SummaryAccurate prediction of flowering time across diverse environments is crucial for effective crop management and breeding. While the accumulated temperature index (ATI) is widely used as an indicator for estimating flowering time, its traditional definition lacks systematic evaluation and genetic basis understanding. Here, using data from 422 rice hybrids across 47 locations, we identified the optimal ATI calculation window as 1 day after sowing to 26 days before flowering. Based on this redefined ATI, we developed a single‐parameter model that outperforms the state‐of‐the‐art reaction norm index model in both accuracy and stability, especially with limited training data. We identified 10 loci significantly associated with ATI variation, including two near known flowering time genes and four linked to ecotype differentiation. To enhance practical utility, we developed an efficient flowering time prediction kit using 28 functionally relevant markers, complemented by a user‐friendly online tool (http://xielab.hzau.edu.cn/ATI). Our approach can be easily applied to other crops, as ATI is commonly used across various agricultural systems.
摘要准确预测不同环境下的开花时间对作物的有效管理和育种至关重要。虽然积温指数(ATI)被广泛用作估计开花时间的指标,但其传统定义缺乏系统的评估和对遗传基础的了解。在此,我们利用 47 个地点 422 个水稻杂交种的数据,确定了最佳 ATI 计算窗口为播种后 1 天至开花前 26 天。根据这一重新定义的 ATI,我们开发了一个单参数模型,该模型在准确性和稳定性方面都优于最先进的反应标准指数模型,尤其是在训练数据有限的情况下。我们发现了 10 个与 ATI 变化明显相关的基因位点,其中包括两个接近已知花期基因的位点和四个与生态型分化相关的位点。为了提高实用性,我们利用 28 个功能相关的标记开发了一个高效的花期预测试剂盒,并辅以一个用户友好的在线工具 (http://xielab.hzau.edu.cn/ATI)。我们的方法可以很容易地应用于其他作物,因为 ATI 通常用于各种农业系统。
{"title":"Redefining the accumulated temperature index for accurate prediction of rice flowering time in diverse environments","authors":"Xingbing Xu, Qiong Jia, Sijia Li, Julong Wei, Luchang Ming, Qi Yu, Jing Jiang, Peng Zhang, Honglin Yao, Shibo Wang, Chunjiao Xia, Kai Wang, Zhenyu Jia, Weibo Xie","doi":"10.1111/pbi.14498","DOIUrl":"https://doi.org/10.1111/pbi.14498","url":null,"abstract":"SummaryAccurate prediction of flowering time across diverse environments is crucial for effective crop management and breeding. While the accumulated temperature index (ATI) is widely used as an indicator for estimating flowering time, its traditional definition lacks systematic evaluation and genetic basis understanding. Here, using data from 422 rice hybrids across 47 locations, we identified the optimal ATI calculation window as 1 day after sowing to 26 days before flowering. Based on this redefined ATI, we developed a single‐parameter model that outperforms the state‐of‐the‐art reaction norm index model in both accuracy and stability, especially with limited training data. We identified 10 loci significantly associated with ATI variation, including two near known flowering time genes and four linked to ecotype differentiation. To enhance practical utility, we developed an efficient flowering time prediction kit using 28 functionally relevant markers, complemented by a user‐friendly online tool (<jats:ext-link xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"http://xielab.hzau.edu.cn/ATI\">http://xielab.hzau.edu.cn/ATI</jats:ext-link>). Our approach can be easily applied to other crops, as ATI is commonly used across various agricultural systems.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"4 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wen Chen, Dingyi Bai, Yuxi Liao, Qin Yu, Lianyang Bai, Lang Pan
Populations of Polypogon fugax have developed resistance to many acetyl-CoA carboxylase (ACCase)-inhibiting herbicides. This resistance threats the effectiveness and sustainability of herbicide use. In our previous research, a field P. fugax population exhibited GST-based metabolic resistance to the widely used ACCase-inhibiting herbicide quizalofop-p-ethyl. Here, in this current study, we identified and characterized two GST genes (named as PfGSTF2 and PfGSTF58) that showed higher expression levels in the resistant than the susceptible population. Transgenic rice calli overexpressing PfGSTF2, but not PfGSTF58, became resistant to quizalofop-p-ethyl and haloxyfop-R-methyl. This reflects similar cross-resistance pattern to what was observed in the resistant P. fugax population. Transgenic rice seedlings overexpressing PfGSTF2 also exhibited resistance to quizalofop-p-ethyl. In contrast, CRISPR/Cas9 knockout of the orthologue gene in rice seedlings increased their sensitivity to quizalofop-p-ethyl. LC–MS analysis of in vitro herbicide metabolism by Escherichia coli-expressed recombinant PfGSTF2 revealed that quizalofop (but not haloxyfop) was detoxified at the ether bond, generating the GSH-quizalofop conjugate and a propanoic acid derivative with greatly reduced herbicidal activity. Equally, these two metabolites accumulated at higher levels in the resistant population than the susceptible population. In addition, both recombinant PfGSTF2 and PfGSTF58 can attenuate cytotoxicity by reactive oxygen species (ROS), suggesting a role in plant defence against ROS generated by herbicides. Furthermore, the GST inhibitor (NBD-Cl) reversed resistance in the resistant population, and PfGSTF2 (but not PfGSTF58) responded to NBD-Cl inhibition. All these suggest that PfGSTF2 plays a significant role in the evolution of quizalofop resistance through enhanced herbicide metabolism in P. fugax.
{"title":"PfGSTF2 endows resistance to quizalofop-p-ethyl in Polypogon fugax by GSH conjugation","authors":"Wen Chen, Dingyi Bai, Yuxi Liao, Qin Yu, Lianyang Bai, Lang Pan","doi":"10.1111/pbi.14491","DOIUrl":"https://doi.org/10.1111/pbi.14491","url":null,"abstract":"Populations of <i>Polypogon fugax</i> have developed resistance to many acetyl-CoA carboxylase (ACCase)-inhibiting herbicides. This resistance threats the effectiveness and sustainability of herbicide use. In our previous research, a field <i>P. fugax</i> population exhibited GST-based metabolic resistance to the widely used ACCase-inhibiting herbicide quizalofop-p-ethyl. Here, in this current study, we identified and characterized two GST genes (named as <i>PfGSTF2</i> and <i>PfGSTF58</i>) that showed higher expression levels in the resistant than the susceptible population. Transgenic rice calli overexpressing <i>PfGSTF2</i>, but not <i>PfGSTF58</i>, became resistant to quizalofop-p-ethyl and haloxyfop-R-methyl. This reflects similar cross-resistance pattern to what was observed in the resistant <i>P. fugax</i> population. Transgenic rice seedlings overexpressing <i>PfGSTF2</i> also exhibited resistance to quizalofop-p-ethyl. In contrast, CRISPR/Cas9 knockout of the orthologue gene in rice seedlings increased their sensitivity to quizalofop-p-ethyl. LC–MS analysis of <i>in vitro</i> herbicide metabolism by <i>Escherichia coli</i>-expressed recombinant PfGSTF2 revealed that quizalofop (but not haloxyfop) was detoxified at the ether bond, generating the GSH-quizalofop conjugate and a propanoic acid derivative with greatly reduced herbicidal activity. Equally, these two metabolites accumulated at higher levels in the resistant population than the susceptible population. In addition, both recombinant PfGSTF2 and PfGSTF58 can attenuate cytotoxicity by reactive oxygen species (ROS), suggesting a role in plant defence against ROS generated by herbicides. Furthermore, the GST inhibitor (NBD-Cl) reversed resistance in the resistant population, and PfGSTF2 (but not PfGSTF58) responded to NBD-Cl inhibition. All these suggest that PfGSTF2 plays a significant role in the evolution of quizalofop resistance through enhanced herbicide metabolism in <i>P. fugax</i>.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"121 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruben Casatejada‐Anchel, Alejandro Torres‐Moncho, Armand D. Anoman, Nagaveni Budhagatapalli, Ester Pérez‐Lorences, Andrea Alcántara‐Enguídanos, Sara Rosa‐Téllez, Leonardo Perez de Souza, Jochen Kumlehn, Alisdair R. Fernie, Jesús Muñoz‐Bertomeu, Roc Ros
SummaryIn plants, L‐serine (Ser) biosynthesis occurs through various pathways and is highly dependent on the atmospheric CO2 concentration, especially in C3 species, due to the association of the Glycolate Pathway of Ser Biosynthesis (GPSB) with photorespiration. Characterization of a second plant Ser pathway, the Phosphorylated Pathway of Ser Biosynthesis (PPSB), revealed that it is at the crossroads of carbon, nitrogen, and sulphur metabolism. The PPSB comprises three sequential reactions catalysed by 3‐phosphoglycerate dehydrogenase (PGDH), 3‐phosphoSer aminotransferase (PSAT) and 3‐phosphoSer phosphatase (PSP). PPSB was overexpressed in plants exhibiting two different modes of photosynthesis: Arabidopsis (C3 metabolism), and maize (C4 metabolism), under ambient (aCO2) and elevated (eCO2) CO2 growth conditions. Overexpression in Arabidopsis of the PGDH1 gene alone or PGDH1, PSAT1 and PSP1 in combination increased the Ser levels but also the essential amino acids threonine (aCO2), isoleucine, leucine, lysine, phenylalanine, threonine and methionine (eCO2) compared to the wild‐type. These increases translated into higher protein levels. Likewise, starch levels were also increased in the PPSB‐overexpressing lines. In maize, PPSB‐deficient lines were obtained by targeting PSP1 using Cas9 endonuclease. We concluded that the expression of PPSB in maize male gametophyte is required for viable pollen development. Maize lines overexpressing the AtPGDH1 gene only displayed higher protein levels but not starch at both aCO2 and eCO2 conditions, this translated into a significant rise in the nitrogen/carbon ratio. These results suggest that metabolic engineering of PPSB in crops could enhance nitrogen content, particularly under upcoming eCO2 conditions where the activity of GPSB is limited.
{"title":"Metabolic engineering of the serine/glycine network as a means to improve the nitrogen content of crops","authors":"Ruben Casatejada‐Anchel, Alejandro Torres‐Moncho, Armand D. Anoman, Nagaveni Budhagatapalli, Ester Pérez‐Lorences, Andrea Alcántara‐Enguídanos, Sara Rosa‐Téllez, Leonardo Perez de Souza, Jochen Kumlehn, Alisdair R. Fernie, Jesús Muñoz‐Bertomeu, Roc Ros","doi":"10.1111/pbi.14495","DOIUrl":"https://doi.org/10.1111/pbi.14495","url":null,"abstract":"SummaryIn plants, L‐serine (Ser) biosynthesis occurs through various pathways and is highly dependent on the atmospheric CO<jats:sub>2</jats:sub> concentration, especially in C<jats:sub>3</jats:sub> species, due to the association of the Glycolate Pathway of Ser Biosynthesis (GPSB) with photorespiration. Characterization of a second plant Ser pathway, the Phosphorylated Pathway of Ser Biosynthesis (PPSB), revealed that it is at the crossroads of carbon, nitrogen, and sulphur metabolism. The PPSB comprises three sequential reactions catalysed by 3‐phosphoglycerate dehydrogenase (PGDH), 3‐phosphoSer aminotransferase (PSAT) and 3‐phosphoSer phosphatase (PSP). PPSB was overexpressed in plants exhibiting two different modes of photosynthesis: <jats:italic>Arabidopsis</jats:italic> (C<jats:sub>3</jats:sub> metabolism), and maize (C<jats:sub>4</jats:sub> metabolism), under ambient (aCO<jats:sub>2</jats:sub>) and elevated (eCO<jats:sub>2</jats:sub>) CO<jats:sub>2</jats:sub> growth conditions. Overexpression in <jats:italic>Arabidopsis</jats:italic> of the <jats:italic>PGDH1</jats:italic> gene alone or <jats:italic>PGDH1</jats:italic>, <jats:italic>PSAT1</jats:italic> and <jats:italic>PSP1</jats:italic> in combination increased the Ser levels but also the essential amino acids threonine (aCO<jats:sub>2</jats:sub>), isoleucine, leucine, lysine, phenylalanine, threonine and methionine (eCO<jats:sub>2</jats:sub>) compared to the wild‐type. These increases translated into higher protein levels. Likewise, starch levels were also increased in the PPSB‐overexpressing lines. In maize, PPSB‐deficient lines were obtained by targeting <jats:italic>PSP1</jats:italic> using Cas9 endonuclease. We concluded that the expression of PPSB in maize male gametophyte is required for viable pollen development. Maize lines overexpressing the <jats:italic>AtPGDH1</jats:italic> gene only displayed higher protein levels but not starch at both aCO<jats:sub>2</jats:sub> and eCO<jats:sub>2</jats:sub> conditions, this translated into a significant rise in the nitrogen/carbon ratio. These results suggest that metabolic engineering of PPSB in crops could enhance nitrogen content, particularly under upcoming eCO<jats:sub>2</jats:sub> conditions where the activity of GPSB is limited.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"96 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>Transcription factors (TFs), representing 5%–8% of eukaryotic nuclear genome, bind specific DNA sequences like promoters to regulate transcription (Lambert <i>et al</i>., <span>2018</span>). Identifying these sequences is vital for understanding TF functions. Techniques such as chromatin immunoprecipitation sequencing (ChIP-Seq), electrophoretic mobility shift assay (EMSA), yeast one-hybrid (Y1H) assay, dual-luciferase reporter LUC/REN assay, and β-glucuronidase (GUS) reporter are used to validate TF–promoter interactions but require extensive instrumentation and chemicals (Abid <i>et al</i>., <span>2022</span>; Park, <span>2009</span>). An alternative, the RUBY/eYGFPuv assay, uses modified plant leaf colour as a visible, cost-effective method for studying DNA–protein interaction (Sun <i>et al</i>., <span>2023</span>). Advances in genomics, including RNA sequencing and ChIP-Seq, underscore the need for efficient, reliable visual detection systems to map TF binding sites, crucial for elucidating their regulatory roles and broader biological impacts.</p>