Li Chen, Keqin Chen, Jiapeng Jiang, Dan Wang, Kekun Zhang, Yulin Fang
SummaryWinter dormancy and bud break are crucial to the viability, adaptability and yield of fruit trees, but not all metabolic activities or regulatory factors involved in maintaining and breaking dormancy are known. Here, winter buds, spanning from natural dormancy to bud break, were collected from ‘Cabernet Sauvignon’ grapevines maintained outdoors or forced indoors. The transcriptomes, proteomes and plant hormone contents were analysed across several bud stages. The winter buds presented three main stages, dormancy, dormancy release and bud development, whether grown in or outdoors. Weighted Correlation Network Analysis (WGCNA) and Gene Ontology (GO) analysis of the omics data revealed that the different stages were enriched for different biological processes. Analysis of the differentially expressed genes (DEGs) identified seven candidate genes that may affect grape dormancy and bud break. Transient transformation of these seven genes showed that VvDOGL4, VvAGL65 and VvMARD could promote maintenance of winter bud dormancy in grapevine. Subcellular localization showed that these three proteins all located to the nucleus, and yeast two‐hybrid screening showed that they may interact with proteins related to plant hormone signal transduction, respiration, energy metabolism and transcription regulation to affect winter bud break in grapevine. Overall, these findings contribute to a better understanding of the regulatory dynamics of bud dormancy in a perennial fruit crop and lay a foundation for exploring key genes and regulatory mechanisms that can be manipulated to improve fruit quality and yields as the global climate shifts growing regions.
{"title":"Multi‐omics analysis of the regulatory network in winter buds of ‘Cabernet Sauvignon’ grapevine from dormancy to bud break","authors":"Li Chen, Keqin Chen, Jiapeng Jiang, Dan Wang, Kekun Zhang, Yulin Fang","doi":"10.1111/pbi.70014","DOIUrl":"https://doi.org/10.1111/pbi.70014","url":null,"abstract":"SummaryWinter dormancy and bud break are crucial to the viability, adaptability and yield of fruit trees, but not all metabolic activities or regulatory factors involved in maintaining and breaking dormancy are known. Here, winter buds, spanning from natural dormancy to bud break, were collected from ‘Cabernet Sauvignon’ grapevines maintained outdoors or forced indoors. The transcriptomes, proteomes and plant hormone contents were analysed across several bud stages. The winter buds presented three main stages, dormancy, dormancy release and bud development, whether grown in or outdoors. Weighted Correlation Network Analysis (<jats:styled-content style=\"fixed-case\">WGCNA</jats:styled-content>) and Gene Ontology (<jats:styled-content style=\"fixed-case\">GO</jats:styled-content>) analysis of the omics data revealed that the different stages were enriched for different biological processes. Analysis of the differentially expressed genes (<jats:styled-content style=\"fixed-case\">DEGs</jats:styled-content>) identified seven candidate genes that may affect grape dormancy and bud break. Transient transformation of these seven genes showed that <jats:styled-content style=\"fixed-case\"><jats:italic>VvDOGL4</jats:italic></jats:styled-content>, <jats:styled-content style=\"fixed-case\"><jats:italic>VvAGL65</jats:italic></jats:styled-content> and <jats:styled-content style=\"fixed-case\"><jats:italic>VvMARD</jats:italic></jats:styled-content> could promote maintenance of winter bud dormancy in grapevine. Subcellular localization showed that these three proteins all located to the nucleus, and yeast two‐hybrid screening showed that they may interact with proteins related to plant hormone signal transduction, respiration, energy metabolism and transcription regulation to affect winter bud break in grapevine. Overall, these findings contribute to a better understanding of the regulatory dynamics of bud dormancy in a perennial fruit crop and lay a foundation for exploring key genes and regulatory mechanisms that can be manipulated to improve fruit quality and yields as the global climate shifts growing regions.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"39 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143618479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinyang Wang, Runfeng Wang, Xing Huo, Yueni Zhou, Muhammad J. Umer, Zihao Zheng, Weicai Jin, Lu Huang, Haifen Li, Qianxia Yu, Shaoxiong Li, Rajeev K Varshney, Wenyi Wang, Yuan Xiao, Yanbin Hong, Xiaoping Chen, Qing Lu, Hao Liu
SummaryPeanut stem is a vital organ to provide mechanical support and energy for aerial tissue development. However, the transcriptional regulatory mechanisms underlying stem development at a single‐cell resolution remain unclear. Herein, single‐nuclei isolation coupled with fluorescent‐activated cell sorting was employed to construct a cell atlas of peanut seedling stems using microdroplets‐based single‐nuclei RNA‐sequencing. This approach yielded 29 308 cells with 53 349 expressed genes underlying the identification of five cell types characterized by known marker genes. Additionally, 2053 differentially expressed genes (DEGs) were identified across different cell types. Furthermore, 3306 core‐DEGs involved in cell development trajectories were used to construct a transcription factor (TF) interaction network, providing insights into specific biological pathways and transcriptional regulation dynamics underlying cell‐type differentiation. Additionally, 1446 DEGs associated with different cell‐cycle profile were identified, revealing that peanut stem elongation and cell expansion are closely linked to auxin‐responsive pathway. This was supported by the examination of endogenous phytohormones and the identification of 10 hormone‐responsive DEGs. Moreover, AhWRKY70 was localized in the nucleus and is highly enriched in stem cortex and xylem cells and exhibits a tissue‐specific expression pattern that regulates stem growth. Overexpression of AhWRKY70 in Arabidopsis led to accelerated stem growth by modulating the phytohormone signalling pathway, influencing the expression of sixteen auxin and ethylene‐responsive genes as demonstrated by transcriptome sequencing. In conclusion, the single‐cell atlas provides a foundational dataset for understanding gene expression heterogeneity in peanut seedling stems. The elucidation of AhWRKY70 function expands our understanding of the roles of WRKY family members in peanut.
{"title":"Integration of single‐nuclei transcriptome and bulk RNA‐seq to unravel the role of AhWRKY70 in regulating stem cell development in Arachis hypogaea L.","authors":"Xinyang Wang, Runfeng Wang, Xing Huo, Yueni Zhou, Muhammad J. Umer, Zihao Zheng, Weicai Jin, Lu Huang, Haifen Li, Qianxia Yu, Shaoxiong Li, Rajeev K Varshney, Wenyi Wang, Yuan Xiao, Yanbin Hong, Xiaoping Chen, Qing Lu, Hao Liu","doi":"10.1111/pbi.70009","DOIUrl":"https://doi.org/10.1111/pbi.70009","url":null,"abstract":"SummaryPeanut stem is a vital organ to provide mechanical support and energy for aerial tissue development. However, the transcriptional regulatory mechanisms underlying stem development at a single‐cell resolution remain unclear. Herein, single‐nuclei isolation coupled with fluorescent‐activated cell sorting was employed to construct a cell atlas of peanut seedling stems using microdroplets‐based single‐nuclei RNA‐sequencing. This approach yielded 29 308 cells with 53 349 expressed genes underlying the identification of five cell types characterized by known marker genes. Additionally, 2053 differentially expressed genes (DEGs) were identified across different cell types. Furthermore, 3306 core‐DEGs involved in cell development trajectories were used to construct a transcription factor (TF) interaction network, providing insights into specific biological pathways and transcriptional regulation dynamics underlying cell‐type differentiation. Additionally, 1446 DEGs associated with different cell‐cycle profile were identified, revealing that peanut stem elongation and cell expansion are closely linked to auxin‐responsive pathway. This was supported by the examination of endogenous phytohormones and the identification of 10 hormone‐responsive DEGs. Moreover, <jats:italic>AhWRKY70</jats:italic> was localized in the nucleus and is highly enriched in stem cortex and xylem cells and exhibits a tissue‐specific expression pattern that regulates stem growth. Overexpression of <jats:italic>AhWRKY70</jats:italic> in <jats:italic>Arabidopsis</jats:italic> led to accelerated stem growth by modulating the phytohormone signalling pathway, influencing the expression of sixteen auxin and ethylene‐responsive genes as demonstrated by transcriptome sequencing. In conclusion, the single‐cell atlas provides a foundational dataset for understanding gene expression heterogeneity in peanut seedling stems. The elucidation of <jats:italic>AhWRKY70</jats:italic> function expands our understanding of the roles of <jats:italic>WRKY</jats:italic> family members in peanut.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"8 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143618423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SummarySoil salinity is a severe abiotic stress that damages plant growth and development. As an antioxidant and free radical scavenger, melatonin is well known for helping plants survive abiotic conditions, including salinity stress. Here, we report that the salt‐related gene MsSNAT1, encoding a rate‐limiting melatonin biosynthesis enzyme, is located in the chloroplast and contributes to salinity stress tolerance in alfalfa. We found that the MsSNAT1 overexpressing alfalfa lines exhibited higher endogenous melatonin levels and increased tolerance to salt stress by promoting antioxidant systems and improving ion homeostasis. Furthermore, through a combination of transcriptome sequencing, dual‐luciferase assays and transgenic analysis, we identified that the basic leucine zipper (bZIP) transcription factor, MsbZIP55, is associated with salt response and MsSNAT1 expression. EMSA analysis and ChIP‐qPCR uncovered that MsbZIP55 can recognize and directly bind to the MsSNAT1 promoter in vitro and in vivo. MsbZIP55 acts as a negative regulator of MsSNAT1 expression, thereby reducing melatonin biosynthesis. Morphological analysis revealed that overexpressing MsbZIP55 conferred salt sensitivity to transgenic alfalfa through a higher Na+/K+ ratio and lower antioxidant activities, which could be alleviated by applying exogenous melatonin. Silencing of MsbZIP55 by RNA interference in alfalfa resulted in higher expression of MsSNAT1 and promoted salt tolerance by enhancing the antioxidant system enzyme activities and ion homeostasis. Our findings indicate that the MsbZIP55‐MsSNAT1 module plays a crucial role in regulating melatonin biosynthesis in alfalfa while facilitating protection against salinity stress. These results shed light on the regulatory mechanism of melatonin biosynthesis related to the salinity stress response in alfalfa.
{"title":"MsbZIP55 regulates salinity tolerance by modulating melatonin biosynthesis in alfalfa","authors":"Tingting Wang, JiaQi Yang, JiaMin Cao, Qi Zhang, HuaYue Liu, Peng Li, YiZhi Huang, WenWu Qian, Xiaojing Bi, Hui Wang, Yunwei Zhang","doi":"10.1111/pbi.70035","DOIUrl":"https://doi.org/10.1111/pbi.70035","url":null,"abstract":"SummarySoil salinity is a severe abiotic stress that damages plant growth and development. As an antioxidant and free radical scavenger, melatonin is well known for helping plants survive abiotic conditions, including salinity stress. Here, we report that the salt‐related gene <jats:italic>MsSNAT1</jats:italic>, encoding a rate‐limiting melatonin biosynthesis enzyme, is located in the chloroplast and contributes to salinity stress tolerance in alfalfa. We found that the <jats:italic>MsSNAT1</jats:italic> overexpressing alfalfa lines exhibited higher endogenous melatonin levels and increased tolerance to salt stress by promoting antioxidant systems and improving ion homeostasis. Furthermore, through a combination of transcriptome sequencing, dual‐luciferase assays and transgenic analysis, we identified that the basic leucine zipper (bZIP) transcription factor, MsbZIP55, is associated with salt response and <jats:italic>MsSNAT1</jats:italic> expression. EMSA analysis and ChIP‐qPCR uncovered that MsbZIP55 can recognize and directly bind to the <jats:italic>MsSNAT1</jats:italic> promoter <jats:italic>in vitro</jats:italic> and <jats:italic>in vivo</jats:italic>. MsbZIP55 acts as a negative regulator of <jats:italic>MsSNAT1</jats:italic> expression, thereby reducing melatonin biosynthesis. Morphological analysis revealed that overexpressing <jats:italic>MsbZIP55</jats:italic> conferred salt sensitivity to transgenic alfalfa through a higher Na<jats:sup>+</jats:sup>/K<jats:sup>+</jats:sup> ratio and lower antioxidant activities, which could be alleviated by applying exogenous melatonin. Silencing of <jats:italic>MsbZIP55</jats:italic> by RNA interference in alfalfa resulted in higher expression of <jats:italic>MsSNAT1</jats:italic> and promoted salt tolerance by enhancing the antioxidant system enzyme activities and ion homeostasis. Our findings indicate that the MsbZIP55‐MsSNAT1 module plays a crucial role in regulating melatonin biosynthesis in alfalfa while facilitating protection against salinity stress. These results shed light on the regulatory mechanism of melatonin biosynthesis related to the salinity stress response in alfalfa.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"18 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143618424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SummaryThe dissection of genetic architecture for rice root system is largely dependent on phenotyping techniques, and high‐throughput root phenotyping poses a great challenge. In this study, we established a cost‐effective root phenotyping platform capable of analysing 1680 root samples within 2 h. To efficiently process a large number of root images, we developed the root phenotyping toolbox (RPT) with an enhanced SegFormer algorithm and used it for root segmentation and root phenotypic traits. Based on this root phenotyping platform and RPT, we screened 18 candidate (quantitative trait loci) QTL regions from 219 rice recombinant inbred lines under drought stress and validated the drought‐resistant functions of gene OsIAA8 identified from these QTL regions. This study confirmed that RPT exhibited a great application potential for processing images with various sources and for mining stress‐resistance genes of rice cultivars. Our developed root phenotyping platform and RPT software significantly improved high‐throughput root phenotyping efficiency, allowing for large‐scale root trait analysis, which will promote the genetic architecture improvement of drought‐resistant cultivars and crop breeding research in the future.
{"title":"RPT: An integrated root phenotyping toolbox for segmenting and quantifying root system architecture","authors":"Jiawei Shi, Shangyuan Xie, Weikun Li, Xin Wang, Jianglin Wang, Yunyu Chen, Yongyue Chang, Qiaojun Lou, Wanneng Yang","doi":"10.1111/pbi.70040","DOIUrl":"https://doi.org/10.1111/pbi.70040","url":null,"abstract":"SummaryThe dissection of genetic architecture for rice root system is largely dependent on phenotyping techniques, and high‐throughput root phenotyping poses a great challenge. In this study, we established a cost‐effective root phenotyping platform capable of analysing 1680 root samples within 2 h. To efficiently process a large number of root images, we developed the root phenotyping toolbox (RPT) with an enhanced SegFormer algorithm and used it for root segmentation and root phenotypic traits. Based on this root phenotyping platform and RPT, we screened 18 candidate (quantitative trait loci) QTL regions from 219 rice recombinant inbred lines under drought stress and validated the drought‐resistant functions of gene <jats:italic>OsIAA8</jats:italic> identified from these QTL regions. This study confirmed that RPT exhibited a great application potential for processing images with various sources and for mining stress‐resistance genes of rice cultivars. Our developed root phenotyping platform and RPT software significantly improved high‐throughput root phenotyping efficiency, allowing for large‐scale root trait analysis, which will promote the genetic architecture improvement of drought‐resistant cultivars and crop breeding research in the future.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"16 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143607961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isobel L. Dodds, Emma C. Watts, Mariana Schuster, Pierre Buscaill, Yasin Tumas, Nicholas J. Holton, Shijian Song, Johannes Stuttmann, Matthieu H. A. J. Joosten, Tolga Bozkurt, Renier A. L. van der Hoorn
<p>The infiltration of <i>Nicotiana benthamiana</i> with <i>Agrobacterium tumefaciens</i> (agroinfiltration) has become a routine expression platform for plant science and molecular pharming, yet this platform remains to be further optimized. We recently showed that <i>N. benthamiana</i> silenced for the <i>cold shock protein</i> (<i>CSP</i>) <i>receptor</i> (<i>CORE</i>) enables 8-fold more GFP production in older, 6–8-week-old plants, which are normally not used because of low transient expression efficiencies (Dodds <i>et al</i>., <span>2023</span>). Here, we investigated whether we can also increase transient protein expression levels in routinely used younger, 5-week-old juvenile plants, by silencing immunity-related genes.</p>