首页 > 最新文献

Plant Biotechnology Journal最新文献

英文 中文
Ralstonia solanacearum Acetyltransferase RipU Hijacks SlJAR1 to Inhibit Jasmonic Acid Signalling and Facilitate Pathogen Infection. 番茄青花菌乙酰转移酶RipU劫持SlJAR1抑制茉莉酸信号传导并促进病原菌感染
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2026-01-12 DOI: 10.1111/pbi.70522
Tong Qin,Shen Cong,Xiuan Liang,Fenglei Li,Xiaoyan Liang,Zhiheng Zhang,Yongqiang He,Shanshan Yang,Xiaoxiao Zhang,Hai-Lei Wei
{"title":"Ralstonia solanacearum Acetyltransferase RipU Hijacks SlJAR1 to Inhibit Jasmonic Acid Signalling and Facilitate Pathogen Infection.","authors":"Tong Qin,Shen Cong,Xiuan Liang,Fenglei Li,Xiaoyan Liang,Zhiheng Zhang,Yongqiang He,Shanshan Yang,Xiaoxiao Zhang,Hai-Lei Wei","doi":"10.1111/pbi.70522","DOIUrl":"https://doi.org/10.1111/pbi.70522","url":null,"abstract":"","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"57 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145949543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Dual‐Target Compound Designed With Potent Herbicidal and Fungicidal Activity Inspired by Conserved Phytoene Synthase Domains 受植物烯合酶结构域启发,设计出一种具有强除草和杀真菌活性的新型双靶点化合物
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2026-01-09 DOI: 10.1111/pbi.70531
Di Zhang, Liang Li, Chunxue Wang, Nuo Zhou, Zhilei Yu, Tianyi Shen, Baifan Wang, Qiang Bian, Dejun Ma, Yucheng Gu, Han Xu, Zhen Xi
The development of dual‐target inhibitors represents a cost‐effective strategy for integrated pest management. Here, we report the first dual‐target inhibitors designed against the evolutionarily conserved domain of phytoene synthase (PSY), a key enzyme in carotenoid biosynthesis. Using comparative genomics, we identified structural conservation between PSY in plants and squalene synthase (erg9) in fungi. Through virtual screening and structure‐based optimization of compounds targeting PSY, we identified lead compound 1c , which exhibited potent herbicidal and fungicidal activity. In vitro binding assays confirmed that 1c binds to both PSY and erg9. In plants, 1c treatment reduced chlorophyll content, downregulated photosynthesis‐associated genes, and caused substrate accumulation in the carotenoid pathway. In fungi, 1c induced a mycelial morphology identical to erg9 knockout mutants. Molecular dynamics simulations revealed the differential binding conformations of 1c to PSY and erg9, elucidating its mode of action. This work establishes PSY and its homologues as a promising target for the development of novel, broad‐spectrum dual‐action agrochemicals based on targetome structural similarity.
双靶点抑制剂的开发代表了一种具有成本效益的害虫综合治理策略。在这里,我们报道了第一个针对进化保守的植物烯合成酶(PSY)结构域的双靶点抑制剂,植物烯合成酶是类胡萝卜素生物合成的关键酶。通过比较基因组学,我们确定了植物中的PSY和真菌中的角鲨烯合成酶(erg9)之间的结构守恒。通过对以PSY为靶点的化合物进行虚拟筛选和基于结构的优化,我们确定了具有强除草和杀真菌活性的先导化合物1c。体外结合实验证实1c与PSY和erg9结合。在植物中,1c处理降低了叶绿素含量,下调了光合作用相关基因,并导致类胡萝卜素途径的底物积累。在真菌中,1c诱导的菌丝形态与erg9敲除突变体相同。分子动力学模拟揭示了1c与PSY和erg9的不同结合构象,阐明了其作用模式。这项工作建立了PSY及其同源物作为基于目标组结构相似性的新型广谱双作用农用化学品开发的有希望的靶标。
{"title":"A Novel Dual‐Target Compound Designed With Potent Herbicidal and Fungicidal Activity Inspired by Conserved Phytoene Synthase Domains","authors":"Di Zhang, Liang Li, Chunxue Wang, Nuo Zhou, Zhilei Yu, Tianyi Shen, Baifan Wang, Qiang Bian, Dejun Ma, Yucheng Gu, Han Xu, Zhen Xi","doi":"10.1111/pbi.70531","DOIUrl":"https://doi.org/10.1111/pbi.70531","url":null,"abstract":"The development of dual‐target inhibitors represents a cost‐effective strategy for integrated pest management. Here, we report the first dual‐target inhibitors designed against the evolutionarily conserved domain of phytoene synthase (PSY), a key enzyme in carotenoid biosynthesis. Using comparative genomics, we identified structural conservation between PSY in plants and squalene synthase (erg9) in fungi. Through virtual screening and structure‐based optimization of compounds targeting PSY, we identified lead compound 1c , which exhibited potent herbicidal and fungicidal activity. In vitro binding assays confirmed that 1c binds to both PSY and erg9. In plants, 1c treatment reduced chlorophyll content, downregulated photosynthesis‐associated genes, and caused substrate accumulation in the carotenoid pathway. In fungi, 1c induced a mycelial morphology identical to erg9 knockout mutants. Molecular dynamics simulations revealed the differential binding conformations of 1c to PSY and erg9, elucidating its mode of action. This work establishes PSY and its homologues as a promising target for the development of novel, broad‐spectrum dual‐action agrochemicals based on targetome structural similarity.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"2 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145920215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mass Spectrometry Imaging Combined With Single‐Cell Transcriptional Profiling Reveals the Multidimensional Spatial Distributions and Biosynthetic Pathways of Medicinal Components in Andrographis paniculata 质谱成像结合单细胞转录谱揭示穿心莲药用成分的多维空间分布和生物合成途径
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2026-01-08 DOI: 10.1111/pbi.70534
HaiSheng Zeng, MeiHui Shi, ZhiRong Chen, XueJing Sun, HuiJie Zhang, Yue Huang, YuCheng Chen, Jun Ren, HuiLing Huang, Almaz Borjigidai, Man Zhang, SuJuan Duan, Yi‐Jun Chen, Hong‐Lei Jin, Hong‐Bin Wang
The synthesis and accumulation of active ingredients in medicinal plants are distributed in specific organs, tissues, and cell types, which are important for the exploitation of medicinal plants. However, the fine distribution of active ingredients is difficult to know. Here, the system of mass spectrometry imaging (MSI) integrated with single‐cell RNA sequencing was established for the first time in Andrographis paniculata ( A. paniculata ), a medicinal plant widely utilised in China and Southeast Asia. MSI shows specific distribution of andrographolides in A. paniculata , with higher accumulation in non‐veinal leaf regions and outer stem cortex (leaf > stem; outer > inner cortex), as validated by LC‐QQQ‐MS/MS assays. Leaf scRNA‐seq demonstrates that ApCPS2 (the key terpene synthase for andrographolide biosynthesis) exhibits pronounced cell‐type‐specific expression in photosynthetic mesophyll subclusters, indicating mesophyll cells as the primary site for light‐modulated andrographolide production. Interestingly, light may enhance the accumulation of andrographolide biosynthesis, confirming the light sensitivity of metabolism in mesophyll cells. This study explores medicinal components' multidimensional spatial distributions and biosynthetic pathways in A. paniculata via MSI combined with single‐cell technology, providing a novel strategy for determining plant metabolites' fine synthesis and distribution.
药用植物有效成分的合成和积累分布在特定的器官、组织和细胞类型中,这对药用植物的开发具有重要意义。然而,有效成分的精细分布很难知道。本文首次对中国和东南亚广泛使用的药用植物穿心莲(Andrographis paniculata, a. paniculata)建立了质谱成像(MSI)与单细胞RNA测序相结合的系统。MSI显示穿心莲内酯在穿心莲中的特定分布,在非脉叶区域和外茎皮层(叶&茎;外&茎;内皮层)积累较多,LC - QQQ - MS/MS分析证实了这一点。叶片scRNA - seq表明ApCPS2(穿心莲内酯生物合成的关键萜烯合成酶)在光合叶肉亚群中表现出明显的细胞类型特异性表达,表明叶肉细胞是光调节穿心莲内酯生产的主要位点。有趣的是,光可能促进穿心莲内酯生物合成的积累,证实了叶肉细胞代谢的光敏感性。本研究通过MSI结合单细胞技术,探索了金针叶药用成分的多维空间分布和生物合成途径,为确定植物代谢产物的精细合成和分布提供了一种新的策略。
{"title":"Mass Spectrometry Imaging Combined With Single‐Cell Transcriptional Profiling Reveals the Multidimensional Spatial Distributions and Biosynthetic Pathways of Medicinal Components in Andrographis paniculata ","authors":"HaiSheng Zeng, MeiHui Shi, ZhiRong Chen, XueJing Sun, HuiJie Zhang, Yue Huang, YuCheng Chen, Jun Ren, HuiLing Huang, Almaz Borjigidai, Man Zhang, SuJuan Duan, Yi‐Jun Chen, Hong‐Lei Jin, Hong‐Bin Wang","doi":"10.1111/pbi.70534","DOIUrl":"https://doi.org/10.1111/pbi.70534","url":null,"abstract":"The synthesis and accumulation of active ingredients in medicinal plants are distributed in specific organs, tissues, and cell types, which are important for the exploitation of medicinal plants. However, the fine distribution of active ingredients is difficult to know. Here, the system of mass spectrometry imaging (MSI) integrated with single‐cell RNA sequencing was established for the first time in <jats:styled-content style=\"fixed-case\"> <jats:italic>Andrographis paniculata</jats:italic> </jats:styled-content> ( <jats:styled-content style=\"fixed-case\"> <jats:italic>A. paniculata</jats:italic> </jats:styled-content> ), a medicinal plant widely utilised in China and Southeast Asia. MSI shows specific distribution of andrographolides in <jats:styled-content style=\"fixed-case\"> <jats:italic>A. paniculata</jats:italic> </jats:styled-content> , with higher accumulation in non‐veinal leaf regions and outer stem cortex (leaf &gt; stem; outer &gt; inner cortex), as validated by LC‐QQQ‐MS/MS assays. Leaf scRNA‐seq demonstrates that <jats:italic>ApCPS2</jats:italic> (the key terpene synthase for andrographolide biosynthesis) exhibits pronounced cell‐type‐specific expression in photosynthetic mesophyll subclusters, indicating mesophyll cells as the primary site for light‐modulated andrographolide production. Interestingly, light may enhance the accumulation of andrographolide biosynthesis, confirming the light sensitivity of metabolism in mesophyll cells. This study explores medicinal components' multidimensional spatial distributions and biosynthetic pathways in <jats:styled-content style=\"fixed-case\"> <jats:italic>A. paniculata</jats:italic> </jats:styled-content> via MSI combined with single‐cell technology, providing a novel strategy for determining plant metabolites' fine synthesis and distribution.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"3 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145920246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tandem MADS ‐Box Genes FUL2 and MADS1 Form a Regulatory Module to Repress Serotonin Biosynthesis via Direct ASMT5 Activation in Tomato Fruit 串联MADS‐Box基因FUL2和MADS1通过直接激活ASMT5在番茄果实中形成抑制血清素生物合成的调控模块
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2026-01-08 DOI: 10.1111/pbi.70538
Yaping Xu, Huimin Jia, Dengguo Tang, Lijun Zhang, Xinqin Liu, Junjie Rong, Yunai Lv, Zhaobo Lang, Qingfeng Niu
The regulation of serotonin metabolism during fruit development and ripening remains poorly understood, despite its potential roles in plant defence and human nutrition. Here, we demonstrated that the MADS‐box transcription factor FUL2 acts as a key repressor of serotonin accumulation in tomato by forming a functional module with MADS1 . CRISPR‐Cas9‐generated ful2‐cr mutants exhibited delayed ripening, reduced fruit size and a striking 10‐fold increase in serotonin levels, suggesting a previously unrecognised link between FUL2 and secondary metabolism. Immunoprecipitation‐mass spectrometry (IP‐MS) revealed that FUL2 physically interacts with MADS1, and genetic analyses showed that mads1‐cr mutants phenocopied both the developmental and serotonin hyperaccumulation phenotypes of ful2‐cr mutants. Furthermore, ChIP‐seq and transcriptomic profiling demonstrated that the FUL2‐MADS1 complex directly binds CArG‐box motifs in the promoter of ASMT5 (a key enzyme in serotonin‐to‐melatonin conversion), activating its expression while repressing TDC1 (tryptophan decarboxylase). Electrophoretic mobility shift assays (EMSA) and dual‐luciferase reporter assays confirmed their cooperative DNA binding and synergistic transcriptional regulation. Our work establishes a MADS‐box transcriptional module that gates serotonin flux by coordinately regulating biosynthetic and metabolic genes. These findings provided a framework for engineering serotonin content in crops and deepen understanding of how developmental transcription factors govern specialised metabolism during ripening.
尽管血清素在植物防御和人类营养中具有潜在作用,但在水果发育和成熟过程中对血清素代谢的调节仍知之甚少。在这里,我们证明了MADS - box转录因子FUL2通过与MADS1形成一个功能模块,作为番茄血清素积累的关键抑制因子。CRISPR - Cas9产生的ful2 - cr突变体表现出成熟延迟、果实大小减小和血清素水平惊人的10倍增加,这表明ful2和次级代谢之间存在以前未被认识到的联系。免疫沉淀-质谱(IP - MS)揭示了FUL2与MADS1的物理相互作用,遗传分析表明,MADS1 - cr突变体表型上显示了FUL2 - cr突变体的发育表型和血清素过度积累表型。此外,ChIP‐seq和转录组学分析表明,FUL2‐MADS1复合物直接结合ASMT5(血清素向褪黑素转化的关键酶)启动子中的CArG‐box基元,激活其表达,同时抑制TDC1(色氨酸脱羧酶)。电泳迁移转移试验(EMSA)和双荧光素酶报告基因试验证实了它们的协同DNA结合和协同转录调控。我们的工作建立了一个MADS - box转录模块,通过协调调节生物合成和代谢基因来控制血清素的通量。这些发现为设计作物血清素含量提供了框架,并加深了对发育转录因子如何控制成熟过程中的特殊代谢的理解。
{"title":"Tandem MADS ‐Box Genes FUL2 and MADS1 Form a Regulatory Module to Repress Serotonin Biosynthesis via Direct ASMT5 Activation in Tomato Fruit","authors":"Yaping Xu, Huimin Jia, Dengguo Tang, Lijun Zhang, Xinqin Liu, Junjie Rong, Yunai Lv, Zhaobo Lang, Qingfeng Niu","doi":"10.1111/pbi.70538","DOIUrl":"https://doi.org/10.1111/pbi.70538","url":null,"abstract":"The regulation of serotonin metabolism during fruit development and ripening remains poorly understood, despite its potential roles in plant defence and human nutrition. Here, we demonstrated that the MADS‐box transcription factor <jats:italic>FUL2</jats:italic> acts as a key repressor of serotonin accumulation in tomato by forming a functional module with <jats:italic>MADS1</jats:italic> . CRISPR‐Cas9‐generated <jats:italic>ful2‐cr</jats:italic> mutants exhibited delayed ripening, reduced fruit size and a striking 10‐fold increase in serotonin levels, suggesting a previously unrecognised link between FUL2 and secondary metabolism. Immunoprecipitation‐mass spectrometry (IP‐MS) revealed that FUL2 physically interacts with MADS1, and genetic analyses showed that <jats:italic>mads1‐cr</jats:italic> mutants phenocopied both the developmental and serotonin hyperaccumulation phenotypes of <jats:italic>ful2‐cr</jats:italic> mutants. Furthermore, ChIP‐seq and transcriptomic profiling demonstrated that the FUL2‐MADS1 complex directly binds CArG‐box motifs in the promoter of <jats:italic>ASMT5</jats:italic> (a key enzyme in serotonin‐to‐melatonin conversion), activating its expression while repressing <jats:italic>TDC1</jats:italic> (tryptophan decarboxylase). Electrophoretic mobility shift assays (EMSA) and dual‐luciferase reporter assays confirmed their cooperative DNA binding and synergistic transcriptional regulation. Our work establishes a MADS‐box transcriptional module that gates serotonin flux by coordinately regulating biosynthetic and metabolic genes. These findings provided a framework for engineering serotonin content in crops and deepen understanding of how developmental transcription factors govern specialised metabolism during ripening.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"162 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145920346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tomato Spotted Wilt Virus Reprogrammes Host Glycolysis to Facilitate Proliferation by a Phase‐Separated Co‐Aggregate of Nucleocapsid Protein and Phosphoglycerate Kinase 番茄斑病病毒通过核衣壳蛋白和磷酸甘油酸激酶相分离的Co -聚集体重新编程宿主糖酵解以促进增殖
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2026-01-06 DOI: 10.1111/pbi.70529
Guangcheng Zu, Zhifu Xing, Jiao Li, Tangbing Yang, Huan Wu, Qiangsheng Ge, Yanju Wang, Baoan Song, Runjiang Song
Efficient viral proliferation within the host is a critical step in pathogenicity and requires adenosine triphosphate (ATP). The replication, movement and immune evasion of many plant viruses within their hosts are associated with phase separation (PS)‐derived aggregates formed by viral components. However, the host factors that drive the formation of these condensates remain largely unknown. This study provides evidence that the nucleocapsid protein (N) of tomato spotted wilt virus (TSWV) recruits the host factor phosphoglycerate kinase (NbPGK) from Nicotiana benthamiana to form phase‐separated condensates. This remodels the host glycolytic pathway to generate ATP, supplying energy for viral replication via ribonucleoprotein complexes and acting as a promoter to regulate the PS network, thereby facilitating condensate formation. Notably, we have developed a small‐molecule PS modulator, F10 . By combining drug affinity‐responsive target stability, molecular docking, microscale thermophoresis and bio‐layer interferometry techniques allowed F10 , we confirmed binding to sites Arg94, Lys192 and Gly228 on TSWV N, residues critical for maintaining NbPGK recruitment. F10 interacts with N, liberating the hijacked host factor NbPGK, and exhibits potent antiviral activity, outperforming the commercial virucide Ningnanmycin. This study elucidates the molecular machinery underlying viral exploitation of host cellular metabolism and identifies a lead compound that is amenable to managing TSWV by targeting this process.
病毒在宿主体内的高效增殖是致病性的关键步骤,需要三磷酸腺苷(ATP)的参与。许多植物病毒在宿主体内的复制、运动和免疫逃避与病毒组分形成的相分离(PS)衍生聚集体有关。然而,驱动这些凝析油形成的主要因素在很大程度上仍然未知。本研究证明,番茄斑点枯萎病毒(TSWV)的核衣壳蛋白(N)从烟叶中招募宿主因子磷酸甘油酸激酶(NbPGK)形成相分离凝聚体。这重塑了宿主糖酵解途径以产生ATP,通过核糖核蛋白复合物为病毒复制提供能量,并作为启动子调节PS网络,从而促进凝聚物的形成。值得注意的是,我们开发了一种小分子PS调节剂F10。通过结合药物亲和力-响应性靶标稳定性、分子对接、微尺度热电泳和生物层干涉技术,我们证实了F10与TSWV N上的Arg94、Lys192和Gly228位点结合,这些位点是维持NbPGK募集的关键残基。F10与N相互作用,释放被劫持的宿主因子NbPGK,并表现出强大的抗病毒活性,优于商用杀毒剂宁南霉素。本研究阐明了病毒利用宿主细胞代谢的分子机制,并确定了一种可通过靶向这一过程来管理TSWV的先导化合物。
{"title":"Tomato Spotted Wilt Virus Reprogrammes Host Glycolysis to Facilitate Proliferation by a Phase‐Separated Co‐Aggregate of Nucleocapsid Protein and Phosphoglycerate Kinase","authors":"Guangcheng Zu, Zhifu Xing, Jiao Li, Tangbing Yang, Huan Wu, Qiangsheng Ge, Yanju Wang, Baoan Song, Runjiang Song","doi":"10.1111/pbi.70529","DOIUrl":"https://doi.org/10.1111/pbi.70529","url":null,"abstract":"Efficient viral proliferation within the host is a critical step in pathogenicity and requires adenosine triphosphate (ATP). The replication, movement and immune evasion of many plant viruses within their hosts are associated with phase separation (PS)‐derived aggregates formed by viral components. However, the host factors that drive the formation of these condensates remain largely unknown. This study provides evidence that the nucleocapsid protein (N) of tomato spotted wilt virus (TSWV) recruits the host factor phosphoglycerate kinase (NbPGK) from <jats:italic>Nicotiana benthamiana</jats:italic> to form phase‐separated condensates. This remodels the host glycolytic pathway to generate ATP, supplying energy for viral replication via ribonucleoprotein complexes and acting as a promoter to regulate the PS network, thereby facilitating condensate formation. Notably, we have developed a small‐molecule PS modulator, F10 . By combining drug affinity‐responsive target stability, molecular docking, microscale thermophoresis and bio‐layer interferometry techniques allowed F10 , we confirmed binding to sites Arg94, Lys192 and Gly228 on TSWV N, residues critical for maintaining NbPGK recruitment. F10 interacts with N, liberating the hijacked host factor NbPGK, and exhibits potent antiviral activity, outperforming the commercial virucide Ningnanmycin. This study elucidates the molecular machinery underlying viral exploitation of host cellular metabolism and identifies a lead compound that is amenable to managing TSWV by targeting this process.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"29 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Serial Spatial Transcriptomes Reveal Regulatory Transitions in Maize Leaf Development 序列空间转录组揭示玉米叶片发育的调控转变
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2026-01-06 DOI: 10.1111/pbi.70515
Chi-Chih Wu, Ludvig Larsson, Kun-Ting Hsieh, Chun-Ping Yu, Yi-Hua Chen, Kai-Hsuan Ding, Ho-Chun Yang, Joakim Lundeberg, Chin-Min Kimmy Ho, Shu-Hsing Wu, Mei-Yeh Jade Lu, Wen-Hsiung Li
Plant leaves originate from the shoot apical meristem (SAM) and undergo a developmental process of highly coordinated gene expression regulation. To date, only a few key regulators have been identified and characterised, so the gene expression cascades responsible for leaf cell specification and differentiation from SAM remain largely elusive. Here, we optimised a spatial transcriptomics protocol using the 10× Genomics Visium system and developed computational pipelines to reconstruct three-dimensional gene expression profiles of the SAM and sequentially developing leaves in maize seedlings. These enabled positional indexing of cells sampled from consecutive developmental stages, revealing dynamic transitions from undifferentiated stem cells in the SAM to functionally differentiated leaf structures. Through spatial–temporal transcriptome analysis, we identified distinct transcriptional programs and key regulatory genes involved in meristem maintenance, leaf primordia initiation, vascular tissue differentiation, and cellular heterogeneity. This approach outperforms the single-cell transcriptome profiling, which lacks temporal and spatial contexts. Our optimised experimental pipeline, which goes from section preparation to data processing, enables the spatial resolution and 3-dimensional mapping of gene expression profiles. The established pipeline is readily applicable to delineating molecular events underlying developmental transitions, cell type specifications, and differentiation in plants.
植物叶片起源于茎尖分生组织(SAM),经历了一个高度协调的基因表达调控的发育过程。迄今为止,只有少数几个关键的调节因子被确定和表征,因此负责叶细胞规格和SAM分化的基因表达级联在很大程度上仍然难以捉摸。在此,我们利用10x Genomics Visium系统优化了空间转录组学方案,并开发了计算管道来重建玉米幼苗SAM和顺序发育叶片的三维基因表达谱。这使得从连续发育阶段取样的细胞的位置索引成为可能,揭示了SAM中未分化干细胞到功能分化叶结构的动态转变。通过时空转录组分析,我们发现了不同的转录程序和关键调控基因,涉及分生组织维持、叶原基起始、维管组织分化和细胞异质性。这种方法优于缺乏时间和空间背景的单细胞转录组分析。我们优化的实验管道,从切片准备到数据处理,使基因表达谱的空间分辨率和三维映射成为可能。建立的管道很容易适用于描述植物发育转变、细胞类型规范和分化背后的分子事件。
{"title":"Serial Spatial Transcriptomes Reveal Regulatory Transitions in Maize Leaf Development","authors":"Chi-Chih Wu, Ludvig Larsson, Kun-Ting Hsieh, Chun-Ping Yu, Yi-Hua Chen, Kai-Hsuan Ding, Ho-Chun Yang, Joakim Lundeberg, Chin-Min Kimmy Ho, Shu-Hsing Wu, Mei-Yeh Jade Lu, Wen-Hsiung Li","doi":"10.1111/pbi.70515","DOIUrl":"https://doi.org/10.1111/pbi.70515","url":null,"abstract":"Plant leaves originate from the shoot apical meristem (SAM) and undergo a developmental process of highly coordinated gene expression regulation. To date, only a few key regulators have been identified and characterised, so the gene expression cascades responsible for leaf cell specification and differentiation from SAM remain largely elusive. Here, we optimised a spatial transcriptomics protocol using the 10× Genomics Visium system and developed computational pipelines to reconstruct three-dimensional gene expression profiles of the SAM and sequentially developing leaves in maize seedlings. These enabled positional indexing of cells sampled from consecutive developmental stages, revealing dynamic transitions from undifferentiated stem cells in the SAM to functionally differentiated leaf structures. Through spatial–temporal transcriptome analysis, we identified distinct transcriptional programs and key regulatory genes involved in meristem maintenance, leaf primordia initiation, vascular tissue differentiation, and cellular heterogeneity. This approach outperforms the single-cell transcriptome profiling, which lacks temporal and spatial contexts. Our optimised experimental pipeline, which goes from section preparation to data processing, enables the spatial resolution and 3-dimensional mapping of gene expression profiles. The established pipeline is readily applicable to delineating molecular events underlying developmental transitions, cell type specifications, and differentiation in plants.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"38 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
H3K27me3 ‐Mediated Epigenetic Silencing of FgHMG1 Enables Fungal Host Immune Evasion H3K27me3介导的FgHMG1表观遗传沉默使真菌宿主免疫逃避
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2026-01-06 DOI: 10.1111/pbi.70530
Xiaozhen Zhao, Bingqin Yuan, Peixue Ma, Yajie Cai, Yan Huang, Yaxuan Wang, Zhen Cheng, Yuan Chen, Minghong Zheng, Ran Zhang, Jinmei Wu, Xieyu Li, Mohan Wang, Huijun Wu, Chengqi Zhang, Xuewen Gao, Li Chen, Qin Gu
Histone H3 lysine 27 trimethylation (H3K27me3) is essential for fungal pathogenicity, yet its contribution to pathogen–host interactions remains incompletely understood. Here, we profiled H3K27me3 dynamics in Fusarium graminearum during infection and identified 132 H3K27me3‐marked genes ( FgHMGs ). Among these, FgHMG1 encodes a secreted glycoside hydrolase family 11 (GH11) protein that functions as a pathogen‐associated molecular pattern (PAMP), triggering PAMP‐triggered immunity (PTI) in Nicotiana benthamiana through the receptor kinases BAK1 and SOBIR1, independently of its enzymatic activity. FgHMG1 also induces reactive oxygen species (ROS) accumulation and upregulation of defence‐related genes in wheat plants. Remarkably, FgHMG1 expression is repressed during host invasion by the histone methyltransferase FgKMT6, a homologue of Enhancer of zeste (E(z)) from Drosophila, via H3K27me3 deposition, enabling immune evasion. Loss of FgKMT6 abolishes H3K27me3 enrichment, derepresses FgHMG1, and enhances host immunity, effects largely rescued in ΔFgKMT6–FgHMG1 double mutants. Notably, foliar application of recombinant FgHMG1 protein reduced Fusarium head blight severity in wheat by 35%–50% in 2‐year field trials. These findings reveal that fungal pathogens exploit H3K27me3‐mediated silencing of immunogenic PAMP genes to evade host recognition and highlight FgHMG1 as a promising candidate for crop protection.
组蛋白H3赖氨酸27三甲基化(H3K27me3)对真菌致病性至关重要,但其对病原体-宿主相互作用的贡献仍不完全清楚。在这里,我们分析了H3K27me3在谷物镰刀菌感染期间的动态,并鉴定了132个H3K27me3标记基因(fghmg)。其中,FgHMG1编码分泌的糖苷水解酶家族11 (GH11)蛋白,该蛋白作为病原体相关分子模式(PAMP)发挥作用,通过受体激酶BAK1和SOBIR1独立于酶活性,触发PAMP引发的烟叶免疫(PTI)。FgHMG1还能诱导小麦植株活性氧(ROS)的积累和防御相关基因的上调。值得注意的是,FgHMG1的表达在宿主入侵过程中被组蛋白甲基转移酶FgKMT6抑制,FgKMT6是来自果蝇的zeste增强子(E(z))的同源物,通过H3K27me3沉积,从而实现免疫逃避。FgKMT6的缺失会消除H3K27me3的富集,抑制FgHMG1,并增强宿主免疫力,这些作用在ΔFgKMT6-FgHMG1双突变体中很大程度上被挽救。值得注意的是,在2年的田间试验中,叶面施用重组FgHMG1蛋白可使小麦赤霉病严重程度降低35%-50%。这些发现表明,真菌病原体利用H3K27me3介导的免疫原性PAMP基因沉默来逃避宿主的识别,并突出了FgHMG1作为作物保护的有希望的候选基因。
{"title":"H3K27me3 ‐Mediated Epigenetic Silencing of FgHMG1 Enables Fungal Host Immune Evasion","authors":"Xiaozhen Zhao, Bingqin Yuan, Peixue Ma, Yajie Cai, Yan Huang, Yaxuan Wang, Zhen Cheng, Yuan Chen, Minghong Zheng, Ran Zhang, Jinmei Wu, Xieyu Li, Mohan Wang, Huijun Wu, Chengqi Zhang, Xuewen Gao, Li Chen, Qin Gu","doi":"10.1111/pbi.70530","DOIUrl":"https://doi.org/10.1111/pbi.70530","url":null,"abstract":"Histone H3 lysine 27 trimethylation (H3K27me3) is essential for fungal pathogenicity, yet its contribution to pathogen–host interactions remains incompletely understood. Here, we profiled H3K27me3 dynamics in <jats:italic>Fusarium graminearum</jats:italic> during infection and identified 132 H3K27me3‐marked genes ( <jats:italic>FgHMGs</jats:italic> ). Among these, <jats:italic>FgHMG1</jats:italic> encodes a secreted glycoside hydrolase family 11 (GH11) protein that functions as a pathogen‐associated molecular pattern (PAMP), triggering PAMP‐triggered immunity (PTI) in <jats:italic>Nicotiana benthamiana</jats:italic> through the receptor kinases BAK1 and SOBIR1, independently of its enzymatic activity. FgHMG1 also induces reactive oxygen species (ROS) accumulation and upregulation of defence‐related genes in wheat plants. Remarkably, FgHMG1 expression is repressed during host invasion by the histone methyltransferase FgKMT6, a homologue of Enhancer of zeste (E(z)) from Drosophila, via H3K27me3 deposition, enabling immune evasion. Loss of FgKMT6 abolishes H3K27me3 enrichment, derepresses FgHMG1, and enhances host immunity, effects largely rescued in <jats:italic>ΔFgKMT6–FgHMG1</jats:italic> double mutants. Notably, foliar application of recombinant FgHMG1 protein reduced Fusarium head blight severity in wheat by 35%–50% in 2‐year field trials. These findings reveal that fungal pathogens exploit H3K27me3‐mediated silencing of immunogenic PAMP genes to evade host recognition and highlight FgHMG1 as a promising candidate for crop protection.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"11 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Metabolic Engineering in Medicinal Plants Through Prime Editing 通过引体编辑增强药用植物代谢工程
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2026-01-06 DOI: 10.1111/pbi.70532
Haomiao Yu, Xiao Feng, Xiaohang Zheng, Xiao Wang, Wenxin Zheng, Zhizhou Zhang, Yuanyuan Jiang, Ruiwu Yang, Li Zhang, Zhaohui Zhong
<p>Tanshinone and phenolic acid are key therapeutic compounds in the medicinal plant <i>Salvia miltiorrhiza</i>, while rutin is the major bioactive metabolite in the medicinal plant <i>Fagopyrum dibotrys</i>. However, their natural levels in cultivated varieties remain low, limiting their pharmacological potential. Enhancing metabolite accumulation through the modification of upstream transcription factors and key biosynthetic enzymes has shown promise (Deng et al. <span>2020</span>). Compounding the challenge, medicinal plants like <i>S. miltiorrhiza</i> are perennials with long life cycles, making conventional breeding inefficient. While CRISPR-Cas9 has facilitated gene knockout strategies in medicinal plants, precise base editing technologies remain underutilised (Das et al. <span>2024</span>). Prime editing (PE) has emerged as a powerful tool for introducing targeted nucleotide changes; thus, offering a promising route for molecular breeding (Anzalone et al. <span>2019</span>). While their application in medicinal plants remains largely unexplored.</p><p>To address these limitations in genome engineering of medicinal plants, we develop the prime editor in medicinal plants. Our previous work demonstrated that N-terminus M-MLV RT fused to Cas9 nickase plus epegRNA prime editor (NEPE) is highly efficient in rice (Zhong et al. <span>2024</span>), indicating that the N-terminal fusion of M-MLV reverse transcriptase is particularly well-suited for plant applications. Building on this, and with optimization of the expression system, we further adapted the prime editor for medicinal plants, termed MediPlant-NEPE (Figure 1a; Figure S1).</p><figure><picture><source media="(min-width: 1650px)" srcset="/cms/asset/227ed4e7-a506-4d78-a262-b21f293b3a66/pbi70532-fig-0001-m.jpg"/><img alt="Details are in the caption following the image" data-lg-src="/cms/asset/227ed4e7-a506-4d78-a262-b21f293b3a66/pbi70532-fig-0001-m.jpg" loading="lazy" src="/cms/asset/b14de0f4-3fe0-4aa2-9b5e-5fcefdd071f8/pbi70532-fig-0001-m.png" title="Details are in the caption following the image"/></picture><figcaption><div><strong>FIGURE 1<span style="font-weight:normal"></span></strong><div>Open in figure viewer<i aria-hidden="true"></i><span>PowerPoint</span></div></div><div>Construction and application of MediPlant-NEPE for enhancing metabolic engineering in medicinal plants. (a) Schematic of MediPlant-NEPE. (b) Genotyping of <i>SmbZIP1</i>-edited hairy roots, red arrows indicate edits. (c) Phenotypes of <i>SmMYB36</i> homozygous mutants. (d) Genotyping of <i>SmTCP15</i>-edited lines, red arrows indicate edit sites. (e) Phenotypes of <i>SmTCP15</i> homozygous mutants. (f) HPLC quantification of anthocyanin in mutant flowers. (g) Genotyping of <i>SmbZIP1</i>-edited lines, red arrows indicate mutation sites. (h) Dry root powder of <i>SmbZIP1</i> mutants. (i) HPLC quantification of major tanshinones in roots. (j) Genotyping of <i>SmRAS</i>-edited hairy root lines, amino acid changes
丹参酮和酚酸是药用植物丹参中的关键治疗化合物,而芦丁是药用植物金荞麦的主要生物活性代谢物。然而,它们在栽培品种中的天然含量仍然很低,限制了它们的药理潜力。通过修饰上游转录因子和关键的生物合成酶来增强代谢物的积累已经显示出前景(Deng et al. 2020)。更复杂的是,像丹参这样的药用植物是多年生植物,生命周期长,使得传统的育种效率低下。虽然CRISPR-Cas9促进了药用植物的基因敲除策略,但精确的碱基编辑技术仍未得到充分利用(Das et al. 2024)。引体编辑(PE)已成为引入靶向核苷酸变化的强大工具;因此,为分子育种提供了一条有希望的途径(Anzalone et al. 2019)。而它们在药用植物中的应用在很大程度上仍未被探索。为了解决药用植物基因组工程的这些局限性,我们开发了药用植物基因组编辑器。我们之前的工作表明,n端M-MLV RT与Cas9 nickase + epegRNA引物编辑器(NEPE)融合在水稻中是非常高效的(Zhong et al. 2024),这表明M-MLV逆转录酶的n端融合特别适合植物应用。在此基础上,通过对表达系统的优化,我们进一步调整了药用植物的引物编辑器,称为MediPlant-NEPE(图1a;图S1)。图1打开图形查看器powerpointmediplant - nepe在药用植物代谢工程中的构建与应用(a) MediPlant-NEPE示意图。(b) smbzip1编辑的毛状根的基因分型,红色箭头表示编辑。(c) SmMYB36纯合突变体的表型。(d) smtcp15编辑细胞系的基因分型,红色箭头表示编辑位点。(e) SmTCP15纯合突变体的表型。(f)高效液相色谱法测定突变花中花青素含量。(g) smbzip1编辑细胞系的基因分型,红色箭头表示突变位点。(h) SmbZIP1突变体的干根粉。(1)丹参酮根中主要丹参酮的HPLC定量分析。(j) smras编辑的毛状根系基因分型,氨基酸变化如图所示。(k) SmRASG49A毛状根在液体培养基中培养56天后。(l)高效液相色谱法测定SmRAS突变体中酚酸含量。(m) fdufgt3编辑的F. dibotrys毛状根的基因分型,红色箭头表示编辑。(n)野生型和转基因dibotrys的毛状根培养物(上)和甲醇提取物(下)。(o)高效液相色谱法测定FdUFGT3突变体中槲皮素和芦丁含量。我们首先以丹参中的SmMYB36和SmTCP15为目标,测试MediPlant-NEPE的效率,并研究它们在花色素沉着中的作用。SmMYB36基因Q22位点的靶向C&gt;T转换和SmTCP15基因E24位点的靶向G&gt;T转换诱导过早终止密码子。经农杆菌介导转化后,获得了SmMYB36和SmTCP15的阳性转基因系,突变频率分别为21.21%和21.21%(双等位基因突变率分别为15.15%和12.12%;图1b、d;表S1)。SmMYB36双等位突变体的花颜色较浅,而SmTCP15双等位突变体的花颜色较深(图1c,e)。高效液相色谱分析显示花青素含量发生了显著变化:SmMYB36突变体中飞燕苷含量急剧下降,花青素和天龙花苷含量减少30%,而SmTCP15突变体中飞燕苷含量增加1.66倍,花青素含量增加1.43倍(图1f;图S2a,b)。与之前的报道不同(Hsu et al. 2024), SmMYB36突变体没有表现出白化花,可能是由于SmANS表达减少(图S2c)。相比之下,SmTCP15突变体的SmANS表达增加了2.3至2.6倍(图S2d)。这项研究为SmTCP15作为花青素生物合成负调控因子的作用提供了新的见解,并证明了启动编辑对表型性状微调的潜力。接下来,我们应用MediPlant-NEPE通过靶向丹参酮和酚酸生物合成的关键调控因子SmbZIP1来提高丹参根次生代谢物的产生。在残基V43处引入GTG&gt;TAA突变,产生终止密码子,突变频率为26.47%,双等位基因突变率为17.65%(图1g)。纯合子突变体的根颜色更深(图1h;图S3a),丹参酮含量增加(图1i;图S3b)。其中,隐丹参酮和丹参酮IIA含量分别增加1.86倍和1.40倍,丹参酮I含量变化不显著。SmbZIP1突变体的酚酸含量降低(图S3c,d),与之前的报道一致(Deng et al. 2020)。我们还针对毛状根中的SmRAS来促进迷迭香酸和丹酚酸B的产生(图S4a)。 G49A突变由G&gt;C转化产生,编辑效率为39.47%,双等位基因突变率为15.79%(图1j)。选择2个杂合株系(#HM04-02、#HM04-03)和1个纯合株系(#HM04-06)进行进一步分析(图1k)。HPLC证实,纯合突变体#HM04-06迷迭香酸增加1.98倍,丹酚酸B增加1.80倍(图11)。所有纯合突变体迷迭香酸增加1.93倍,丹酚酸B增加2.07倍(图S4b-e)。分子对接显示,G49A突变使酶袋大小最小化,并与底物和产物产生新的相互作用(图S4f)。结果表明,SmRASG49A提高了迷迭香酸和丹酚酸B的含量。本研究进一步利用MediPlant-NEPE系统对野生植物黄芪中的芦丁含量进行检测,以期促进其作为药用植物的快速驯化。UFGT3基因是芦丁生物合成的关键酶(He et al. 2022)(图S5a)。预测FdUFGT3蛋白的第120位(Q120H)和第170位(D170G)的氨基酸替换可以增强酶活性并增加芦丁的产量(图S5b)。使用MediPlant-NEPE,我们引入了这些突变,Q120H的编辑效率为12.00%,D170G的编辑效率为8.00%,Q120H和D170G的双突变体的编辑效率为12.00%(图1m)。选择纯合子突变株进行进一步分析(图1n)。HPLC分析显示,三个品系的槲皮素含量均有所下降(图10;图S5c),其中双突变体的芦丁含量增加了2.75倍,而单突变体的芦丁含量改善有限。这些结果表明,MediPlant-NEPE可以通过酶工程有效地提高次级代谢物的产生。分子对接显示,突变改变了FdUFGT3酶袋,单个突变导致槲皮素和udp -葡萄糖在单独的口袋中结合(图S5d)。相比之下,双突变扩大了酶袋以容纳底物和产物芦丁(图S5e)。这些发现突出了MediPlant-NEPE在改善药用植物代谢物生产方面的潜力。总的来说,MediPlant-NEPE为药用植物丹参(S. miltiorrhiza)和黄芪(F. dibotrys)的先导编辑提供了概念验证。我们的研究结果显示了其在其他药用物种中的广泛应用潜力,并强调了其在分子育种、增强次生代谢物和种质创新方面的前景,从而加速了改良品种的开发,缩短了具有经济和治疗价值的植物的育种周期。
{"title":"Enhancing Metabolic Engineering in Medicinal Plants Through Prime Editing","authors":"Haomiao Yu, Xiao Feng, Xiaohang Zheng, Xiao Wang, Wenxin Zheng, Zhizhou Zhang, Yuanyuan Jiang, Ruiwu Yang, Li Zhang, Zhaohui Zhong","doi":"10.1111/pbi.70532","DOIUrl":"https://doi.org/10.1111/pbi.70532","url":null,"abstract":"&lt;p&gt;Tanshinone and phenolic acid are key therapeutic compounds in the medicinal plant &lt;i&gt;Salvia miltiorrhiza&lt;/i&gt;, while rutin is the major bioactive metabolite in the medicinal plant &lt;i&gt;Fagopyrum dibotrys&lt;/i&gt;. However, their natural levels in cultivated varieties remain low, limiting their pharmacological potential. Enhancing metabolite accumulation through the modification of upstream transcription factors and key biosynthetic enzymes has shown promise (Deng et al. &lt;span&gt;2020&lt;/span&gt;). Compounding the challenge, medicinal plants like &lt;i&gt;S. miltiorrhiza&lt;/i&gt; are perennials with long life cycles, making conventional breeding inefficient. While CRISPR-Cas9 has facilitated gene knockout strategies in medicinal plants, precise base editing technologies remain underutilised (Das et al. &lt;span&gt;2024&lt;/span&gt;). Prime editing (PE) has emerged as a powerful tool for introducing targeted nucleotide changes; thus, offering a promising route for molecular breeding (Anzalone et al. &lt;span&gt;2019&lt;/span&gt;). While their application in medicinal plants remains largely unexplored.&lt;/p&gt;\u0000&lt;p&gt;To address these limitations in genome engineering of medicinal plants, we develop the prime editor in medicinal plants. Our previous work demonstrated that N-terminus M-MLV RT fused to Cas9 nickase plus epegRNA prime editor (NEPE) is highly efficient in rice (Zhong et al. &lt;span&gt;2024&lt;/span&gt;), indicating that the N-terminal fusion of M-MLV reverse transcriptase is particularly well-suited for plant applications. Building on this, and with optimization of the expression system, we further adapted the prime editor for medicinal plants, termed MediPlant-NEPE (Figure 1a; Figure S1).&lt;/p&gt;\u0000&lt;figure&gt;&lt;picture&gt;\u0000&lt;source media=\"(min-width: 1650px)\" srcset=\"/cms/asset/227ed4e7-a506-4d78-a262-b21f293b3a66/pbi70532-fig-0001-m.jpg\"/&gt;&lt;img alt=\"Details are in the caption following the image\" data-lg-src=\"/cms/asset/227ed4e7-a506-4d78-a262-b21f293b3a66/pbi70532-fig-0001-m.jpg\" loading=\"lazy\" src=\"/cms/asset/b14de0f4-3fe0-4aa2-9b5e-5fcefdd071f8/pbi70532-fig-0001-m.png\" title=\"Details are in the caption following the image\"/&gt;&lt;/picture&gt;&lt;figcaption&gt;\u0000&lt;div&gt;&lt;strong&gt;FIGURE 1&lt;span style=\"font-weight:normal\"&gt;&lt;/span&gt;&lt;/strong&gt;&lt;div&gt;Open in figure viewer&lt;i aria-hidden=\"true\"&gt;&lt;/i&gt;&lt;span&gt;PowerPoint&lt;/span&gt;&lt;/div&gt;\u0000&lt;/div&gt;\u0000&lt;div&gt;Construction and application of MediPlant-NEPE for enhancing metabolic engineering in medicinal plants. (a) Schematic of MediPlant-NEPE. (b) Genotyping of &lt;i&gt;SmbZIP1&lt;/i&gt;-edited hairy roots, red arrows indicate edits. (c) Phenotypes of &lt;i&gt;SmMYB36&lt;/i&gt; homozygous mutants. (d) Genotyping of &lt;i&gt;SmTCP15&lt;/i&gt;-edited lines, red arrows indicate edit sites. (e) Phenotypes of &lt;i&gt;SmTCP15&lt;/i&gt; homozygous mutants. (f) HPLC quantification of anthocyanin in mutant flowers. (g) Genotyping of &lt;i&gt;SmbZIP1&lt;/i&gt;-edited lines, red arrows indicate mutation sites. (h) Dry root powder of &lt;i&gt;SmbZIP1&lt;/i&gt; mutants. (i) HPLC quantification of major tanshinones in roots. (j) Genotyping of &lt;i&gt;SmRAS&lt;/i&gt;-edited hairy root lines, amino acid changes","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"1 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rare Natural SNP Activates SHOOT APICAL MERISTEM ENLARGER1 to Increase Branch Number and Silique Number on the Main Inflorescence in Brassica napus 罕见的天然SNP激活甘蓝型油菜茎尖分生组织扩大1,增加主花序分枝数和硅片数
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2026-01-06 DOI: 10.1111/pbi.70500
Sihao Zhang, Bao Li, Xiaoting Li, Song Yu, Yebitao Yang, Peipei Liu, Tanglingdian He, Wei Wang, Mei Li, Liang Guo, Jinxing Tu
Brassica napus is the second most important oil crop worldwide. Number of primary branches (Branch number, BN) and silique number on the main inflorescence (SMI) are key yield‐related quantitative traits. Here, we cloned a major QTL, qDB.A09 , which simultaneously influences BN and SMI. The causal gene, SHOOT APICAL MERISTEM ENLARGER1 ( SAME1 ), encodes a mutator‐like transposase‐derived transcription factor and is functionally confirmed to positively regulate BN and SMI in B. napus . A rare C‐to‐A single nucleotide polymorphism (SNP1055), located 1.4 kb downstream of SAME1 , is associated with its elevated expression in the boundary region between the organising centre and central zone of the shoot apical meristem (SAM). Functional analysis indicates that high SAME1 expression represses the expression of BnaC06.ARR15 and expands the BnaA09.WUS expression domain, resulting in enlarged SAM size and increased BN and SMI, with BN increased by 3.40 ± 0.45 and SMI increased by 32.67 ± 4.03. In addition, the seed yield per plant is increased by 22.05%. We further demonstrate that qDB.A09 significantly increases BN and SMI in the elite cultivar ZS11, with BN increased by 3.10 ± 0.67 and SMI increased by 27.35 ± 9.12. This study provides a new genetic locus that can be utilised for the genetic improvement of yield‐related traits in B. napus .
甘蓝型油菜是世界上第二重要的油料作物。一次枝数(Branch Number, BN)和主花序上的硅化数(silque Number, SMI)是与产量相关的关键数量性状。在这里,我们克隆了一个主要的QTL qDB。A09,同时影响BN和SMI。致病基因SHOOT APICAL MERISTEM amplification 1 (SAME1)编码一种突变样转座酶衍生的转录因子,并在功能上被证实能正向调节甘油酯中的BN和SMI。一种罕见的C - to - A单核苷酸多态性(SNP1055)位于SAME1下游1.4 kb处,与其在茎尖分生组织(SAM)组织中心和中心区之间的边界区域的表达升高有关。功能分析表明,SAME1的高表达抑制了BnaC06的表达。ARR15和扩展BnaA09。WUS表达域,导致SAM尺寸增大,BN和SMI增加,其中BN增加3.40±0.45,SMI增加32.67±4.03。单株种子产量提高22.05%。我们进一步证明qDB。A09显著提高了优良品种ZS11的BN和SMI, BN增加了3.10±0.67,SMI增加了27.35±9.12。该研究为甘蓝型油菜产量相关性状的遗传改良提供了一个新的遗传位点。
{"title":"Rare Natural SNP Activates SHOOT APICAL MERISTEM ENLARGER1 to Increase Branch Number and Silique Number on the Main Inflorescence in Brassica napus","authors":"Sihao Zhang, Bao Li, Xiaoting Li, Song Yu, Yebitao Yang, Peipei Liu, Tanglingdian He, Wei Wang, Mei Li, Liang Guo, Jinxing Tu","doi":"10.1111/pbi.70500","DOIUrl":"https://doi.org/10.1111/pbi.70500","url":null,"abstract":"<jats:styled-content style=\"fixed-case\"> <jats:italic>Brassica napus</jats:italic> </jats:styled-content> is the second most important oil crop worldwide. Number of primary branches (Branch number, BN) and silique number on the main inflorescence (SMI) are key yield‐related quantitative traits. Here, we cloned a major QTL, <jats:italic>qDB.A09</jats:italic> , which simultaneously influences BN and SMI. The causal gene, <jats:italic>SHOOT APICAL MERISTEM ENLARGER1</jats:italic> ( <jats:italic>SAME1</jats:italic> ), encodes a mutator‐like transposase‐derived transcription factor and is functionally confirmed to positively regulate BN and SMI in <jats:styled-content style=\"fixed-case\"> <jats:italic>B. napus</jats:italic> </jats:styled-content> . A rare C‐to‐A single nucleotide polymorphism (SNP1055), located 1.4 kb downstream of <jats:italic>SAME1</jats:italic> , is associated with its elevated expression in the boundary region between the organising centre and central zone of the shoot apical meristem (SAM). Functional analysis indicates that high <jats:italic>SAME1</jats:italic> expression represses the expression of <jats:italic>BnaC06.ARR15</jats:italic> and expands the <jats:italic>BnaA09.WUS</jats:italic> expression domain, resulting in enlarged SAM size and increased BN and SMI, with BN increased by 3.40 ± 0.45 and SMI increased by 32.67 ± 4.03. In addition, the seed yield per plant is increased by 22.05%. We further demonstrate that <jats:italic>qDB.A09</jats:italic> significantly increases BN and SMI in the elite cultivar ZS11, with BN increased by 3.10 ± 0.67 and SMI increased by 27.35 ± 9.12. This study provides a new genetic locus that can be utilised for the genetic improvement of yield‐related traits in <jats:styled-content style=\"fixed-case\"> <jats:italic>B. napus</jats:italic> </jats:styled-content> .","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"11 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autoactive MtDMI1 Reprogrammes Immunity and Development in Tomato via Ethylene Signalling MtDMI1通过乙烯信号重编程番茄免疫和发育
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2026-01-06 DOI: 10.1111/pbi.70533
Haiyue Liu, Ji Xu, Fang Xie
The Common Symbiosis Signalling Pathway (CSSP) underpins interactions between plants and microbes, yet its potential for crop improvement remains underexplored. Here, we investigated the gain‐of‐function mutant SPD1 ( MtDMI1 S760N ), which constitutively activates the symbiotic signalling pathway in Medicago truncatula , by expressing it in tomato ( Solanum lycopersicum cv. Micro‐Tom). Heterologous expression of SPD1 constitutively activated ethylene biosynthesis, leading to broad‐spectrum resistance against fungal, bacterial, and vascular pathogens. Beyond immunity, SPD1 reprogrammed tomato development, accelerating seed germination, flowering, and fruit ripening, while reducing arbuscular mycorrhizal colonisation and primary root growth. Transcriptome analysis revealed constitutive activation of ethylene biosynthesis and immune marker genes, consistent with increased ethylene emission and amplified ROS and MAPK response to both pathogenic and symbiotic elicitors. Ethylene inhibitor AVG reversed both immune activation and root defects, confirming a central role of ethylene signalling in SPD1‐mediated reprogramming. Our findings show that an autoactivate legume symbiotic component can reprogramme defence and development traits in a non‐legume via ethylene signalling, highlighting SPD1 as a promising tool for breeding early‐maturing and disease‐resistance crops.
共同共生信号通路(CSSP)支持植物和微生物之间的相互作用,但其在作物改良方面的潜力仍未得到充分探索。在这里,我们研究了功能增益突变体SPD1 (MtDMI1 S760N),该突变体通过在番茄(Solanum lycopersicum cv.)中表达,组成性地激活了苜蓿(Medicago truncatula)的共生信号通路。汤姆微观量)。SPD1的异源表达激活乙烯生物合成,导致对真菌、细菌和血管病原体的广谱抗性。除了免疫之外,SPD1还重新编程了番茄的发育,加速了种子萌发、开花和果实成熟,同时减少了丛枝菌根的定植和初生根的生长。转录组分析显示乙烯生物合成和免疫标记基因的组成性激活,与乙烯释放增加以及对致病和共生激发子的ROS和MAPK反应扩增相一致。乙烯抑制剂AVG逆转了免疫激活和根缺陷,证实了乙烯信号在SPD1介导的重编程中的核心作用。我们的研究结果表明,一种自激活的豆科植物共生成分可以通过乙烯信号对非豆科植物的防御和发育性状进行重编程,突出表明SPD1是培育早熟和抗病作物的一个有前途的工具。
{"title":"Autoactive MtDMI1 Reprogrammes Immunity and Development in Tomato via Ethylene Signalling","authors":"Haiyue Liu, Ji Xu, Fang Xie","doi":"10.1111/pbi.70533","DOIUrl":"https://doi.org/10.1111/pbi.70533","url":null,"abstract":"The Common Symbiosis Signalling Pathway (CSSP) underpins interactions between plants and microbes, yet its potential for crop improvement remains underexplored. Here, we investigated the gain‐of‐function mutant <jats:italic>SPD1</jats:italic> ( <jats:italic>MtDMI1</jats:italic> <jats:sup> <jats:italic>S760N</jats:italic> </jats:sup> ), which constitutively activates the symbiotic signalling pathway in <jats:styled-content style=\"fixed-case\"> <jats:italic>Medicago truncatula</jats:italic> </jats:styled-content> , by expressing it in tomato ( <jats:styled-content style=\"fixed-case\"> <jats:italic>Solanum lycopersicum</jats:italic> </jats:styled-content> cv. Micro‐Tom). Heterologous expression of <jats:italic>SPD1</jats:italic> constitutively activated ethylene biosynthesis, leading to broad‐spectrum resistance against fungal, bacterial, and vascular pathogens. Beyond immunity, SPD1 reprogrammed tomato development, accelerating seed germination, flowering, and fruit ripening, while reducing arbuscular mycorrhizal colonisation and primary root growth. Transcriptome analysis revealed <jats:italic>constitutive</jats:italic> activation of ethylene biosynthesis and immune marker genes, consistent with increased ethylene emission and amplified ROS and MAPK response to both pathogenic and symbiotic elicitors. Ethylene inhibitor AVG reversed both immune activation and root defects, confirming a central role of ethylene signalling in SPD1‐mediated reprogramming. Our findings show that an autoactivate legume symbiotic component can reprogramme defence and development traits in a non‐legume via ethylene signalling, highlighting SPD1 as a promising tool for breeding early‐maturing and disease‐resistance crops.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"14 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145903588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Biotechnology Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1