tomato salt tolerance was attributed to improved scavenging of reactive oxygen species, reduced toxicity Na+, and diminished osmotic stress effects. Furthermore, we conducted genome-wide analysis of ORFs to lay the foundation for further research on uORFs in tomatoes. In summary, our findings offer novel perspectives and important data for the enhancement of genetic traits via uORF-based strategies and translational regulation against the backdrop of salt stress.

土壤盐碱化严重阻碍了可持续农业的发展。我们的研究试图利用基因编辑技术和核糖体分析方法,阐明Rab GTP酶激活蛋白(RabGAP)家族成员SlRabGAP22在番茄耐盐性中的作用及其在盐胁迫下的翻译调控。研究结果表明,SlRabGAP22是番茄耐盐性的正向调控因子,其四个预测的上游开放阅读框(uORF)可分为三类。功能性 uORF 被发现为负调控。编辑这些 uORFs 并改变其分类和特征可减轻对主 ORFs 的抑制作用,并对基因表达进行微调。番茄耐盐性的增强归因于活性氧清除能力的提高、Na+毒性的降低以及渗透胁迫效应的减弱。此外,我们还对 ORFs 进行了全基因组分析,为进一步研究番茄中的 uORFs 奠定了基础。总之,我们的研究结果为在盐胁迫背景下通过基于uORF的策略和转化调控增强遗传性状提供了新的视角和重要数据。
{"title":"Editing and genome-wide analysis upstream open reading frames contributes to enhancing salt tolerance in tomato.","authors":"Chunping Jia, Juan Wang, Bin Guo, Tao Yang, Haitao Yang, Baike Wang, Qinghui Yu","doi":"10.1111/pbi.14450","DOIUrl":"https://doi.org/10.1111/pbi.14450","url":null,"abstract":"<p><p>The salinization of soil constitutes a substantial hindrance to the advancement of sustainable agriculture. Our research seeks to elucidate the role of a Rab GTPase-activating protein (RabGAP) family member, SlRabGAP22, in salt tolerance and its translational regulation under salt stress in tomatoes, employing gene-editing techniques and ribosome profiling methodologies. Findings demonstrate that SlRabGAP22 acts as a positive regulator of tomato salt tolerance, with four predicted upstream open reading frames (uORFs) classified into three categories. Functional uORFs were found to be negative regulation. Editing these uORFs along with altering their classifications and characteristics mitigated the inhibitory effects on primary ORFs and fine-tuned gene expression. Enhanced tomato salt tolerance was attributed to improved scavenging of reactive oxygen species, reduced toxicity Na<sup>+</sup>, and diminished osmotic stress effects. Furthermore, we conducted genome-wide analysis of ORFs to lay the foundation for further research on uORFs in tomatoes. In summary, our findings offer novel perspectives and important data for the enhancement of genetic traits via uORF-based strategies and translational regulation against the backdrop of salt stress.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142007953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ustilaginoidea virens secreted effector UvSec117 hijacks OsWRKY31-OsAOC module to suppress jasmonic acid-mediated immunity in rice Ustilaginoidea virens分泌效应物UvSec117劫持OsWRKY31-OsAOC模块,抑制水稻茉莉酸介导的免疫力
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-16 DOI: 10.1111/pbi.14452
Yuhang Duan, Guogen Yang, Jintian Tang, Yuan Fang, Hailin Wang, Zhaoyun Wang, Hao Liu, Xiaolin Chen, Junbin Huang, Jing Chen, Qiutao Xu, Lu Zheng, Xiaoyang Chen
<p>Rice false smut (RFS) caused by <i>Ustilaginoidea virens</i> is one of the most important disease in rice (<i>Oryza sativa</i>)-growing regions worldwide. RFS not only causes rice yield losses but also potentially threatens human and animal health by producing cyclopeptide mycotoxins (Sun <i>et al</i>., <span>2020</span>). Introducing genetically encoded resistance is an environmentally friendly, economical approach to controlling plant diseases (Yu <i>et al</i>., <span>2023</span>). However, at present, the varieties and gene resources of resistance to RFS are still extremely scarce, and it is difficult to identify major resistance genes against RFS. Uncovering the functions of the <i>U. virens</i> effectors and molecular mechanism of the rice, <i>U. virens</i> interaction can help to identify molecular probes for discovering disease resistance-related genes (Wang and Kawano, <span>2022</span>).</p><p>In previous studies, we identified UvSec117 as a key virulence effector in <i>U. virens</i>, and found rice transcription factor OsWRKY31 in a screen for proteins that interact with UvSec117 (Chen <i>et al</i>., <span>2022</span>). WRKY transcription factors have many regulatory roles in development and response to biotic/abiotic stresses in plants (Wang <i>et al</i>., <span>2023</span>). However, little is known about the regulatory functions of WRKY genes in the plant resistance to grain-infecting pathogens. In this work, we confirmed interactions between UvSec117 and OsWRKY31 in a directed yeast two-hybrid assay (Figure 1a; Data S1). In a co-immunoprecipitation (Co-IP) assay by rice protoplasts transiently co-expressing <i>OsWRKY31-Flag</i> and <i>UvSec117-GFP</i> constructs, UvSec117 was immunoprecipitated by OsWRKY31 (Figure 1b). In a pull-down assay using recombinant OsWRKY31-GST and UvSec117-His purified from <i>Escherichia coli</i>, OsWRKY31-GST was pulled down by His beads coated with UvSec117-His (Figure 1c). We also validated the interaction between UvSec117 and OsWRKY31 by a luciferase complementation imaging (LCI) assay in <i>N. benthamiana</i> leaves (Figure 1d). When we transiently co-expressed <i>UvSec117-cYFP</i> and <i>OsWRKY31-nYFP</i> constructs in rice protoplasts and performed a bimolecular fluorescence complementation (BiFC) assay, we detected YFP (yellow fluorescent protein) fluorescence in the nucleus (Figure 1e). Collectively, these results suggest that UvSec117 interacts with OsWRKY31 in vivo and in vitro.</p><figure><picture><source media="(min-width: 1650px)" srcset="/cms/asset/d4c5b3f1-b5f9-483a-9cf8-c08a4d98cca1/pbi14452-fig-0001-m.jpg"/><img alt="Details are in the caption following the image" data-lg-src="/cms/asset/d4c5b3f1-b5f9-483a-9cf8-c08a4d98cca1/pbi14452-fig-0001-m.jpg" loading="lazy" src="/cms/asset/a1a629e3-5666-4ef1-8fa8-b53ed8caadaa/pbi14452-fig-0001-m.png" title="Details are in the caption following the image"/></picture><figcaption><div><strong>Figure 1<span style="font-weight:normal"></span></st
由 Ustilaginoidea virens 引起的水稻烟粉虱(RFS)是全球水稻(Oryza sativa)种植区最重要的病害之一。RFS 不仅会造成水稻减产,还会产生环肽霉菌毒素,对人类和动物健康造成潜在威胁(Sun 等人,2020 年)。引入基因编码抗性是控制植物病害的一种环保、经济的方法(Yu 等人,2023 年)。然而,目前对 RFS 的抗性品种和基因资源仍然极为稀缺,很难确定主要的 RFS 抗性基因。在之前的研究中,我们发现 UvSec117 是 U. virens 的关键毒力效应因子,并在筛选与 UvSec117 相互作用的蛋白质时发现了水稻转录因子 OsWRKY31(Chen 等,2022)。WRKY 转录因子在植物的生长发育和对生物/非生物胁迫的响应中起着许多调控作用(Wang 等,2023)。然而,人们对 WRKY 基因在植物抵抗谷物感染病原体中的调控功能知之甚少。在这项工作中,我们在定向酵母双杂交试验中证实了 UvSec117 与 OsWRKY31 之间的相互作用(图 1a;数据 S1)。在通过瞬时共表达 OsWRKY31-Flag 和 UvSec117-GFP 构建物的水稻原生质体进行的共免疫沉淀(Co-IP)试验中,UvSec117 被 OsWRKY31 免疫沉淀(图 1b)。在使用从大肠杆菌纯化的重组 OsWRKY31-GST 和 UvSec117-His 进行的牵引试验中,OsWRKY31-GST 被涂有 UvSec117-His 的 His 珠子牵引(图 1c)。我们还通过荧光素酶互补成像(LCI)实验验证了 UvSec117 和 OsWRKY31 在 N. benthamiana 叶片中的相互作用(图 1d)。当我们在水稻原生质体中瞬时共表达 UvSec117-cYFP 和 OsWRKY31-nYFP 构建体并进行双分子荧光互补(BiFC)检测时,我们在细胞核中检测到了 YFP(黄色荧光蛋白)荧光(图 1e)。总之,这些结果表明,UvSec117 与 OsWRKY31 在体内和体外都有相互作用。图 1在图形浏览器中打开PowerPointUvSec117 劫持 OsWRKY31-OsAOC 模块,抑制水稻茉莉酸介导的免疫。(a) UvSec117 与 OsWRKY31 之间相互作用的酵母双杂交分析。(b)Co-IP 显示 UvSec117 与 OsWRKY31 在体内相互作用。(c) 检测 UvSec117-His 与 OsWRKY31-GST 之间相互作用的 GST 牵引试验。(d) LCI 检测 UvSec117-nLUC 与 OsWRKY31-cLUC 在 N. benthamiana 表皮细胞中的相互作用。(e)UvSec117 与 OsWRKY31 之间相互作用的 BiFC 检测;比例尺,5 μm。(f) 21 dpi 时 NPB、OsWRKY31-OE 和 wrky31 植物对 U. virens HWD-2 的抗性。(g) NPB、OsWRKY31-OE 和 wrky31 植株在 14 dpi 通过剪刀剪切法接种黄单胞菌 oryzae pv. oryzae 菌株 PXO99 后的病害症状和病斑长度;刻度线为 1 厘米。(h) NPB、OsWRKY31-OE 和 wrky31 株系在接种 Magnaporthe oryzae 菌株 ZB25 后 14 dpi 的病害症状和叶片病变面积;比例尺为 1 厘米。(i) NPB、OsWRKY31-OE 和 wrky31 植株在根瘤菌 HG81 侵染后 3 dpi 出现的病害症状和叶片病变;比例尺为 1 厘米。(j) 显示了水稻基因组中的 OsWRKY31 结合位点。(k)利用 MEME 确定的前三个 OsWRKY31 结合基序。(l)OsWRKY31 靶基因的代表性 GO 通路。(m)NPB 和 wrky31-1 植株中 OsAOC 表达的 RT-qPCR 和 ChIP-qPCR。(n) 21 dpi 时 NPB 和 OsAOC 突变体植株对 U. virens HWD-2 的抗性。(o) UvSec117 抑制 OsWRKY31 激活的 OsAOCpro-LUC 转录。OsAOCpro-LUC 单独或与 OsWRKY31 和 UvSec117 一起浸润。(p)酵母单杂交分析表明 OsWRKY31 可与 OsAOC 启动子结合。(q)UvSec117 可抑制 OsWRKY31 的 DNA 结合活性。OsWRKY31-His 与 OsAOC 启动子内的生物素标记探针孵育并进行 EMSA。未标记的探针用作竞争对手(100×)。UvSec117-His 与 OsWRKY31-GST 预孵育以进行 EMSA。(r)NPB 和 wrky31-1、EV 和 HE-1 水稻小穗中的 JA 浓度。植物激素采用液相色谱-串联质谱法进行分析。(s)一个工作模型,说明 UvSec117 如何在 U. virens 感染期间操纵 OsWRKY31 以抑制水稻免疫。数据为平均值 ± SD(n = 3,除非另有说明)。为了探索 OsWRKY31 在抵抗 RFS 真菌或其他水稻病原体中的作用,我们培育了 OsWRKY31 基因敲除突变体植株(wrky31)(图 S1a)和 OsWRKY31 基因高表达转基因水稻品系(OsWRKY31-OE)(图 S1b)。
{"title":"Ustilaginoidea virens secreted effector UvSec117 hijacks OsWRKY31-OsAOC module to suppress jasmonic acid-mediated immunity in rice","authors":"Yuhang Duan, Guogen Yang, Jintian Tang, Yuan Fang, Hailin Wang, Zhaoyun Wang, Hao Liu, Xiaolin Chen, Junbin Huang, Jing Chen, Qiutao Xu, Lu Zheng, Xiaoyang Chen","doi":"10.1111/pbi.14452","DOIUrl":"https://doi.org/10.1111/pbi.14452","url":null,"abstract":"&lt;p&gt;Rice false smut (RFS) caused by &lt;i&gt;Ustilaginoidea virens&lt;/i&gt; is one of the most important disease in rice (&lt;i&gt;Oryza sativa&lt;/i&gt;)-growing regions worldwide. RFS not only causes rice yield losses but also potentially threatens human and animal health by producing cyclopeptide mycotoxins (Sun &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2020&lt;/span&gt;). Introducing genetically encoded resistance is an environmentally friendly, economical approach to controlling plant diseases (Yu &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;). However, at present, the varieties and gene resources of resistance to RFS are still extremely scarce, and it is difficult to identify major resistance genes against RFS. Uncovering the functions of the &lt;i&gt;U. virens&lt;/i&gt; effectors and molecular mechanism of the rice, &lt;i&gt;U. virens&lt;/i&gt; interaction can help to identify molecular probes for discovering disease resistance-related genes (Wang and Kawano, &lt;span&gt;2022&lt;/span&gt;).&lt;/p&gt;\u0000&lt;p&gt;In previous studies, we identified UvSec117 as a key virulence effector in &lt;i&gt;U. virens&lt;/i&gt;, and found rice transcription factor OsWRKY31 in a screen for proteins that interact with UvSec117 (Chen &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2022&lt;/span&gt;). WRKY transcription factors have many regulatory roles in development and response to biotic/abiotic stresses in plants (Wang &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;). However, little is known about the regulatory functions of WRKY genes in the plant resistance to grain-infecting pathogens. In this work, we confirmed interactions between UvSec117 and OsWRKY31 in a directed yeast two-hybrid assay (Figure 1a; Data S1). In a co-immunoprecipitation (Co-IP) assay by rice protoplasts transiently co-expressing &lt;i&gt;OsWRKY31-Flag&lt;/i&gt; and &lt;i&gt;UvSec117-GFP&lt;/i&gt; constructs, UvSec117 was immunoprecipitated by OsWRKY31 (Figure 1b). In a pull-down assay using recombinant OsWRKY31-GST and UvSec117-His purified from &lt;i&gt;Escherichia coli&lt;/i&gt;, OsWRKY31-GST was pulled down by His beads coated with UvSec117-His (Figure 1c). We also validated the interaction between UvSec117 and OsWRKY31 by a luciferase complementation imaging (LCI) assay in &lt;i&gt;N. benthamiana&lt;/i&gt; leaves (Figure 1d). When we transiently co-expressed &lt;i&gt;UvSec117-cYFP&lt;/i&gt; and &lt;i&gt;OsWRKY31-nYFP&lt;/i&gt; constructs in rice protoplasts and performed a bimolecular fluorescence complementation (BiFC) assay, we detected YFP (yellow fluorescent protein) fluorescence in the nucleus (Figure 1e). Collectively, these results suggest that UvSec117 interacts with OsWRKY31 in vivo and in vitro.&lt;/p&gt;\u0000&lt;figure&gt;&lt;picture&gt;\u0000&lt;source media=\"(min-width: 1650px)\" srcset=\"/cms/asset/d4c5b3f1-b5f9-483a-9cf8-c08a4d98cca1/pbi14452-fig-0001-m.jpg\"/&gt;&lt;img alt=\"Details are in the caption following the image\" data-lg-src=\"/cms/asset/d4c5b3f1-b5f9-483a-9cf8-c08a4d98cca1/pbi14452-fig-0001-m.jpg\" loading=\"lazy\" src=\"/cms/asset/a1a629e3-5666-4ef1-8fa8-b53ed8caadaa/pbi14452-fig-0001-m.png\" title=\"Details are in the caption following the image\"/&gt;&lt;/picture&gt;&lt;figcaption&gt;\u0000&lt;div&gt;&lt;strong&gt;Figure 1&lt;span style=\"font-weight:normal\"&gt;&lt;/span&gt;&lt;/st","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"81 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141991941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Biotechnology Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1