首页 > 最新文献

Plant Biotechnology Journal最新文献

英文 中文
Redefining the accumulated temperature index for accurate prediction of rice flowering time in diverse environments 重新定义积温指数,准确预测不同环境下的水稻花期
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-29 DOI: 10.1111/pbi.14498
Xingbing Xu, Qiong Jia, Sijia Li, Julong Wei, Luchang Ming, Qi Yu, Jing Jiang, Peng Zhang, Honglin Yao, Shibo Wang, Chunjiao Xia, Kai Wang, Zhenyu Jia, Weibo Xie
SummaryAccurate prediction of flowering time across diverse environments is crucial for effective crop management and breeding. While the accumulated temperature index (ATI) is widely used as an indicator for estimating flowering time, its traditional definition lacks systematic evaluation and genetic basis understanding. Here, using data from 422 rice hybrids across 47 locations, we identified the optimal ATI calculation window as 1 day after sowing to 26 days before flowering. Based on this redefined ATI, we developed a single‐parameter model that outperforms the state‐of‐the‐art reaction norm index model in both accuracy and stability, especially with limited training data. We identified 10 loci significantly associated with ATI variation, including two near known flowering time genes and four linked to ecotype differentiation. To enhance practical utility, we developed an efficient flowering time prediction kit using 28 functionally relevant markers, complemented by a user‐friendly online tool (http://xielab.hzau.edu.cn/ATI). Our approach can be easily applied to other crops, as ATI is commonly used across various agricultural systems.
摘要准确预测不同环境下的开花时间对作物的有效管理和育种至关重要。虽然积温指数(ATI)被广泛用作估计开花时间的指标,但其传统定义缺乏系统的评估和对遗传基础的了解。在此,我们利用 47 个地点 422 个水稻杂交种的数据,确定了最佳 ATI 计算窗口为播种后 1 天至开花前 26 天。根据这一重新定义的 ATI,我们开发了一个单参数模型,该模型在准确性和稳定性方面都优于最先进的反应标准指数模型,尤其是在训练数据有限的情况下。我们发现了 10 个与 ATI 变化明显相关的基因位点,其中包括两个接近已知花期基因的位点和四个与生态型分化相关的位点。为了提高实用性,我们利用 28 个功能相关的标记开发了一个高效的花期预测试剂盒,并辅以一个用户友好的在线工具 (http://xielab.hzau.edu.cn/ATI)。我们的方法可以很容易地应用于其他作物,因为 ATI 通常用于各种农业系统。
{"title":"Redefining the accumulated temperature index for accurate prediction of rice flowering time in diverse environments","authors":"Xingbing Xu, Qiong Jia, Sijia Li, Julong Wei, Luchang Ming, Qi Yu, Jing Jiang, Peng Zhang, Honglin Yao, Shibo Wang, Chunjiao Xia, Kai Wang, Zhenyu Jia, Weibo Xie","doi":"10.1111/pbi.14498","DOIUrl":"https://doi.org/10.1111/pbi.14498","url":null,"abstract":"SummaryAccurate prediction of flowering time across diverse environments is crucial for effective crop management and breeding. While the accumulated temperature index (ATI) is widely used as an indicator for estimating flowering time, its traditional definition lacks systematic evaluation and genetic basis understanding. Here, using data from 422 rice hybrids across 47 locations, we identified the optimal ATI calculation window as 1 day after sowing to 26 days before flowering. Based on this redefined ATI, we developed a single‐parameter model that outperforms the state‐of‐the‐art reaction norm index model in both accuracy and stability, especially with limited training data. We identified 10 loci significantly associated with ATI variation, including two near known flowering time genes and four linked to ecotype differentiation. To enhance practical utility, we developed an efficient flowering time prediction kit using 28 functionally relevant markers, complemented by a user‐friendly online tool (<jats:ext-link xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"http://xielab.hzau.edu.cn/ATI\">http://xielab.hzau.edu.cn/ATI</jats:ext-link>). Our approach can be easily applied to other crops, as ATI is commonly used across various agricultural systems.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"4 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PfGSTF2 endows resistance to quizalofop-p-ethyl in Polypogon fugax by GSH conjugation PfGSTF2通过GSH共轭作用赋予福寿螺对喹禾灵的抗性
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-28 DOI: 10.1111/pbi.14491
Wen Chen, Dingyi Bai, Yuxi Liao, Qin Yu, Lianyang Bai, Lang Pan
Populations of Polypogon fugax have developed resistance to many acetyl-CoA carboxylase (ACCase)-inhibiting herbicides. This resistance threats the effectiveness and sustainability of herbicide use. In our previous research, a field P. fugax population exhibited GST-based metabolic resistance to the widely used ACCase-inhibiting herbicide quizalofop-p-ethyl. Here, in this current study, we identified and characterized two GST genes (named as PfGSTF2 and PfGSTF58) that showed higher expression levels in the resistant than the susceptible population. Transgenic rice calli overexpressing PfGSTF2, but not PfGSTF58, became resistant to quizalofop-p-ethyl and haloxyfop-R-methyl. This reflects similar cross-resistance pattern to what was observed in the resistant P. fugax population. Transgenic rice seedlings overexpressing PfGSTF2 also exhibited resistance to quizalofop-p-ethyl. In contrast, CRISPR/Cas9 knockout of the orthologue gene in rice seedlings increased their sensitivity to quizalofop-p-ethyl. LC–MS analysis of in vitro herbicide metabolism by Escherichia coli-expressed recombinant PfGSTF2 revealed that quizalofop (but not haloxyfop) was detoxified at the ether bond, generating the GSH-quizalofop conjugate and a propanoic acid derivative with greatly reduced herbicidal activity. Equally, these two metabolites accumulated at higher levels in the resistant population than the susceptible population. In addition, both recombinant PfGSTF2 and PfGSTF58 can attenuate cytotoxicity by reactive oxygen species (ROS), suggesting a role in plant defence against ROS generated by herbicides. Furthermore, the GST inhibitor (NBD-Cl) reversed resistance in the resistant population, and PfGSTF2 (but not PfGSTF58) responded to NBD-Cl inhibition. All these suggest that PfGSTF2 plays a significant role in the evolution of quizalofop resistance through enhanced herbicide metabolism in P. fugax.
箭毒蓼(Polypogon fugax)种群对许多乙酰-CoA 羧化酶(ACCase)抑制性除草剂产生了抗药性。这种抗药性威胁着除草剂使用的有效性和可持续性。在我们之前的研究中,一个野外豚草种群对广泛使用的乙酰-CoA羧化酶抑制性除草剂喹禾灵表现出了基于 GST 的代谢抗性。在本研究中,我们发现并鉴定了两个 GST 基因(命名为 PfGSTF2 和 PfGSTF58),它们在抗性种群中的表达水平高于易感种群。过表达 PfGSTF2 而非 PfGSTF58 的转基因水稻胼胝体对喹唑啉酮-对乙基和氟吡甲禾灵具有抗性。这反映了与在抗性 P. fugax 群体中观察到的相似的交叉抗性模式。过表达 PfGSTF2 的转基因水稻幼苗也表现出对喹禾灵-对乙基的抗性。与此相反,CRISPR/Cas9 基因敲除水稻幼苗中的直向同源基因会增加它们对喹禾灵的敏感性。大肠杆菌表达的重组 PfGSTF2 对体外除草剂代谢的 LC-MS 分析表明,喹唑啉草酮(而非氟唑草酮)在醚键处被解毒,生成 GSH-喹唑啉草酮共轭物和丙酸衍生物,其除草活性大大降低。同样,这两种代谢物在抗性群体中的累积水平也高于易感群体。此外,重组 PfGSTF2 和 PfGSTF58 都能减轻活性氧(ROS)的细胞毒性,这表明它们在植物防御除草剂产生的 ROS 方面发挥了作用。此外,GST 抑制剂(NBD-Cl)能逆转抗性种群的抗性,而 PfGSTF2(而非 PfGSTF58)对 NBD-Cl 抑制剂有反应。所有这些都表明,PfGSTF2 通过增强除草剂的新陈代谢,在喹禾灵抗性的进化过程中发挥了重要作用。
{"title":"PfGSTF2 endows resistance to quizalofop-p-ethyl in Polypogon fugax by GSH conjugation","authors":"Wen Chen, Dingyi Bai, Yuxi Liao, Qin Yu, Lianyang Bai, Lang Pan","doi":"10.1111/pbi.14491","DOIUrl":"https://doi.org/10.1111/pbi.14491","url":null,"abstract":"Populations of <i>Polypogon fugax</i> have developed resistance to many acetyl-CoA carboxylase (ACCase)-inhibiting herbicides. This resistance threats the effectiveness and sustainability of herbicide use. In our previous research, a field <i>P. fugax</i> population exhibited GST-based metabolic resistance to the widely used ACCase-inhibiting herbicide quizalofop-p-ethyl. Here, in this current study, we identified and characterized two GST genes (named as <i>PfGSTF2</i> and <i>PfGSTF58</i>) that showed higher expression levels in the resistant than the susceptible population. Transgenic rice calli overexpressing <i>PfGSTF2</i>, but not <i>PfGSTF58</i>, became resistant to quizalofop-p-ethyl and haloxyfop-R-methyl. This reflects similar cross-resistance pattern to what was observed in the resistant <i>P. fugax</i> population. Transgenic rice seedlings overexpressing <i>PfGSTF2</i> also exhibited resistance to quizalofop-p-ethyl. In contrast, CRISPR/Cas9 knockout of the orthologue gene in rice seedlings increased their sensitivity to quizalofop-p-ethyl. LC–MS analysis of <i>in vitro</i> herbicide metabolism by <i>Escherichia coli</i>-expressed recombinant PfGSTF2 revealed that quizalofop (but not haloxyfop) was detoxified at the ether bond, generating the GSH-quizalofop conjugate and a propanoic acid derivative with greatly reduced herbicidal activity. Equally, these two metabolites accumulated at higher levels in the resistant population than the susceptible population. In addition, both recombinant PfGSTF2 and PfGSTF58 can attenuate cytotoxicity by reactive oxygen species (ROS), suggesting a role in plant defence against ROS generated by herbicides. Furthermore, the GST inhibitor (NBD-Cl) reversed resistance in the resistant population, and PfGSTF2 (but not PfGSTF58) responded to NBD-Cl inhibition. All these suggest that PfGSTF2 plays a significant role in the evolution of quizalofop resistance through enhanced herbicide metabolism in <i>P. fugax</i>.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"121 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developing super rice varieties resistant to rice blast with enhanced yield and improved quality 培育抗稻瘟病的超级稻品种,提高产量和改善品质
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-25 DOI: 10.1111/pbi.14492
Naihui Guo, Ruihu An, Zongliang Ren, Jun Jiang, Bonian Cai, Shikai Hu, Gaoneng Shao, Guiai Jiao, Lihong Xie, Ling Wang, Fengli Zhao, Shaoqing Tang, Zhonghua Sheng, Peisong Hu
{"title":"Developing super rice varieties resistant to rice blast with enhanced yield and improved quality","authors":"Naihui Guo, Ruihu An, Zongliang Ren, Jun Jiang, Bonian Cai, Shikai Hu, Gaoneng Shao, Guiai Jiao, Lihong Xie, Ling Wang, Fengli Zhao, Shaoqing Tang, Zhonghua Sheng, Peisong Hu","doi":"10.1111/pbi.14492","DOIUrl":"https://doi.org/10.1111/pbi.14492","url":null,"abstract":"","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"111 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic engineering of the serine/glycine network as a means to improve the nitrogen content of crops 丝氨酸/甘氨酸网络代谢工程是提高作物含氮量的一种手段
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-25 DOI: 10.1111/pbi.14495
Ruben Casatejada‐Anchel, Alejandro Torres‐Moncho, Armand D. Anoman, Nagaveni Budhagatapalli, Ester Pérez‐Lorences, Andrea Alcántara‐Enguídanos, Sara Rosa‐Téllez, Leonardo Perez de Souza, Jochen Kumlehn, Alisdair R. Fernie, Jesús Muñoz‐Bertomeu, Roc Ros
SummaryIn plants, L‐serine (Ser) biosynthesis occurs through various pathways and is highly dependent on the atmospheric CO2 concentration, especially in C3 species, due to the association of the Glycolate Pathway of Ser Biosynthesis (GPSB) with photorespiration. Characterization of a second plant Ser pathway, the Phosphorylated Pathway of Ser Biosynthesis (PPSB), revealed that it is at the crossroads of carbon, nitrogen, and sulphur metabolism. The PPSB comprises three sequential reactions catalysed by 3‐phosphoglycerate dehydrogenase (PGDH), 3‐phosphoSer aminotransferase (PSAT) and 3‐phosphoSer phosphatase (PSP). PPSB was overexpressed in plants exhibiting two different modes of photosynthesis: Arabidopsis (C3 metabolism), and maize (C4 metabolism), under ambient (aCO2) and elevated (eCO2) CO2 growth conditions. Overexpression in Arabidopsis of the PGDH1 gene alone or PGDH1, PSAT1 and PSP1 in combination increased the Ser levels but also the essential amino acids threonine (aCO2), isoleucine, leucine, lysine, phenylalanine, threonine and methionine (eCO2) compared to the wild‐type. These increases translated into higher protein levels. Likewise, starch levels were also increased in the PPSB‐overexpressing lines. In maize, PPSB‐deficient lines were obtained by targeting PSP1 using Cas9 endonuclease. We concluded that the expression of PPSB in maize male gametophyte is required for viable pollen development. Maize lines overexpressing the AtPGDH1 gene only displayed higher protein levels but not starch at both aCO2 and eCO2 conditions, this translated into a significant rise in the nitrogen/carbon ratio. These results suggest that metabolic engineering of PPSB in crops could enhance nitrogen content, particularly under upcoming eCO2 conditions where the activity of GPSB is limited.
摘要在植物中,L-丝氨酸(Ser)的生物合成通过各种途径进行,并且高度依赖大气中的二氧化碳浓度,尤其是在 C3 植物中,这是因为丝氨酸生物合成的乙醇酸途径(GPSB)与光呼吸有关。对第二条植物血清途径--血清的磷酸化生物合成途径(PPSB)--的表征显示,它处于碳、氮和硫代谢的交叉点。PPSB 由 3-磷酸甘油酸脱氢酶(PGDH)、3-磷酸丝氨酸氨基转移酶(PSAT)和 3-磷酸丝氨酸磷酸酶(PSP)催化的三个连续反应组成。PPSB 在具有两种不同光合作用模式的植物中被过表达:拟南芥(C3 新陈代谢)和玉米(C4 新陈代谢)在环境(aCO2)和高架(eCO2)CO2 生长条件下的光合作用。与野生型相比,在拟南芥中单独过表达 PGDH1 基因或同时过表达 PGDH1、PSAT1 和 PSP1,不仅会增加 Ser 的含量,还会增加必需氨基酸苏氨酸(aCO2)、异亮氨酸、亮氨酸、赖氨酸、苯丙氨酸、苏氨酸和蛋氨酸(eCO2)的含量。这些增加转化为更高的蛋白质水平。同样,PPSB 表达株的淀粉含量也有所增加。在玉米中,通过使用 Cas9 内切酶靶向 PSP1,获得了 PPSB 缺失株系。我们的结论是,PPSB 在玉米雄配子体中的表达是花粉发育所必需的。在 aCO2 和 eCO2 条件下,过表达 AtPGDH1 基因的玉米品系只表现出较高的蛋白质水平,而不表现出较高的淀粉水平,这转化为氮/碳比率的显著上升。这些结果表明,作物中 PPSB 的代谢工程可以提高氮含量,尤其是在即将到来的 eCO2 条件下,因为在这种条件下 GPSB 的活性受到限制。
{"title":"Metabolic engineering of the serine/glycine network as a means to improve the nitrogen content of crops","authors":"Ruben Casatejada‐Anchel, Alejandro Torres‐Moncho, Armand D. Anoman, Nagaveni Budhagatapalli, Ester Pérez‐Lorences, Andrea Alcántara‐Enguídanos, Sara Rosa‐Téllez, Leonardo Perez de Souza, Jochen Kumlehn, Alisdair R. Fernie, Jesús Muñoz‐Bertomeu, Roc Ros","doi":"10.1111/pbi.14495","DOIUrl":"https://doi.org/10.1111/pbi.14495","url":null,"abstract":"SummaryIn plants, L‐serine (Ser) biosynthesis occurs through various pathways and is highly dependent on the atmospheric CO<jats:sub>2</jats:sub> concentration, especially in C<jats:sub>3</jats:sub> species, due to the association of the Glycolate Pathway of Ser Biosynthesis (GPSB) with photorespiration. Characterization of a second plant Ser pathway, the Phosphorylated Pathway of Ser Biosynthesis (PPSB), revealed that it is at the crossroads of carbon, nitrogen, and sulphur metabolism. The PPSB comprises three sequential reactions catalysed by 3‐phosphoglycerate dehydrogenase (PGDH), 3‐phosphoSer aminotransferase (PSAT) and 3‐phosphoSer phosphatase (PSP). PPSB was overexpressed in plants exhibiting two different modes of photosynthesis: <jats:italic>Arabidopsis</jats:italic> (C<jats:sub>3</jats:sub> metabolism), and maize (C<jats:sub>4</jats:sub> metabolism), under ambient (aCO<jats:sub>2</jats:sub>) and elevated (eCO<jats:sub>2</jats:sub>) CO<jats:sub>2</jats:sub> growth conditions. Overexpression in <jats:italic>Arabidopsis</jats:italic> of the <jats:italic>PGDH1</jats:italic> gene alone or <jats:italic>PGDH1</jats:italic>, <jats:italic>PSAT1</jats:italic> and <jats:italic>PSP1</jats:italic> in combination increased the Ser levels but also the essential amino acids threonine (aCO<jats:sub>2</jats:sub>), isoleucine, leucine, lysine, phenylalanine, threonine and methionine (eCO<jats:sub>2</jats:sub>) compared to the wild‐type. These increases translated into higher protein levels. Likewise, starch levels were also increased in the PPSB‐overexpressing lines. In maize, PPSB‐deficient lines were obtained by targeting <jats:italic>PSP1</jats:italic> using Cas9 endonuclease. We concluded that the expression of PPSB in maize male gametophyte is required for viable pollen development. Maize lines overexpressing the <jats:italic>AtPGDH1</jats:italic> gene only displayed higher protein levels but not starch at both aCO<jats:sub>2</jats:sub> and eCO<jats:sub>2</jats:sub> conditions, this translated into a significant rise in the nitrogen/carbon ratio. These results suggest that metabolic engineering of PPSB in crops could enhance nitrogen content, particularly under upcoming eCO<jats:sub>2</jats:sub> conditions where the activity of GPSB is limited.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"96 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
QUIC‐seq: Quick ultra‐affordable high‐throughput convenient RNA sequencing QUIC-seq:超实惠的快速高通量便捷 RNA 测序
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-24 DOI: 10.1111/pbi.14496
Shouzhen Teng, Dan Wang, Yiheng Qian, Revocatus Bahitwa, Jinghong Shao, Mingrui Suo, Mingchi Xu, Luyuan Yang, Tianyi Li, Qiuying Yu, Hai Wang
{"title":"QUIC‐seq: Quick ultra‐affordable high‐throughput convenient RNA sequencing","authors":"Shouzhen Teng, Dan Wang, Yiheng Qian, Revocatus Bahitwa, Jinghong Shao, Mingrui Suo, Mingchi Xu, Luyuan Yang, Tianyi Li, Qiuying Yu, Hai Wang","doi":"10.1111/pbi.14496","DOIUrl":"https://doi.org/10.1111/pbi.14496","url":null,"abstract":"","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"14 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
COL3a simultaneously regulates flowering and branching to improve grain yield in soybean COL3a 同时调节开花和分枝,提高大豆的籽粒产量
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-24 DOI: 10.1111/pbi.14489
Chaosheng Gao, Jiazhi Yuan, Jianwei Lu, Wei Ye, Jianyi Zhi, Yongli Li, Weiwei Li, Mingming Sun, Fanjiang Kong, Baohui Liu, Qun Cheng, Lidong Dong
{"title":"COL3a simultaneously regulates flowering and branching to improve grain yield in soybean","authors":"Chaosheng Gao, Jiazhi Yuan, Jianwei Lu, Wei Ye, Jianyi Zhi, Yongli Li, Weiwei Li, Mingming Sun, Fanjiang Kong, Baohui Liu, Qun Cheng, Lidong Dong","doi":"10.1111/pbi.14489","DOIUrl":"https://doi.org/10.1111/pbi.14489","url":null,"abstract":"","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"5 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SRS: An intelligent and robust approach for confirmation of plant transcription factor–DNA interactions SRS:确认植物转录因子与 DNA 相互作用的智能而稳健的方法
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-22 DOI: 10.1111/pbi.14488
Qi Zhou, Yulu Ye, Haiyan He, Zhigang Meng, Tao Zhou, Jingtao Zhang, Yameng Li, Jilong Zhang, Zhaoyi Liao, Yuan Wang, Sandui Guo, Chengzhen Liang
<p>Transcription factors (TFs), representing 5%–8% of eukaryotic nuclear genome, bind specific DNA sequences like promoters to regulate transcription (Lambert <i>et al</i>., <span>2018</span>). Identifying these sequences is vital for understanding TF functions. Techniques such as chromatin immunoprecipitation sequencing (ChIP-Seq), electrophoretic mobility shift assay (EMSA), yeast one-hybrid (Y1H) assay, dual-luciferase reporter LUC/REN assay, and β-glucuronidase (GUS) reporter are used to validate TF–promoter interactions but require extensive instrumentation and chemicals (Abid <i>et al</i>., <span>2022</span>; Park, <span>2009</span>). An alternative, the RUBY/eYGFPuv assay, uses modified plant leaf colour as a visible, cost-effective method for studying DNA–protein interaction (Sun <i>et al</i>., <span>2023</span>). Advances in genomics, including RNA sequencing and ChIP-Seq, underscore the need for efficient, reliable visual detection systems to map TF binding sites, crucial for elucidating their regulatory roles and broader biological impacts.</p><p>To develop a visual reporter for TF–DNA interactions, we targeted genes influencing leaf colour by modulating chlorophyll (Chl) degradation. The <i>Stay-Green1</i> (<i>SGR1</i>) gene, crucial for Chl breakdown during senescence, encodes magnesium dechelatase. Mutations in <i>SGR1</i> result in a stay-green phenotype, while overexpression leads to yellowing (Shimoda <i>et al</i>., <span>2016</span>). We chose <i>SGR1</i> from 32 candidates, divided into three subgroups, and cloned <i>SGR1</i> genes from <i>Arabidopsis thaliana</i> (<i>AtSGR1</i>), <i>Oryza sativa</i> (<i>OsSGR1</i>), and two from <i>Ginkgo biloba</i> (<i>GbSGR1</i> and <i>GbSGR1L</i>) (Figure S1). Using the <i>Cauliflower Mosaic Virus 35S</i> promoter, we expressed these genes in <i>Nicotiana benthamiana</i> leaves via <i>Agrobacterium tumefaciens</i>-mediated transformation (Figure S2). All transformed areas exhibited accelerated yellowing, with <i>AtSGR1</i> exhibiting the most rapid and significant Chl degradation, demonstrating its potential as a TF–DNA interaction reporter (Figure 1a–c). Additionally, enhancements including a Kozak consensus sequence for improved translation, darkness to stimulate yellowing, and maintaining temperatures between 22 and 25°C significantly boosted Chl degradation (Figure S3).</p><figure><picture><source media="(min-width: 1650px)" srcset="/cms/asset/94290b66-4196-4cb7-b4d0-59dbec6d6b71/pbi14488-fig-0001-m.jpg"/><img alt="Details are in the caption following the image" data-lg-src="/cms/asset/94290b66-4196-4cb7-b4d0-59dbec6d6b71/pbi14488-fig-0001-m.jpg" loading="lazy" src="/cms/asset/8acd5d0a-ed44-420e-8d33-63b02f8f6973/pbi14488-fig-0001-m.png" title="Details are in the caption following the image"/></picture><figcaption><div><strong>Figure 1<span style="font-weight:normal"></span></strong><div>Open in figure viewer<i aria-hidden="true"></i><span>PowerPoint</span></div></div><div>Develop
转录因子(TFs)占真核生物核基因组的 5%-8%,与启动子等特定 DNA 序列结合,调节转录(Lambert 等人,2018 年)。识别这些序列对于了解 TF 的功能至关重要。染色质免疫共沉淀测序(ChIP-Seq)、电泳迁移测定(EMSA)、酵母单杂交(Y1H)测定、双荧光素酶报告LUC/REN测定和β-葡萄糖醛酸酶(GUS)报告等技术可用于验证TF与启动子的相互作用,但需要大量的仪器和化学试剂(Abid等人,2022年;Park,2009年)。另一种方法是 RUBY/eYGFPuv 分析法,它利用改良的植物叶片颜色作为研究 DNA 蛋白相互作用的一种可见、经济有效的方法(Sun 等人,2023 年)。基因组学的进步,包括 RNA 测序和 ChIP-Seq,突出表明需要高效、可靠的可视检测系统来绘制 TF 结合位点图,这对阐明其调控作用和更广泛的生物学影响至关重要。为了开发 TF-DNA 相互作用的可视报告器,我们以通过调节叶绿素(Chl)降解来影响叶片颜色的基因为目标。Stay-Green1(SGR1)基因编码镁脱螯酶,对叶绿素在衰老过程中的分解至关重要。SGR1 基因突变会导致留绿表型,而过表达则会导致黄化(Shimoda 等人,2016 年)。我们从 32 个候选基因中选择了 SGR1,将其分为三个亚组,并克隆了拟南芥(AtSGR1)、大豆(OsSGR1)和银杏叶(GbSGR1 和 GbSGR1L)中的 SGR1 基因(图 S1)。我们使用花椰菜花叶病毒 35S 启动子,通过农杆菌介导的转化在烟草叶中表达了这些基因(图 S2)。所有转化区都表现出加速黄化,其中 AtSGR1 的 Chl 降解最迅速、最显著,显示出其作为 TF-DNA 相互作用报告物的潜力(图 1a-c)。此外,包括改进翻译的 Kozak 共识序列、刺激黄化的黑暗条件以及将温度保持在 22 至 25°C 之间等增强措施都显著促进了 Chl 降解(图 S3)。(a) 注射不同 SGR1 基因后 N. benthamiana 叶片的表型变化。(b) 注射 SGR1 后叶斑中 Chl 含量的动态变化。平均值 ± SD(n = 10)。(c) 注射点中 AtSGR1(黄色)、OsSGR1(粉红色)、GbSGR1(蓝色)和 GbSGR1L(灰色)的表达水平。(d)SMGY 模型的设计和工作流程。(e-h)黑暗处理 10 天后脱落的野生型叶片和六片 NbSGR1 基因编辑的 N. benthamiana 叶片的表型。(i-p)注射 pFHY1::SGR1-p35S::FAR1 的 N. benthamiana 叶片随着时间推移的动态表型。(q)注射区域 Chl 含量的变化。(r-s)注射点中 FAR1 和 SGR1 的表达。(t)注射点中 SGR1 的蛋白水平。NbActin(NbACT)用于蛋白负载对照。为了有效监测 Chl 水平的变化,我们开发了跟踪 Chl 从绿色到黄色变化的智能模型(SMGY)。该模型利用二阶多项式回归和色差校正矩阵,根据标准色图进行校准,以尽量减少图像色差。我们通过微信小程序集成了一个远程诊断系统,用于现场、实时、无损地检测植物叶片中的 Chl(图 1d)。为了从图像中预测 SPAD 值,我们分析了 14 个具有显著相关性(r &gt; 0.5;图 S4a;表 S1)的特征,并使用了五个机器学习模型的堆叠组合(图 S4b;表 S2)。经过 100 次迭代,该模型的 R2 为 0.85,RMSE 为 2.4,NRMSE 为 12.24%(图 S4c-e;表 S3)。SMGY 模型为准确定量 Chl 提供了一种用户友好型、高效且非破坏性的方法,有助于在保持植物完整性的同时快速监测 Chl 波动。为了解决 N. benthamiana 中 NbSGR1 基因激活可能产生的假阳性,我们使用 CRISPR/Cas9 技术敲除了分布在不同染色体上的六个 SGR1 同源基因(图 S5a)。我们设计了一个在 AtU6-26 启动子下含有 12 个 sgRNA 的 CRISPR-Cas9 构建,并将其导入 N. benthamiana(图 S5b)。遗传分析发现了一种同源植株 CR19,其全部六个 NbSGR1 基因都被编辑过(图 S6a)。CR19 在黑暗条件下表现出延迟的叶片黄化和减少的 Chl 降解,使其成为后续 SRS 研究的理想宿主(图 1e-h 和 S6b-d)。为了提高 TF 和靶 DNA 在同一细胞内相互作用的可能性,我们开发了 pTF-SGR1 质粒,它具有两个独立的表达盒:p35S::TF 和 pY::SGR1,并有多个克隆位点,便于分子操作(图 S7)。我们使用 FAR1 TF 和 FHY1 启动子对该系统进行了评估,FHY1 启动子调控植物色素 A 的核积累。
{"title":"SRS: An intelligent and robust approach for confirmation of plant transcription factor–DNA interactions","authors":"Qi Zhou, Yulu Ye, Haiyan He, Zhigang Meng, Tao Zhou, Jingtao Zhang, Yameng Li, Jilong Zhang, Zhaoyi Liao, Yuan Wang, Sandui Guo, Chengzhen Liang","doi":"10.1111/pbi.14488","DOIUrl":"https://doi.org/10.1111/pbi.14488","url":null,"abstract":"&lt;p&gt;Transcription factors (TFs), representing 5%–8% of eukaryotic nuclear genome, bind specific DNA sequences like promoters to regulate transcription (Lambert &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2018&lt;/span&gt;). Identifying these sequences is vital for understanding TF functions. Techniques such as chromatin immunoprecipitation sequencing (ChIP-Seq), electrophoretic mobility shift assay (EMSA), yeast one-hybrid (Y1H) assay, dual-luciferase reporter LUC/REN assay, and β-glucuronidase (GUS) reporter are used to validate TF–promoter interactions but require extensive instrumentation and chemicals (Abid &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2022&lt;/span&gt;; Park, &lt;span&gt;2009&lt;/span&gt;). An alternative, the RUBY/eYGFPuv assay, uses modified plant leaf colour as a visible, cost-effective method for studying DNA–protein interaction (Sun &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;). Advances in genomics, including RNA sequencing and ChIP-Seq, underscore the need for efficient, reliable visual detection systems to map TF binding sites, crucial for elucidating their regulatory roles and broader biological impacts.&lt;/p&gt;\u0000&lt;p&gt;To develop a visual reporter for TF–DNA interactions, we targeted genes influencing leaf colour by modulating chlorophyll (Chl) degradation. The &lt;i&gt;Stay-Green1&lt;/i&gt; (&lt;i&gt;SGR1&lt;/i&gt;) gene, crucial for Chl breakdown during senescence, encodes magnesium dechelatase. Mutations in &lt;i&gt;SGR1&lt;/i&gt; result in a stay-green phenotype, while overexpression leads to yellowing (Shimoda &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2016&lt;/span&gt;). We chose &lt;i&gt;SGR1&lt;/i&gt; from 32 candidates, divided into three subgroups, and cloned &lt;i&gt;SGR1&lt;/i&gt; genes from &lt;i&gt;Arabidopsis thaliana&lt;/i&gt; (&lt;i&gt;AtSGR1&lt;/i&gt;), &lt;i&gt;Oryza sativa&lt;/i&gt; (&lt;i&gt;OsSGR1&lt;/i&gt;), and two from &lt;i&gt;Ginkgo biloba&lt;/i&gt; (&lt;i&gt;GbSGR1&lt;/i&gt; and &lt;i&gt;GbSGR1L&lt;/i&gt;) (Figure S1). Using the &lt;i&gt;Cauliflower Mosaic Virus 35S&lt;/i&gt; promoter, we expressed these genes in &lt;i&gt;Nicotiana benthamiana&lt;/i&gt; leaves via &lt;i&gt;Agrobacterium tumefaciens&lt;/i&gt;-mediated transformation (Figure S2). All transformed areas exhibited accelerated yellowing, with &lt;i&gt;AtSGR1&lt;/i&gt; exhibiting the most rapid and significant Chl degradation, demonstrating its potential as a TF–DNA interaction reporter (Figure 1a–c). Additionally, enhancements including a Kozak consensus sequence for improved translation, darkness to stimulate yellowing, and maintaining temperatures between 22 and 25°C significantly boosted Chl degradation (Figure S3).&lt;/p&gt;\u0000&lt;figure&gt;&lt;picture&gt;\u0000&lt;source media=\"(min-width: 1650px)\" srcset=\"/cms/asset/94290b66-4196-4cb7-b4d0-59dbec6d6b71/pbi14488-fig-0001-m.jpg\"/&gt;&lt;img alt=\"Details are in the caption following the image\" data-lg-src=\"/cms/asset/94290b66-4196-4cb7-b4d0-59dbec6d6b71/pbi14488-fig-0001-m.jpg\" loading=\"lazy\" src=\"/cms/asset/8acd5d0a-ed44-420e-8d33-63b02f8f6973/pbi14488-fig-0001-m.png\" title=\"Details are in the caption following the image\"/&gt;&lt;/picture&gt;&lt;figcaption&gt;\u0000&lt;div&gt;&lt;strong&gt;Figure 1&lt;span style=\"font-weight:normal\"&gt;&lt;/span&gt;&lt;/strong&gt;&lt;div&gt;Open in figure viewer&lt;i aria-hidden=\"true\"&gt;&lt;/i&gt;&lt;span&gt;PowerPoint&lt;/span&gt;&lt;/div&gt;\u0000&lt;/div&gt;\u0000&lt;div&gt;Develop","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"31 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CuBe: a geminivirus-based copper-regulated expression system suitable for post-harvest activation. CuBe:基于 geminivirus 的铜调节表达系统,适合收获后激活。
IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-22 DOI: 10.1111/pbi.14485
Elena Garcia-Perez, Marta Vazquez-Vilar, Rosa Lozano-Duran, Diego Orzaez

The growing demand for sustainable platforms for biomolecule manufacturing has fuelled the development of plant-based production systems. Agroinfiltration, the current industry standard, offers several advantages but faces limitations for large-scale production due to high operational costs and batch-to-batch variability. Alternatively, here, we describe the CuBe system, a novel bean yellow dwarf virus (BeYDV)-derived conditional replicative expression platform stably transformed in Nicotiana benthamiana and activated by copper sulphate (CuSO4), an inexpensive and widely used agricultural input. The CuBe system utilizes a synthetic circuit of four genetic modules integrated into the plant genome: (i) a replicative vector harbouring the gene of interest (GOI) flanked by cis-acting elements for geminiviral replication and novelly arranged to enable transgene transcription exclusively upon formation of the circular replicon, (ii) copper-inducible Rep/RepA proteins essential for replicon formation, (iii) the yeast-derived CUP2-Gal4 copper-responsive transcriptional activator for Rep/RepA expression, and (iv) a copper-inducible Flp recombinase to minimize basal Rep/RepA expression. CuSO4 application triggers the activation of the system, leading to the formation of extrachromosomal replicons, expression of the GOI, and accumulation of the desired recombinant protein. We demonstrate the functionality of the CuBe system in N. benthamiana plants expressing high levels of eGFP and an anti-SARS-CoV-2 antibody upon copper treatment. Notably, the system is functional in post-harvest applications, a strategy with high potential impact for large-scale biomanufacturing. This work presents the CuBe system as a promising alternative to agroinfiltration for cost-effective and scalable production of recombinant proteins in plants.

生物大分子生产对可持续平台的需求日益增长,这推动了以植物为基础的生产系统的发展。农业过滤是目前的行业标准,具有多种优势,但由于运营成本高和批次间的可变性,在大规模生产中面临着限制。作为替代方案,我们在此介绍 CuBe 系统,它是一种新型的豆科黄矮病毒(BeYDV)衍生条件复制表达平台,稳定地转化于本甘蓝,并由硫酸铜(CuSO4)激活,硫酸铜是一种廉价且广泛使用的农业投入品。CuBe 系统利用集成到植物基因组中的四个遗传模块的合成回路:(i) 带有相关基因(GOI)的复制载体,两侧是用于 geminiviral 复制的顺式作用元件,其新颖的排列方式使转基因只能在环状复制子形成时转录、(ii) 复制子形成所必需的铜诱导 Rep/RepA 蛋白,(iii) 用于 Rep/RepA 表达的酵母衍生 CUP2-Gal4 铜响应转录激活因子,以及 (iv) 铜诱导 Flp 重组酶,以尽量减少 Rep/RepA 的基础表达。CuSO4 的应用会触发该系统的激活,导致染色体外复制子的形成、GOI 的表达和所需重组蛋白的积累。我们在铜处理后表达高水平 eGFP 和抗 SARS-CoV-2 抗体的 N. benthamiana 植物中证明了 CuBe 系统的功能。值得注意的是,该系统在收获后的应用中也能发挥作用,这种策略对大规模生物制造具有很大的潜在影响。这项工作表明,CuBe 系统是农业过滤的一种有前途的替代方法,可用于在植物中经济高效地生产重组蛋白质。
{"title":"CuBe: a geminivirus-based copper-regulated expression system suitable for post-harvest activation.","authors":"Elena Garcia-Perez, Marta Vazquez-Vilar, Rosa Lozano-Duran, Diego Orzaez","doi":"10.1111/pbi.14485","DOIUrl":"10.1111/pbi.14485","url":null,"abstract":"<p><p>The growing demand for sustainable platforms for biomolecule manufacturing has fuelled the development of plant-based production systems. Agroinfiltration, the current industry standard, offers several advantages but faces limitations for large-scale production due to high operational costs and batch-to-batch variability. Alternatively, here, we describe the CuBe system, a novel bean yellow dwarf virus (BeYDV)-derived conditional replicative expression platform stably transformed in Nicotiana benthamiana and activated by copper sulphate (CuSO<sub>4</sub>), an inexpensive and widely used agricultural input. The CuBe system utilizes a synthetic circuit of four genetic modules integrated into the plant genome: (i) a replicative vector harbouring the gene of interest (GOI) flanked by cis-acting elements for geminiviral replication and novelly arranged to enable transgene transcription exclusively upon formation of the circular replicon, (ii) copper-inducible Rep/RepA proteins essential for replicon formation, (iii) the yeast-derived CUP2-Gal4 copper-responsive transcriptional activator for Rep/RepA expression, and (iv) a copper-inducible Flp recombinase to minimize basal Rep/RepA expression. CuSO<sub>4</sub> application triggers the activation of the system, leading to the formation of extrachromosomal replicons, expression of the GOI, and accumulation of the desired recombinant protein. We demonstrate the functionality of the CuBe system in N. benthamiana plants expressing high levels of eGFP and an anti-SARS-CoV-2 antibody upon copper treatment. Notably, the system is functional in post-harvest applications, a strategy with high potential impact for large-scale biomanufacturing. This work presents the CuBe system as a promising alternative to agroinfiltration for cost-effective and scalable production of recombinant proteins in plants.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modification of xylan in secondary walls alters cell wall biosynthesis and wood formation programs and improves saccharification 改变次生壁中的木聚糖可改变细胞壁生物合成和木材形成程序,并提高糖化效果
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-22 DOI: 10.1111/pbi.14487
Pramod Sivan, János Urbancsok, Evgeniy N. Donev, Marta Derba-Maceluch, Félix R. Barbut, Zakiya Yassin, Madhavi L. Gandla, Madhusree Mitra, Saara E. Heinonen, Jan Šimura, Kateřina Cermanová, Michal Karady, Gerhard Scheepers, Leif J. Jönsson, Emma R. Master, Francisco Vilaplana, Ewa J. Mellerowicz
Wood of broad-leaf tree species is a valued source of renewable biomass for biorefinery and a target for genetic improvement efforts to reduce its recalcitrance. Glucuronoxylan (GX) plays a key role in recalcitrance through its interactions with cellulose and lignin. To reduce recalcitrance, we modified wood GX by expressing GH10 and GH11 endoxylanases from Aspergillus nidulans in hybrid aspen (Populus tremula L. × tremuloides Michx.) and targeting the enzymes to cell wall. The xylanases reduced tree height, modified cambial activity by increasing phloem and reducing xylem production, and reduced secondary wall deposition. Xylan molecular weight was decreased, and the spacing between acetyl and MeGlcA side chains was reduced in transgenic lines. The transgenic trees produced hypolignified xylem having thin secondary walls and deformed vessels. Glucose yields of enzymatic saccharification without pretreatment almost doubled indicating decreased recalcitrance. The transcriptomics, hormonomics and metabolomics data provided evidence for activation of cytokinin and ethylene signalling pathways, decrease in ABA levels, transcriptional suppression of lignification and a subset of secondary wall biosynthetic program, including xylan glucuronidation and acetylation machinery. Several candidate genes for perception of impairment in xylan integrity were detected. These candidates could provide a new target for uncoupling negative growth effects from reduced recalcitrance. In conclusion, our study supports the hypothesis that xylan modification generates intrinsic signals and evokes novel pathways regulating tree growth and secondary wall biosynthesis.
阔叶树种的木材是生物精炼的重要可再生生物质来源,也是基因改良以降低其再抗性的目标。葡萄糖醛酸聚糖(GX)通过与纤维素和木质素的相互作用,在再抗性中发挥着关键作用。为了减少再抗性,我们在杂交杨树(Populus tremula L. × tremuloides Michx.)木聚糖酶降低了树高,通过增加韧皮部生产和减少木质部生产改变了韧皮部活动,并减少了次生壁沉积。转基因品系的木聚糖分子量降低,乙酰基和 MeGlcA 侧链之间的间距缩小。转基因树产生的木质部木质化程度低,次生壁薄,血管变形。未经预处理的酶法糖化葡萄糖产量几乎翻了一番,表明抗逆性降低。转录组学、激素组学和代谢组学数据证明了细胞分裂素和乙烯信号通路的激活、ABA 水平的降低、木质化转录抑制和次生壁生物合成程序子集,包括木聚糖葡萄糖醛酸化和乙酰化机制。研究发现了一些感知木聚糖完整性受损的候选基因。这些候选基因可为解除负生长效应与抗逆性降低之间的联系提供新的靶标。总之,我们的研究支持了木聚糖修饰产生内在信号并唤起调节树木生长和次生壁生物合成的新途径的假设。
{"title":"Modification of xylan in secondary walls alters cell wall biosynthesis and wood formation programs and improves saccharification","authors":"Pramod Sivan, János Urbancsok, Evgeniy N. Donev, Marta Derba-Maceluch, Félix R. Barbut, Zakiya Yassin, Madhavi L. Gandla, Madhusree Mitra, Saara E. Heinonen, Jan Šimura, Kateřina Cermanová, Michal Karady, Gerhard Scheepers, Leif J. Jönsson, Emma R. Master, Francisco Vilaplana, Ewa J. Mellerowicz","doi":"10.1111/pbi.14487","DOIUrl":"https://doi.org/10.1111/pbi.14487","url":null,"abstract":"Wood of broad-leaf tree species is a valued source of renewable biomass for biorefinery and a target for genetic improvement efforts to reduce its recalcitrance. Glucuronoxylan (GX) plays a key role in recalcitrance through its interactions with cellulose and lignin. To reduce recalcitrance, we modified wood GX by expressing GH10 and GH11 endoxylanases from <i>Aspergillus nidulans</i> in hybrid aspen (<i>Populus tremula</i> L. × <i>tremuloides</i> Michx.) and targeting the enzymes to cell wall. The xylanases reduced tree height, modified cambial activity by increasing phloem and reducing xylem production, and reduced secondary wall deposition. Xylan molecular weight was decreased, and the spacing between acetyl and MeGlcA side chains was reduced in transgenic lines. The transgenic trees produced hypolignified xylem having thin secondary walls and deformed vessels. Glucose yields of enzymatic saccharification without pretreatment almost doubled indicating decreased recalcitrance. The transcriptomics, hormonomics and metabolomics data provided evidence for activation of cytokinin and ethylene signalling pathways, decrease in ABA levels, transcriptional suppression of lignification and a subset of secondary wall biosynthetic program, including xylan glucuronidation and acetylation machinery. Several candidate genes for perception of impairment in xylan integrity were detected. These candidates could provide a new target for uncoupling negative growth effects from reduced recalcitrance. In conclusion, our study supports the hypothesis that xylan modification generates intrinsic signals and evokes novel pathways regulating tree growth and secondary wall biosynthesis.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"201 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resistance to the herbicide metribuzin conferred to Arabidopsis thaliana by targeted base editing of the chloroplast genome 通过叶绿体基因组定向碱基编辑赋予拟南芥对除草剂嗪草酮的抗性
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-20 DOI: 10.1111/pbi.14490
Issei Nakazato, Wataru Yamori, Hiroyoshi Matsumura, Yuchen Qu, Miki Okuno, Nobuhiro Tsutsumi, Shin-ichi Arimura
The chloroplast genome has considerable potential to enhance crop productivity, but it remains underutilized in breeding because it is difficult to modify. This study elucidates the potential of recently developed chloroplast-targeted C-to-T base editors in facilitating the use of the chloroplast genome for crop breeding. The herbicide metribuzin interferes with photosynthesis by binding to the D1 protein of photosystem II, encoded by the chloroplast genome. Naturally occurring D1 mutants with V219I or A251V substitutions are known to have resistance to some herbicides including metribuzin. Here, using the base editors, we introduced these substitutions and showed that the A251V single mutation and the V219 & A251V double mutations conferred significant metribuzin resistance to Arabidopsis thaliana. The V219I & A251V double mutants exhibited increased metribuzin resistance and grew better than the A251V single mutants. Furthermore, the double mutants grew as well as wild-type plants in the absence of metribuzin. The single and double mutants, which are a challenge to obtain through traditional mutagenesis and crossbreeding methods, can be relatively easily generated using C-to-T base editors. In view of the conservation of V219 and A251 across numerous species, C-to-T base editing can potentially confer metribuzin resistance to a wide range of crops. Compared to nuclear genes, chloroplast genes are also less likely to spread into wild populations. Our findings suggest that chloroplast-targeting C-to-T base editors will find many roles in future crop breeding efforts.
叶绿体基因组在提高作物产量方面具有相当大的潜力,但由于其难以修改,因此在育种方面仍未得到充分利用。本研究阐明了最近开发的叶绿体靶向 C-T 碱基编辑器在促进叶绿体基因组用于作物育种方面的潜力。除草剂嗪草酮与叶绿体基因组编码的光系统 II 的 D1 蛋白结合,从而干扰光合作用。众所周知,天然存在的具有 V219I 或 A251V 取代的 D1 突变体对包括嗪草酮在内的一些除草剂具有抗性。在这里,我们利用碱基编辑器引入了这些置换,结果表明 A251V 单突变和 V219 & A251V 双突变可使拟南芥产生显著的抗嗪草酮性。与 A251V 单突变体相比,V219I & A251V 双突变体表现出更强的抗嗪草酮能力,并且生长得更好。此外,双突变体在没有嗪草酮的情况下与野生型植物一样生长良好。通过传统的诱变和杂交方法很难获得单突变体和双突变体,而使用 C 到 T 的碱基编辑器则可以相对容易地产生单突变体和双突变体。鉴于 V219 和 A251 在众多物种中的保守性,C-to-T 碱基编辑有可能使多种作物具有抗甲ribuzin 的能力。与核基因相比,叶绿体基因也不太可能扩散到野生种群中。我们的研究结果表明,叶绿体靶向C-to-T碱基编辑器将在未来的作物育种工作中发挥许多作用。
{"title":"Resistance to the herbicide metribuzin conferred to Arabidopsis thaliana by targeted base editing of the chloroplast genome","authors":"Issei Nakazato, Wataru Yamori, Hiroyoshi Matsumura, Yuchen Qu, Miki Okuno, Nobuhiro Tsutsumi, Shin-ichi Arimura","doi":"10.1111/pbi.14490","DOIUrl":"https://doi.org/10.1111/pbi.14490","url":null,"abstract":"The chloroplast genome has considerable potential to enhance crop productivity, but it remains underutilized in breeding because it is difficult to modify. This study elucidates the potential of recently developed chloroplast-targeted C-to-T base editors in facilitating the use of the chloroplast genome for crop breeding. The herbicide metribuzin interferes with photosynthesis by binding to the D1 protein of photosystem II, encoded by the chloroplast genome. Naturally occurring D1 mutants with V219I or A251V substitutions are known to have resistance to some herbicides including metribuzin. Here, using the base editors, we introduced these substitutions and showed that the A251V single mutation and the V219 &amp; A251V double mutations conferred significant metribuzin resistance to <i>Arabidopsis thaliana</i>. The V219I &amp; A251V double mutants exhibited increased metribuzin resistance and grew better than the A251V single mutants. Furthermore, the double mutants grew as well as wild-type plants in the absence of metribuzin. The single and double mutants, which are a challenge to obtain through traditional mutagenesis and crossbreeding methods, can be relatively easily generated using C-to-T base editors. In view of the conservation of V219 and A251 across numerous species, C-to-T base editing can potentially confer metribuzin resistance to a wide range of crops. Compared to nuclear genes, chloroplast genes are also less likely to spread into wild populations. Our findings suggest that chloroplast-targeting C-to-T base editors will find many roles in future crop breeding efforts.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"20 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Biotechnology Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1