首页 > 最新文献

Plant Biotechnology Journal最新文献

英文 中文
Untargeted mutagenesis of brassinosteroid receptor SbBRI1 confers drought tolerance by altering phenylpropanoid metabolism in Sorghum bicolor 黄铜类固醇受体 SbBRI1 的非靶向诱变通过改变双色高粱的苯丙氨酸代谢产生抗旱能力
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-26 DOI: 10.1111/pbi.14461
Juan B. Fontanet‐Manzaneque, Natalie Laibach, Iván Herrero‐García, Veredas Coleto‐Alcudia, David Blasco‐Escámez, Chen Zhang, Luis Orduña, Saleh Alseekh, Sara Miller, Nanna Bjarnholt, Alisdair R. Fernie, José Tomás Matus, Ana I. Caño‐Delgado
SummaryDrought is a critical issue in modern agriculture; therefore, there is a need to create crops with drought resilience. The complexity of plant responses to abiotic stresses, particularly in the field of brassinosteroid (BR) signalling, has been the subject of extensive research. In this study, we unveil compelling insights indicating that the BRASSINOSTEROID‐INSENSITIVE 1 (BRI1) receptor in Arabidopsis and Sorghum plays a critical role as a negative regulator of drought responses. Introducing untargeted mutation in the sorghum BRI1 receptor (SbBRI1) effectively enhances the plant's ability to withstand osmotic and drought stress. Through DNA Affinity Purification sequencing (DAP‐seq), we show that the sorghum BRI1‐EMS‐SUPPRESSOR 1 (SbBES1) transcription factor, a downstream player of the BR signalling, binds to a conserved G‐box binding motif, and it is responsible for regulating BR homeostasis, as its Arabidopsis ortholog AtBES1. We further characterized the drought tolerance of sorghum bri1 mutants and decipher SbBES1‐mediated regulation of phenylpropanoid pathway. Our findings suggest that SbBRI1 signalling serves a dual purpose: under normal conditions, it regulates lignin biosynthesis by SbBES1, but during drought conditions, BES1 becomes less active, allowing the activation of the flavonoid pathway. This adaptive shift improves the photosynthetic rate and photoprotection, reinforcing crop adaptation to drought.
摘要干旱是现代农业的一个关键问题;因此,有必要培育具有抗旱能力的作物。植物对非生物胁迫的反应非常复杂,尤其是在类铜绿素(BR)信号传导领域,一直是广泛研究的主题。在这项研究中,我们揭示了一个令人信服的观点,即拟南芥和高粱中的铜绿素-不敏感 1(BRI1)受体在干旱响应中起着关键的负调控作用。对高粱 BRI1 受体(SbBRI1)进行非靶向突变,可有效提高植物抵御渗透胁迫和干旱胁迫的能力。通过DNA亲和纯化测序(DAP-seq),我们发现高粱BRI1-EMS-SUPPRESSOR 1(SbBES1)转录因子与拟南芥同源物AtBES1一样,是BR信号的下游作用因子,与保守的G-box结合基序结合,负责调控BR平衡。我们进一步鉴定了高粱bri1突变体的耐旱性,并破译了SbBES1介导的苯丙酮途径调控。我们的研究结果表明,SbBRI1 信号具有双重作用:在正常条件下,它通过 SbBES1 调控木质素的生物合成,但在干旱条件下,BES1 的活性降低,从而激活了类黄酮途径。这种适应性转变提高了光合速率和光保护,增强了作物对干旱的适应性。
{"title":"Untargeted mutagenesis of brassinosteroid receptor SbBRI1 confers drought tolerance by altering phenylpropanoid metabolism in Sorghum bicolor","authors":"Juan B. Fontanet‐Manzaneque, Natalie Laibach, Iván Herrero‐García, Veredas Coleto‐Alcudia, David Blasco‐Escámez, Chen Zhang, Luis Orduña, Saleh Alseekh, Sara Miller, Nanna Bjarnholt, Alisdair R. Fernie, José Tomás Matus, Ana I. Caño‐Delgado","doi":"10.1111/pbi.14461","DOIUrl":"https://doi.org/10.1111/pbi.14461","url":null,"abstract":"SummaryDrought is a critical issue in modern agriculture; therefore, there is a need to create crops with drought resilience. The complexity of plant responses to abiotic stresses, particularly in the field of brassinosteroid (BR) signalling, has been the subject of extensive research. In this study, we unveil compelling insights indicating that the BRASSINOSTEROID‐INSENSITIVE 1 (BRI1) receptor in Arabidopsis and Sorghum plays a critical role as a negative regulator of drought responses. Introducing untargeted mutation in the sorghum BRI1 receptor (SbBRI1) effectively enhances the plant's ability to withstand osmotic and drought stress. Through DNA Affinity Purification sequencing (DAP‐seq), we show that the sorghum BRI1‐EMS‐SUPPRESSOR 1 (SbBES1) transcription factor, a downstream player of the BR signalling, binds to a conserved G‐box binding motif, and it is responsible for regulating BR homeostasis, as its Arabidopsis ortholog AtBES1. We further characterized the drought tolerance of sorghum <jats:italic>bri1</jats:italic> mutants and decipher SbBES1‐mediated regulation of phenylpropanoid pathway. Our findings suggest that SbBRI1 signalling serves a dual purpose: under normal conditions, it regulates lignin biosynthesis by SbBES1, but during drought conditions, BES1 becomes less active, allowing the activation of the flavonoid pathway. This adaptive shift improves the photosynthetic rate and photoprotection, reinforcing crop adaptation to drought.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"24 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic engineering‐induced transcriptome reprogramming of lipid biosynthesis enhances oil composition in oat 代谢工程诱导的脂质生物合成转录组重编可提高燕麦的油脂成分
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-25 DOI: 10.1111/pbi.14467
Zhou Zhou, Rajvinder Kaur, Thomas Donoso, Jae‐Bom Ohm, Rajeev Gupta, Mark Lefsrud, Jaswinder Singh
SummaryThe endeavour to elevate the nutritional value of oat (Avena sativa) by altering the oil composition and content positions it as an optimal crop for fostering human health and animal feed. However, optimization of oil traits on oat through conventional breeding is challenging due to its quantitative nature and complexity of the oat genome. We introduced two constructs containing three key genes integral to lipid biosynthesis and/or regulatory pathways from Arabidopsis (AtWRI1 and AtDGAT1) and Sesame (SiOLEOSIN) into the oat cultivar ‘Park’ to modify the fatty acid composition. Four homozygous transgenic lines were generated with a transformation frequency of 7%. The expression of these introduced genes initiated a comprehensive transcriptional reprogramming in oat grains and leaves. Notably, endogenous DGAT, WRI1 and OLEOSIN genes experienced upregulation, while genes associated with fatty acid biosynthesis, such as KASII, SACPD and FAD2, displayed antagonistic expression patterns between oat grains and leaves. Transcriptomic analyses highlighted significant differential gene expression, particularly enriched in lipid metabolism. Comparing the transgenic oat plants with the wild type, we observed a remarkable increase of up to 34% in oleic acid content in oat grains. Furthermore, there were marked improvements in the total oil content in oat leaves, as well as primary metabolites changes in both oat grains and leaves, while maintaining homeostasis in the transgenic oat plants. These findings underscore the effectiveness of genetic engineering in manipulating oat oil composition and content, offering promising implications for human consumption and animal feeding through oat crop improvement programmes.
摘要通过改变燕麦(Avena sativa)的油脂成分和含量来提高其营养价值的努力,使燕麦成为促进人类健康和动物饲料的最佳作物。然而,由于燕麦基因组的定量性和复杂性,通过常规育种优化燕麦的油脂性状具有挑战性。我们从拟南芥(AtWRI1 和 AtDGAT1)和芝麻(SiOLEOSIN)中引入了两个含有三个与脂质生物合成和/或调控途径有关的关键基因的构建体,以改变燕麦栽培品种 "Park "的脂肪酸组成。产生了四个同源转基因品系,转化频率为 7%。这些导入基因的表达启动了燕麦籽粒和叶片的全面转录重编程。值得注意的是,内源 DGAT、WRI1 和 OLEOSIN 基因出现了上调,而与脂肪酸生物合成相关的基因,如 KASII、SACPD 和 FAD2,则在燕麦籽粒和叶片之间呈现出拮抗表达模式。转录组分析强调了基因表达的显著差异,尤其是在脂质代谢方面。通过比较转基因燕麦植株和野生型,我们观察到燕麦籽粒中的油酸含量显著增加了 34%。此外,在保持转基因燕麦植株体内平衡的同时,燕麦叶片中的总油含量以及燕麦籽粒和叶片中主要代谢物的变化也有明显改善。这些发现强调了基因工程在操纵燕麦油成分和含量方面的有效性,为通过燕麦作物改良计划促进人类消费和动物饲养带来了希望。
{"title":"Metabolic engineering‐induced transcriptome reprogramming of lipid biosynthesis enhances oil composition in oat","authors":"Zhou Zhou, Rajvinder Kaur, Thomas Donoso, Jae‐Bom Ohm, Rajeev Gupta, Mark Lefsrud, Jaswinder Singh","doi":"10.1111/pbi.14467","DOIUrl":"https://doi.org/10.1111/pbi.14467","url":null,"abstract":"SummaryThe endeavour to elevate the nutritional value of oat (<jats:italic>Avena sativa</jats:italic>) by altering the oil composition and content positions it as an optimal crop for fostering human health and animal feed. However, optimization of oil traits on oat through conventional breeding is challenging due to its quantitative nature and complexity of the oat genome. We introduced two constructs containing three key genes integral to lipid biosynthesis and/or regulatory pathways from Arabidopsis (<jats:italic>AtWRI1</jats:italic> and <jats:italic>AtDGAT1</jats:italic>) and Sesame (<jats:italic>SiOLEOSIN</jats:italic>) into the oat cultivar ‘Park’ to modify the fatty acid composition. Four homozygous transgenic lines were generated with a transformation frequency of 7%. The expression of these introduced genes initiated a comprehensive transcriptional reprogramming in oat grains and leaves. Notably, endogenous <jats:italic>DGAT</jats:italic>, <jats:italic>WRI1</jats:italic> and <jats:italic>OLEOSIN</jats:italic> genes experienced upregulation, while genes associated with fatty acid biosynthesis, such as <jats:italic>KASII</jats:italic>, <jats:italic>SACPD</jats:italic> and <jats:italic>FAD2</jats:italic>, displayed antagonistic expression patterns between oat grains and leaves. Transcriptomic analyses highlighted significant differential gene expression, particularly enriched in lipid metabolism. Comparing the transgenic oat plants with the wild type, we observed a remarkable increase of up to 34% in oleic acid content in oat grains. Furthermore, there were marked improvements in the total oil content in oat leaves, as well as primary metabolites changes in both oat grains and leaves, while maintaining homeostasis in the transgenic oat plants. These findings underscore the effectiveness of genetic engineering in manipulating oat oil composition and content, offering promising implications for human consumption and animal feeding through oat crop improvement programmes.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"24 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The LCG1-OsBP5/OsEBP89-Wx module regulates the grain chalkiness and taste quality in rice LCG1-OsBP5/OsEBP89-Wx 模块调控水稻的垩白度和口感质量
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-23 DOI: 10.1111/pbi.14475
Bin Tu, Tao Zhang, Pin Liu, Wen Yang, Ling Zheng, Ying Dai, Hao Wang, Song Lin, Zehua Zhang, Xiaohang Zheng, Mengting Yuan, Yong Chen, Xiaobo Zhu, Hua Yuan, Ting Li, Jiawei Xiong, Zhaohui Zhong, Weilan Chen, Bingtian Ma, Peng Qin, Yuping Wang, Shigui Li
It is well known that the overall quality of japonica/geng rice is superior to that of indica/xian rice varieties. However, the molecular mechanisms underlying the quality disparities between these two subspecies of rice are still largely unknown. In this study, we have pinpointed a gene homologous to SLR1, termed LCG1, exhibiting significant expression during early caryopsis development and playing a specific role in regulating rice chalkiness and taste by affecting the accumulation of grain storage components, starch granule structure and chain length distribution of amylopectin. LCG1 physically interacts with OsBP5 and indirectly influences the expression of the amylose synthesis gene Waxy (Wx) by hindering the transcriptional activity of the OsBP5/OsEBP89 complex. Notably, sequence variations in the promoter region of LCG1 result in enhanced transcription in japonica rice accessions. This leads to elevated LCG1 expression in CSSL-LCG1Nip, thereby enhancing rice quality. Our research elucidates the molecular mechanism underlying the impact of the LCG1-OsBP5/OsEBP89-Wx regulatory pathway on rice chalkiness and taste quality, offering new genetic resources for improving the indica rice quality.
众所周知,粳/耿稻的总体品质优于籼/湘稻品种。然而,这两个水稻亚种之间品质差异的分子机制在很大程度上仍然未知。在这项研究中,我们发现了一个与 SLR1 同源的基因,称为 LCG1,它在早期颖果发育过程中表现出显著的表达,并通过影响谷物贮藏成分的积累、淀粉颗粒结构和直链淀粉的链长分布,在调节水稻垩白度和口感方面发挥着特殊作用。LCG1 与 OsBP5 发生物理作用,通过阻碍 OsBP5/OsEBP89 复合物的转录活性间接影响淀粉合成基因 Waxy(Wx)的表达。值得注意的是,在粳稻品种中,LCG1 启动子区域的序列变异会导致转录增强。这导致了 CSSL-LCG1Nip 中 LCG1 表达的升高,从而提高了稻米的品质。我们的研究阐明了LCG1-OsBP5/OsEBP89-Wx调控途径对水稻垩白度和食味品质影响的分子机制,为改善籼稻品质提供了新的遗传资源。
{"title":"The LCG1-OsBP5/OsEBP89-Wx module regulates the grain chalkiness and taste quality in rice","authors":"Bin Tu, Tao Zhang, Pin Liu, Wen Yang, Ling Zheng, Ying Dai, Hao Wang, Song Lin, Zehua Zhang, Xiaohang Zheng, Mengting Yuan, Yong Chen, Xiaobo Zhu, Hua Yuan, Ting Li, Jiawei Xiong, Zhaohui Zhong, Weilan Chen, Bingtian Ma, Peng Qin, Yuping Wang, Shigui Li","doi":"10.1111/pbi.14475","DOIUrl":"https://doi.org/10.1111/pbi.14475","url":null,"abstract":"It is well known that the overall quality of <i>japonica/geng</i> rice is superior to that of <i>indica/xian</i> rice varieties. However, the molecular mechanisms underlying the quality disparities between these two subspecies of rice are still largely unknown. In this study, we have pinpointed a gene homologous to <i>SLR1</i>, termed <i>LCG1</i>, exhibiting significant expression during early caryopsis development and playing a specific role in regulating rice chalkiness and taste by affecting the accumulation of grain storage components, starch granule structure and chain length distribution of amylopectin. LCG1 physically interacts with OsBP5 and indirectly influences the expression of the amylose synthesis gene <i>Waxy</i> (<i>Wx</i>) by hindering the transcriptional activity of the OsBP5/OsEBP89 complex. Notably, sequence variations in the promoter region of <i>LCG1</i> result in enhanced transcription in <i>japonica</i> rice accessions. This leads to elevated <i>LCG1</i> expression in CSSL<i>-LCG1</i><sup>Nip</sup>, thereby enhancing rice quality. Our research elucidates the molecular mechanism underlying the impact of the LCG1-OsBP5/OsEBP89-<i>Wx</i> regulatory pathway on rice chalkiness and taste quality, offering new genetic resources for improving the <i>indica</i> rice quality.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"65 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142306215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A gap‐free genome of pillar peach (Prunus persica L.) provides new insights into branch angle and double flower traits 柱桃(Prunus persica L.)的无间隙基因组提供了有关枝角和重瓣花性状的新见解
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-22 DOI: 10.1111/pbi.14480
Haipeng Zhang, Xiaodong Lian, Fan Gao, Conghao Song, Beibei Feng, Xianbo Zheng, Xiaobei Wang, Nan Hou, Jun Cheng, Wei Wang, Langlang Zhang, Jidong Li, Xia Ye, Jiancan Feng, Bin Tan
{"title":"A gap‐free genome of pillar peach (Prunus persica L.) provides new insights into branch angle and double flower traits","authors":"Haipeng Zhang, Xiaodong Lian, Fan Gao, Conghao Song, Beibei Feng, Xianbo Zheng, Xiaobei Wang, Nan Hou, Jun Cheng, Wei Wang, Langlang Zhang, Jidong Li, Xia Ye, Jiancan Feng, Bin Tan","doi":"10.1111/pbi.14480","DOIUrl":"https://doi.org/10.1111/pbi.14480","url":null,"abstract":"","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"21 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Knockout of phosphatidate phosphohydrolase genes confers broad‐spectrum disease resistance in plants 敲除磷脂磷酸水解酶基因赋予植物广谱抗病性
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-22 DOI: 10.1111/pbi.14477
Qiuwen Gong, Gan Sha, Xinyu Han, Zhenhua Guo, Lei Yang, Ting Chen, Wei Yang, Ronglei Tan, Meng Liu, Fengdie Xia, Guang Chen, Yufei Li, Xin Shen, Kabin Xie, Guangqin Cai, Honghong Hu, Jie Luo, Qiang Li, Guotian Li
{"title":"Knockout of phosphatidate phosphohydrolase genes confers broad‐spectrum disease resistance in plants","authors":"Qiuwen Gong, Gan Sha, Xinyu Han, Zhenhua Guo, Lei Yang, Ting Chen, Wei Yang, Ronglei Tan, Meng Liu, Fengdie Xia, Guang Chen, Yufei Li, Xin Shen, Kabin Xie, Guangqin Cai, Honghong Hu, Jie Luo, Qiang Li, Guotian Li","doi":"10.1111/pbi.14477","DOIUrl":"https://doi.org/10.1111/pbi.14477","url":null,"abstract":"","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"57 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying resistant mutations in the herbicide target site of the plant 4-hydroxyphenylpyruvate dioxygenase 确定植物 4-羟基苯丙酮酸二加氧酶除草剂靶点的抗性突变
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-20 DOI: 10.1111/pbi.14478
Mugui Wang, Yingli Zhong, Yuxin He, Jiyong Xie, Hongtao Xie, Yingying Wang, Li Xue, Xin Wang, Gaurav Zinta, Vipasha Verma, Hongzhi Wang, Yanfei Mao, Jian-Kang Zhu
<p>Weed species have increasingly emerged with resistance against previously effective herbicides, such as glyphosate and inhibitors of acetyl coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS) (Heap, <span>2024</span>). Owing to its novel mode of action, 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibitors are effective in controlling herbicide-resistant weeds and recently attracted much attention. Resistance to HPPD-inhibitors has been slow to evolve in weeds, and only a few cases of resistant events have been reported and most of these are associated with enhanced herbicide metabolism (Heap, <span>2024</span>; Lu <i>et al</i>., <span>2023</span>). Since resistant sites in the entire target gene are largely unknown, we <i>in vivo</i> mutagenized the <i>HPPD</i> gene in Arabidopsis and rice using base editing libraries to uncover potential target-site resistant mutations.</p><p>Arabidopsis are highly sensitive to mesotrione. After large-scale transformation of base editing pools (Figure S1), we found one T1 seedling growing normally in medium containing 100 nM mesotrione (Figure S2a). Genotyping showed that a heterozygous T-to-C substitution occurred, causing the Y342H mutation in the HPPD protein sequence (Figure S2b, c). Homozygous progenies of <i>HPPD</i><sup><i>Y342H</i></sup> (Figure S2d) were tolerant up to 200 nM mesotrione and 50 nM isoxaflutole in medium (Figures 1a and S3a) and had a much higher survival rate than wild type (WT) when sprayed with ≥1 μM mesotrione or isoxaflutole in pots (Figure 1b, c). <i>AtHPPD</i><sup><i>Y342H</i></sup> mutants exhibited similar phenotype and showed no significant differences in plant height and seed yield with the WT plants (Figure S4).</p><figure><picture><source media="(min-width: 1650px)" srcset="/cms/asset/0c020b3d-76a3-4853-894c-ba167297cbe4/pbi14478-fig-0001-m.jpg"/><img alt="Details are in the caption following the image" data-lg-src="/cms/asset/0c020b3d-76a3-4853-894c-ba167297cbe4/pbi14478-fig-0001-m.jpg" loading="lazy" src="/cms/asset/32583bc8-f9ce-44ae-816c-675d85c88574/pbi14478-fig-0001-m.png" title="Details are in the caption following the image"/></picture><figcaption><div><strong>Figure 1<span style="font-weight:normal"></span></strong><div>Open in figure viewer<i aria-hidden="true"></i><span>PowerPoint</span></div></div><div>Target-site-mutations improve plant resistance to HPPD-inhibitors. The AtHPPD<sup>Y342H</sup> mutation significantly increases tolerance to mesotrione (MST) and isoxaflutole (IFT) during germination (a) and seedling (b). Bar equals 3 cm (a) or 7.5 cm (b). (c) Survival rate of the wild type (WT) Col-0 and <i>AtHPPD</i><sup><i>Y342H</i></sup> mutants after being sprayed with herbicides at the seedling stage. Phenotype of the soybean WT and <i>GmHPPD</i><sup><i>Y388H</i></sup> mutants after being sprayed with MST (d) or IFT (e). Bar equals 15 cm. (f) Seed amount and yield from soybean WT and <i>GmHPPD</i><sup><i>Y388H</i></sup> mutants grown in gr
为了通过靶位突变进一步提高其抗性,我们利用碱基编辑器对粳稻中的 HPPD 基因进行了集合编辑。水稻在种子萌发阶段对 HPPD 抑制剂表现出高度敏感性,因此我们使用 T1 种子筛选抗性突变体。这一策略还使我们能够同时测试不同的 HPPD 抑制剂(图 S6)。从随机检测的转基因品系中发现了数百个氨基酸突变体(图 S7;表 S1)。虽然这些突变体大多仍然敏感,但有几个突变体对一种或多种测试的除草剂表现出更强的抗性(数据 S1)。N338D 突变导致在萌芽期对甲磺胺草酮、腾博草酮和异噁唑草酮有轻微的耐受性,但在幼苗期只有异噁唑草酮的抗性得到证实(图 1i,j)。P336L 突变增加了对腾博硫磷的抗性,但没有增加对甲霜灵或异噁唑禾草灵的抗性(图 1i,j)。N338D 和 P336L 突变体都表现出植株高度降低和/或结实率降低(图 S8),这表明除草剂耐受性需要付出适应性代价。与 AtHPPD-Y342H 相对应的 Y339H 突变体并没有提高对任何测试的 HPPD 抑制剂的耐受性(数据 S1)。由于 HIS1 基因对抗性有重要贡献,因此 OsHPPD 的突变仅略微提高了对 HPPD 抑制剂的总体耐受性也就不足为奇了。最近,棉花和拟南芥的 HPPD 编码序列也进行了体外或体内进化(钱和石,2024 年;王等人,2024 年)。大多数抗性突变位于螺旋门内或附近,这可能会改变结合位点的构象,影响除草剂的可及性。然而,仅凭这些突变带来的抗性增强可能还不足以在田间应用,这或许可以解释为什么迄今为止几乎还没有关于靶标位点抗性杂草的报道。随着 HPPD 除草剂的长期应用,新出现的抗性杂草很可能会增强对特定类型除草剂的代谢,这意味着轮换使用不同类型的 HPPD 除草剂可能有助于延缓抗性杂草的出现、2014 年),通过在质粒中异位表达 HPPD 基因(Dufourmantel 等人,2007 年)或直接敲除内源 HPPD 基因(Lu 等人,2021 年)来增强表达,以及引入 HPPD 抑制剂代谢基因 HIS1(Maeda 等人,2019 年)。OsHPPD 3'-UTR 的变异可能会影响 mRNA 稳定性或蛋白质翻译的调控,也有报道称这种变异可提高抗性(Wu 等,2023 年)。
{"title":"Identifying resistant mutations in the herbicide target site of the plant 4-hydroxyphenylpyruvate dioxygenase","authors":"Mugui Wang, Yingli Zhong, Yuxin He, Jiyong Xie, Hongtao Xie, Yingying Wang, Li Xue, Xin Wang, Gaurav Zinta, Vipasha Verma, Hongzhi Wang, Yanfei Mao, Jian-Kang Zhu","doi":"10.1111/pbi.14478","DOIUrl":"https://doi.org/10.1111/pbi.14478","url":null,"abstract":"&lt;p&gt;Weed species have increasingly emerged with resistance against previously effective herbicides, such as glyphosate and inhibitors of acetyl coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS) (Heap, &lt;span&gt;2024&lt;/span&gt;). Owing to its novel mode of action, 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibitors are effective in controlling herbicide-resistant weeds and recently attracted much attention. Resistance to HPPD-inhibitors has been slow to evolve in weeds, and only a few cases of resistant events have been reported and most of these are associated with enhanced herbicide metabolism (Heap, &lt;span&gt;2024&lt;/span&gt;; Lu &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;). Since resistant sites in the entire target gene are largely unknown, we &lt;i&gt;in vivo&lt;/i&gt; mutagenized the &lt;i&gt;HPPD&lt;/i&gt; gene in Arabidopsis and rice using base editing libraries to uncover potential target-site resistant mutations.&lt;/p&gt;\u0000&lt;p&gt;Arabidopsis are highly sensitive to mesotrione. After large-scale transformation of base editing pools (Figure S1), we found one T1 seedling growing normally in medium containing 100 nM mesotrione (Figure S2a). Genotyping showed that a heterozygous T-to-C substitution occurred, causing the Y342H mutation in the HPPD protein sequence (Figure S2b, c). Homozygous progenies of &lt;i&gt;HPPD&lt;/i&gt;&lt;sup&gt;&lt;i&gt;Y342H&lt;/i&gt;&lt;/sup&gt; (Figure S2d) were tolerant up to 200 nM mesotrione and 50 nM isoxaflutole in medium (Figures 1a and S3a) and had a much higher survival rate than wild type (WT) when sprayed with ≥1 μM mesotrione or isoxaflutole in pots (Figure 1b, c). &lt;i&gt;AtHPPD&lt;/i&gt;&lt;sup&gt;&lt;i&gt;Y342H&lt;/i&gt;&lt;/sup&gt; mutants exhibited similar phenotype and showed no significant differences in plant height and seed yield with the WT plants (Figure S4).&lt;/p&gt;\u0000&lt;figure&gt;&lt;picture&gt;\u0000&lt;source media=\"(min-width: 1650px)\" srcset=\"/cms/asset/0c020b3d-76a3-4853-894c-ba167297cbe4/pbi14478-fig-0001-m.jpg\"/&gt;&lt;img alt=\"Details are in the caption following the image\" data-lg-src=\"/cms/asset/0c020b3d-76a3-4853-894c-ba167297cbe4/pbi14478-fig-0001-m.jpg\" loading=\"lazy\" src=\"/cms/asset/32583bc8-f9ce-44ae-816c-675d85c88574/pbi14478-fig-0001-m.png\" title=\"Details are in the caption following the image\"/&gt;&lt;/picture&gt;&lt;figcaption&gt;\u0000&lt;div&gt;&lt;strong&gt;Figure 1&lt;span style=\"font-weight:normal\"&gt;&lt;/span&gt;&lt;/strong&gt;&lt;div&gt;Open in figure viewer&lt;i aria-hidden=\"true\"&gt;&lt;/i&gt;&lt;span&gt;PowerPoint&lt;/span&gt;&lt;/div&gt;\u0000&lt;/div&gt;\u0000&lt;div&gt;Target-site-mutations improve plant resistance to HPPD-inhibitors. The AtHPPD&lt;sup&gt;Y342H&lt;/sup&gt; mutation significantly increases tolerance to mesotrione (MST) and isoxaflutole (IFT) during germination (a) and seedling (b). Bar equals 3 cm (a) or 7.5 cm (b). (c) Survival rate of the wild type (WT) Col-0 and &lt;i&gt;AtHPPD&lt;/i&gt;&lt;sup&gt;&lt;i&gt;Y342H&lt;/i&gt;&lt;/sup&gt; mutants after being sprayed with herbicides at the seedling stage. Phenotype of the soybean WT and &lt;i&gt;GmHPPD&lt;/i&gt;&lt;sup&gt;&lt;i&gt;Y388H&lt;/i&gt;&lt;/sup&gt; mutants after being sprayed with MST (d) or IFT (e). Bar equals 15 cm. (f) Seed amount and yield from soybean WT and &lt;i&gt;GmHPPD&lt;/i&gt;&lt;sup&gt;&lt;i&gt;Y388H&lt;/i&gt;&lt;/sup&gt; mutants grown in gr","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"9 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A telomere-to-telomere haplotype-resolved genome of white-fruited strawberry reveals the complexity of fruit colour formation of cultivated strawberry 端粒间单倍型解析的白果草莓基因组揭示了栽培草莓果实颜色形成的复杂性
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-20 DOI: 10.1111/pbi.14479
Junxiang Zhang, Shuang Liu, Shuo Zhao, Yuxin Nie, Zhihong Zhang
<p>Cultivated strawberry (<i>Fragaria</i> × <i>ananassa</i>, 2<i>n</i> = 8<i>x</i> = 56) is an important horticultural crop with substantial economic and nutritional value. The improvement of cultivated strawberry is more challenging not only in its octoploid genome but also in the frequent homoeologous exchanges and polyploidization, which replaces substantial portions of some subgenomes with sequences derived from ancestrally related chromosomes (Edger <i>et al</i>., <span>2019</span>). Therefore, a high-quality genome for the cultivated strawberry will provide important information for identifying agriculturally important genes for breeding. Several cultivated strawberry genomes have been assembled. However, some published reference genomes of cultivated strawberries remained incomplete, and some published genomes of cultivated strawberries were not truly haplotype-resolved (Edger <i>et al</i>., <span>2019</span>; Lee <i>et al</i>., <span>2021</span>; Mao <i>et al</i>., <span>2023</span>; Song <i>et al</i>., <span>2024</span>).</p><p>Here, we de novo assembled a telomere-to-telomere haplotype-resolved reference genome with 56 chromosomes (Figure 1a) of the white-fruited strawberry cultivar ‘Chulian’ (Figure S1) by incorporating PacBio HiFi, ONT ultra-long and Hi-C sequencing, and Illumina sequencing data. The centromere candidate sequences and regions of each chromosome were identified (Figure S2 and Table S1). We divided 56 chromosomes into two haplotypes, Hap1 (chr × − × −1) and Hap2 (chr × − × −2), and each haplotype includes 28 chromosomes. The final genome assembly sizes were 787.52 Mb with 33 contigs for Hap1 and 778.03 Mb with 34 contigs for Hap2, respectively. The contigs N50 of Hap1 and Hap2 were 27.92 Mb and 26.45 Mb, respectively. We identified 52 telomeres in Hap1 and 50 in Hap2 by investigating telomeric repeats (TTTAGGG)n (Figures S2; Table S2).</p><figure><picture><source media="(min-width: 1650px)" srcset="/cms/asset/d5382006-039b-40a0-bfe8-be1c111810fd/pbi14479-fig-0001-m.jpg"/><img alt="Details are in the caption following the image" data-lg-src="/cms/asset/d5382006-039b-40a0-bfe8-be1c111810fd/pbi14479-fig-0001-m.jpg" loading="lazy" src="/cms/asset/925952e6-fcf3-4bd2-9b4a-762e3c883dad/pbi14479-fig-0001-m.png" title="Details are in the caption following the image"/></picture><figcaption><div><strong>Figure 1<span style="font-weight:normal"></span></strong><div>Open in figure viewer<i aria-hidden="true"></i><span>PowerPoint</span></div></div><div>Genomic features and the loss-of-anthocyanin phenotype of ‘Chulian’ strawberry. (a) The haplotype-resolved genome assembly of ‘Chulian’ strawberry. (b) Transient functional analysis of point mutation of ‘Chulian’ strawberry <i>FaMYB10</i> on chr1-2-2. Scale bar, 1 cm. (c) The phenotype of ‘Chulian’ strawberry under lighting and shading treatment. Scale bar, 1 cm.</div></figcaption></figure><p>The integrity and accuracy of the genome assembly of ‘Chulian’ were evaluated by Benc
与'艳丽'相比,chr1-2-2 上的 FaMYB10 只有一个核苷酸的差异。点突变(C 到 A)发生在第 94 个核苷酸上,导致氨基酸从'燕理'的组氨酸(H)替换为'楚连'的天冬酰胺(N)(图 S1a、b)。瞬时功能分析发现,在'艳丽'的 chr1-2-1 上过表达 FaMYB10 可以恢复'楚莲'的花青素缺乏表型(图 S7)。有趣的是,瞬时功能分析发现,在'楚莲'的 chr1-2-2 上导入 FaMYB10 的启动子[Pro-CL-FaMYB10(1-2-2)]的果实不能恢复'楚莲'的花青素缺乏表型。相反,用'艳丽'的启动子[Pro-YL-FaMYB10(1-2-2)]导入'艳丽'chr1-2-2 上的 FaMYB10 的果实则恢复了'楚莲'的花青素缺乏表型(图 1b)。此外,与对照果实相比,导入 Pro-YL-FaMYB10(1-2-2) 的果实中一些花青素生物合成基因的表达水平有所提高(图 S8)。这些结果表明,'楚莲'chr1-2-2上的FaMYB10点突变影响了其功能,其分子基础有待进一步研究。chr1-2-1上FaMYB10的8-bp插入和chr1-2-2上FaMYB10的点突变是导致'楚莲'草莓白果表型的主要原因。不同亚基因组的基因表现出差异,在许多异源多倍体物种中都能检测到显性基因表达模式。在'楚莲'草莓果实的发育过程中,chr1-2 上的 FaMYB10 是显性表达基因(图 S9)。然而,在光照处理下,'Chulian'的果皮变红并积累花青素(图 1c)。我们对光照和遮光处理下成熟果实果皮进行了 RNA 序列分析。共有 5265 个基因被差异表达。其中 2215 个基因上调,3050 个基因下调(图 S10a)。KEGG 分析显示,这些差异表达基因主要涉及植物激素信号转导、植物昼夜节律、内质网蛋白质加工和类黄酮代谢途径(图 S10b)。耐人寻味的是,我们发现'楚莲'果皮在光照处理下与遮光处理下相比,除 chr1-2 上的 FaMYB10 外,'楚莲'chr1-4 上的 FaMYB10 的转录水平显著增加(图 1d)。此外,与'楚莲'chr1-2上的FaMYB10相比,我们发现chr1-4上的FaMYB10启动子包含了更多的光响应元件以及水杨酸和茉莉酸甲酯元件(图S11;表S8)。我们发现,chr1-2-1上FaMYB10编码区的8-bp插入和chr1-2-2上FaMYB10的单核苷酸突变与果实中花青素的损失有关。有趣的是,我们发现在果实发育过程中,通过激活 chr1-4 上的 FaMYB10 而不是 chr1-2 上的显性同源 FaMYB10 的表达,可以调节花青素的积累。这些结果将为比较基因组分析、了解多倍体物种亚基因组中基因的表达模式以及栽培草莓果实颜色育种奠定坚实的基础。
{"title":"A telomere-to-telomere haplotype-resolved genome of white-fruited strawberry reveals the complexity of fruit colour formation of cultivated strawberry","authors":"Junxiang Zhang, Shuang Liu, Shuo Zhao, Yuxin Nie, Zhihong Zhang","doi":"10.1111/pbi.14479","DOIUrl":"https://doi.org/10.1111/pbi.14479","url":null,"abstract":"&lt;p&gt;Cultivated strawberry (&lt;i&gt;Fragaria&lt;/i&gt; × &lt;i&gt;ananassa&lt;/i&gt;, 2&lt;i&gt;n&lt;/i&gt; = 8&lt;i&gt;x&lt;/i&gt; = 56) is an important horticultural crop with substantial economic and nutritional value. The improvement of cultivated strawberry is more challenging not only in its octoploid genome but also in the frequent homoeologous exchanges and polyploidization, which replaces substantial portions of some subgenomes with sequences derived from ancestrally related chromosomes (Edger &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2019&lt;/span&gt;). Therefore, a high-quality genome for the cultivated strawberry will provide important information for identifying agriculturally important genes for breeding. Several cultivated strawberry genomes have been assembled. However, some published reference genomes of cultivated strawberries remained incomplete, and some published genomes of cultivated strawberries were not truly haplotype-resolved (Edger &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2019&lt;/span&gt;; Lee &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2021&lt;/span&gt;; Mao &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2023&lt;/span&gt;; Song &lt;i&gt;et al&lt;/i&gt;., &lt;span&gt;2024&lt;/span&gt;).&lt;/p&gt;\u0000&lt;p&gt;Here, we de novo assembled a telomere-to-telomere haplotype-resolved reference genome with 56 chromosomes (Figure 1a) of the white-fruited strawberry cultivar ‘Chulian’ (Figure S1) by incorporating PacBio HiFi, ONT ultra-long and Hi-C sequencing, and Illumina sequencing data. The centromere candidate sequences and regions of each chromosome were identified (Figure S2 and Table S1). We divided 56 chromosomes into two haplotypes, Hap1 (chr × − × −1) and Hap2 (chr × − × −2), and each haplotype includes 28 chromosomes. The final genome assembly sizes were 787.52 Mb with 33 contigs for Hap1 and 778.03 Mb with 34 contigs for Hap2, respectively. The contigs N50 of Hap1 and Hap2 were 27.92 Mb and 26.45 Mb, respectively. We identified 52 telomeres in Hap1 and 50 in Hap2 by investigating telomeric repeats (TTTAGGG)n (Figures S2; Table S2).&lt;/p&gt;\u0000&lt;figure&gt;&lt;picture&gt;\u0000&lt;source media=\"(min-width: 1650px)\" srcset=\"/cms/asset/d5382006-039b-40a0-bfe8-be1c111810fd/pbi14479-fig-0001-m.jpg\"/&gt;&lt;img alt=\"Details are in the caption following the image\" data-lg-src=\"/cms/asset/d5382006-039b-40a0-bfe8-be1c111810fd/pbi14479-fig-0001-m.jpg\" loading=\"lazy\" src=\"/cms/asset/925952e6-fcf3-4bd2-9b4a-762e3c883dad/pbi14479-fig-0001-m.png\" title=\"Details are in the caption following the image\"/&gt;&lt;/picture&gt;&lt;figcaption&gt;\u0000&lt;div&gt;&lt;strong&gt;Figure 1&lt;span style=\"font-weight:normal\"&gt;&lt;/span&gt;&lt;/strong&gt;&lt;div&gt;Open in figure viewer&lt;i aria-hidden=\"true\"&gt;&lt;/i&gt;&lt;span&gt;PowerPoint&lt;/span&gt;&lt;/div&gt;\u0000&lt;/div&gt;\u0000&lt;div&gt;Genomic features and the loss-of-anthocyanin phenotype of ‘Chulian’ strawberry. (a) The haplotype-resolved genome assembly of ‘Chulian’ strawberry. (b) Transient functional analysis of point mutation of ‘Chulian’ strawberry &lt;i&gt;FaMYB10&lt;/i&gt; on chr1-2-2. Scale bar, 1 cm. (c) The phenotype of ‘Chulian’ strawberry under lighting and shading treatment. Scale bar, 1 cm.&lt;/div&gt;\u0000&lt;/figcaption&gt;\u0000&lt;/figure&gt;\u0000&lt;p&gt;The integrity and accuracy of the genome assembly of ‘Chulian’ were evaluated by Benc","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"186 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KRN5b regulates maize kernel row number through mediating phosphoinositol signalling KRN5b 通过介导磷酸肌醇信号调节玉米籽粒行数
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-20 DOI: 10.1111/pbi.14463
Xiaomeng Shen, Lei Liu, Thu Tran, Qiang Ning, Manfei Li, Liangliang Huang, Ran Zhao, Yunfu Li, Xiangyu Qing, David Jackson, Yan Bai, Weibin Song, Jinsheng Lai, Zuxin Zhang, Haiming Zhao
Kernel row number (KRN) is a major yield related trait for maize (Zea mays L.) and is also a major goal of breeders, as it can increase the number of kernels per plant. Thus, identifying new genetic factors involving in KRN formation may accelerate improving yield-related traits genetically. We herein describe a new kernel number-related gene (KRN5b) identified from KRN QTL qKRN5b and encoding an inositol polyphosphate 5-phosphatase (5PTase). KRN5b has phosphatase activity towards PI(4,5)P2, PI(3,4,5)P3, and Ins(1,4,5)P3 in vitro. Knocking out KRN5b caused accumulation of PI(4,5)P2 and Ins(1,4,5)P3, resulting in disordered kernel rows and a decrease in the number of kernels and tassel branches. The introgression of the allele with higher expression abundance into different inbred lines could increase the ear weight of the inbred lines and the corresponding hybrids by 10.1%–12.2% via increasing KRN, with no adverse effects on other agronomic traits. Further analyses showed that KRN5b regulates inflorescence development through affecting the synthesis and distribution of hormones. Together, KRN5b contributes to spikelet pair meristem development through inositol phosphate and phosphatidylinositols, making it a selecting target for yield improvement.
籽粒行数(KRN)是玉米(Zea mays L.)的一个主要产量相关性状,也是育种者的一个主要目标,因为它可以增加每株玉米的籽粒数。因此,鉴定涉及 KRN 形成的新遗传因子可能会加速从遗传学上改善与产量相关的性状。我们在本文中描述了从 KRN QTL qKRN5b 中发现的一个新的果仁数相关基因(KRN5b),该基因编码肌醇多磷酸 5-磷酸酶(5PTase)。KRN5b 在体外对 PI(4,5)P2、PI(3,4,5)P3 和 Ins(1,4,5)P3 具有磷酸酶活性。敲除 KRN5b 会导致 PI(4,5)P2 和 Ins(1,4,5)P3 的积累,造成核仁行列紊乱,核仁和穗分枝数量减少。将表达丰度较高的等位基因导入不同的近交系,可通过增加 KRN 使近交系和相应杂交种的穗重增加 10.1%-12.2%,而对其他农艺性状没有不利影响。进一步的分析表明,KRN5b通过影响激素的合成和分布来调节花序的发育。总之,KRN5b 通过磷酸肌醇和磷脂酰肌醇促进了小穗对分生组织的发育,使其成为提高产量的选择目标。
{"title":"KRN5b regulates maize kernel row number through mediating phosphoinositol signalling","authors":"Xiaomeng Shen, Lei Liu, Thu Tran, Qiang Ning, Manfei Li, Liangliang Huang, Ran Zhao, Yunfu Li, Xiangyu Qing, David Jackson, Yan Bai, Weibin Song, Jinsheng Lai, Zuxin Zhang, Haiming Zhao","doi":"10.1111/pbi.14463","DOIUrl":"https://doi.org/10.1111/pbi.14463","url":null,"abstract":"Kernel row number (KRN) is a major yield related trait for maize (<i>Zea mays</i> L.) and is also a major goal of breeders, as it can increase the number of kernels per plant. Thus, identifying new genetic factors involving in KRN formation may accelerate improving yield-related traits genetically. We herein describe a new kernel number-related gene (<i>KRN5b</i>) identified from KRN QTL <i>qKRN5b</i> and encoding an inositol polyphosphate 5-phosphatase (5PTase). KRN5b has phosphatase activity towards PI(4,5)P<sub>2</sub>, PI(3,4,5)P<sub>3</sub>, and Ins(1,4,5)P<sub>3</sub> <i>in vitro</i>. Knocking out <i>KRN5b</i> caused accumulation of PI(4,5)P<sub>2</sub> and Ins(1,4,5)P<sub>3</sub>, resulting in disordered kernel rows and a decrease in the number of kernels and tassel branches. The introgression of the allele with higher expression abundance into different inbred lines could increase the ear weight of the inbred lines and the corresponding hybrids by 10.1%–12.2% via increasing KRN, with no adverse effects on other agronomic traits. Further analyses showed that KRN5b regulates inflorescence development through affecting the synthesis and distribution of hormones. Together, <i>KRN5b</i> contributes to spikelet pair meristem development through inositol phosphate and phosphatidylinositols, making it a selecting target for yield improvement.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"2 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomes of Aegilops umbellulata provide new insights into unique structural variations and genetic diversity in the U-genome for wheat improvement Aegilops umbellulata 的基因组为小麦改良提供了关于 U 基因组独特结构变异和遗传多样性的新见解
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-18 DOI: 10.1111/pbi.14470
Jatinder Singh, Santosh Gudi, Peter J. Maughan, Zhaohui Liu, James Kolmer, Meinan Wang, Xianming Chen, Matthew N. Rouse, Pauline Lasserre-Zuber, Héléne Rimbert, Sunish Sehgal, Jason D. Fiedler, Frédéric Choulet, Maricelis Acevedo, Rajeev Gupta, Upinder Gill
Aegilops umbellulata serve as an important reservoir for novel biotic and abiotic stress tolerance for wheat improvement. However, chromosomal rearrangements and evolutionary trajectory of this species remain to be elucidated. Here, we present a comprehensive investigation into Ae. umbellulata genome by generating a high-quality near telomere-to-telomere genome assembly of PI 554389 and resequencing 20 additional Ae. umbellulata genomes representing diverse geographical and phenotypic variations. Our analysis unveils complex chromosomal rearrangements, most prominently in 4U and 6U chromosomes, delineating a distinct evolutionary trajectory of Ae. umbellulata from wheat and its relatives. Furthermore, our data rectified the erroneous naming of chromosomes 4U and 6U in the past and highlighted multiple major evolutionary events that led to the present-day U-genome. Resequencing of diverse Ae. umbellulata accessions revealed high genetic diversity within the species, partitioning into three distinct evolutionary sub-populations and supported by extensive phenotypic variability in resistance against several races/pathotypes of five major wheat diseases. Disease evaluations indicated the presence of several novel resistance genes in the resequenced lines for future studies. Resequencing also resulted in the identification of six new haplotypes for Lr9, the first resistance gene cloned from Ae. umbellulata. The extensive genomic and phenotypic resources presented in this study will expedite the future genetic exploration of Ae. umbellulata, facilitating efforts aimed at enhancing resiliency and productivity in wheat.
Aegilops umbellulata是改良小麦的新型生物和非生物胁迫耐受性的重要资源库。然而,该物种的染色体重排和进化轨迹仍有待阐明。在这里,我们通过对 PI 554389 进行近端粒到端粒的高质量基因组组装,并对另外 20 个代表不同地理和表型变异的 Ae. umbellulata 基因组进行了重新测序,从而对 Ae. umbellulata 基因组进行了全面研究。我们的分析揭示了复杂的染色体重排,其中最突出的是 4U 和 6U 染色体,勾勒出了伞形花序姬蜂与小麦及其近缘种的不同进化轨迹。此外,我们的数据纠正了过去对 4U 和 6U 染色体的错误命名,并强调了导致当今 U 基因组的多个主要进化事件。对不同的伞形花序(Ae. umbellulata)样本进行重测序发现,该物种内部具有高度遗传多样性,可划分为三个不同的进化亚群,并在抗五种主要小麦病害的多个种族/病型方面具有广泛的表型变异性。病害评估表明,重测序品系中存在多个新型抗病基因,可供今后研究使用。重新测序还为 Lr9 确定了六个新的单倍型,Lr9 是第一个从伞形花序 Ae. 克隆的抗性基因。本研究中展示的大量基因组和表型资源将加快未来对伞形花序姬蜂的遗传探索,促进旨在提高小麦抗逆性和生产力的工作。
{"title":"Genomes of Aegilops umbellulata provide new insights into unique structural variations and genetic diversity in the U-genome for wheat improvement","authors":"Jatinder Singh, Santosh Gudi, Peter J. Maughan, Zhaohui Liu, James Kolmer, Meinan Wang, Xianming Chen, Matthew N. Rouse, Pauline Lasserre-Zuber, Héléne Rimbert, Sunish Sehgal, Jason D. Fiedler, Frédéric Choulet, Maricelis Acevedo, Rajeev Gupta, Upinder Gill","doi":"10.1111/pbi.14470","DOIUrl":"https://doi.org/10.1111/pbi.14470","url":null,"abstract":"<i>Aegilops umbellulata</i> serve as an important reservoir for novel biotic and abiotic stress tolerance for wheat improvement. However, chromosomal rearrangements and evolutionary trajectory of this species remain to be elucidated. Here, we present a comprehensive investigation into <i>Ae. umbellulata</i> genome by generating a high-quality near telomere-to-telomere genome assembly of PI 554389 and resequencing 20 additional <i>Ae. umbellulata</i> genomes representing diverse geographical and phenotypic variations. Our analysis unveils complex chromosomal rearrangements, most prominently in 4U and 6U chromosomes, delineating a distinct evolutionary trajectory of <i>Ae. umbellulata</i> from wheat and its relatives. Furthermore, our data rectified the erroneous naming of chromosomes 4U and 6U in the past and highlighted multiple major evolutionary events that led to the present-day U-genome. Resequencing of diverse <i>Ae. umbellulata</i> accessions revealed high genetic diversity within the species, partitioning into three distinct evolutionary sub-populations and supported by extensive phenotypic variability in resistance against several races/pathotypes of five major wheat diseases. Disease evaluations indicated the presence of several novel resistance genes in the resequenced lines for future studies. Resequencing also resulted in the identification of six new haplotypes for <i>Lr9</i>, the first resistance gene cloned from <i>Ae. umbellulata.</i> The extensive genomic and phenotypic resources presented in this study will expedite the future genetic exploration of <i>Ae. umbellulata</i>, facilitating efforts aimed at enhancing resiliency and productivity in wheat.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"30 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142237027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-quality haplotype-resolved chromosome assembly provides evolutionary insights and targeted steviol glycosides (SGs) biosynthesis in Stevia rebaudiana Bertoni 高质量的单倍型解析染色体组装提供了对甜叶菊(Stevia rebaudiana Bertoni)进化的深入了解和有针对性的甜菊醇苷(SGs)生物合成
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-16 DOI: 10.1111/pbi.14446
Mamta Masand, Shikha Sharma, Sangeeta Kumari, Poonam Pal, Aasim Majeed, Gopal Singh, Ram Kumar Sharma
Stevia rebaudiana Bertoni is popular source of plant-derived low/no-calorie natural sweeteners (LNCSs), collectively known as steviol glycosides (SGs). Nevertheless, genetic predisposition for targeted biosynthesis of SGs is complex due to multi-substrate functionality of key uridine diphosphate glycosyltransferases (UGTs). Here, we created a high-quality monoploid assembly of 1.34 Gb with N50 value of 110 Mb, 55 551 predicted protein-coding genes, and ~80% repetitive regions in Rebaudioside-A (Reb-A) enriched cultivar of S. rebaudiana. Additionally, a haplotype-based chromosome assembly consisting of haplotype A and haplotype B with an overall genome size of 2.33Gb was resolved, harbouring 639 634 variants including single nucleotide polymorphisms (SNPs), indels and structural variants (SVs). Furthermore, a lineage-specific whole genome duplication analysis revealed that gene families encoding UGTs and Cytochrome-P450 (CYPs) were tandemly duplicated. Additionally, expression analysis revealed five tandemly duplicated gene copies of UGT76G1 having significant correlations with Reb-A content, and identified key residue (leu200val) in the glycosylation of Reb-A. Furthermore, missense variations identified in the acceptor region of UGT76G1 in haplotype resolve genome, transcriptional and molecular docking analysis were confirmed with resequencing of 10 diverse stevia genotypes (~25X). Gene regulatory network analysis identified key transcription factors (MYB, bHLH, bZIP and AP2-ERF) as potential regulators of SG biosynthesis. Overall, this study provides haplotype-resolved chromosome-level genome assembly for genome editing and enhancing breeding efforts for targeted biosynthesis of SGs in S. rebaudiana.
甜叶菊(Stevia rebaudiana Bertoni)是植物提取的低热量/无热量天然甜味剂(LNCSs)的常用来源,统称为甜菊糖(SGs)。然而,由于关键的二磷酸尿苷糖基转移酶(UGTs)具有多底物功能,定向生物合成甜菊糖的遗传倾向非常复杂。在这里,我们在富含 Rebaudioside-A(Reb-A)的 S. rebaudiana 栽培品种中创建了一个 1.34 Gb 的高质量单倍体组合,其 N50 值为 110 Mb,有 55 551 个预测的蛋白编码基因和约 80% 的重复区域。此外,还解析了由单倍型 A 和单倍型 B 组成的基于单倍型的染色体组合,其基因组总大小为 2.33Gb,包含 639 634 个变异,包括单核苷酸多态性(SNP)、嵌合体和结构变异(SV)。此外,针对不同品系的全基因组重复分析表明,编码 UGTs 和细胞色素-P450(CYPs)的基因家族存在串联重复。此外,表达分析表明,UGT76G1 的五个串联重复基因拷贝与 Reb-A 含量有显著相关性,并确定了 Reb-A 糖基化过程中的关键残基(leu200val)。此外,通过对 10 种不同甜叶菊基因型(约 25 倍)进行重新测序,证实了在单倍型解析基因组、转录和分子对接分析中发现的 UGT76G1 受体区的错义变异。基因调控网络分析确定了作为 SG 生物合成潜在调控因子的关键转录因子(MYB、bHLH、bZIP 和 AP2-ERF)。总之,本研究提供了单倍型分辨染色体组水平的基因组组装,可用于 S. rebaudiana 的基因组编辑和提高 SGs 定向生物合成的育种工作。
{"title":"High-quality haplotype-resolved chromosome assembly provides evolutionary insights and targeted steviol glycosides (SGs) biosynthesis in Stevia rebaudiana Bertoni","authors":"Mamta Masand, Shikha Sharma, Sangeeta Kumari, Poonam Pal, Aasim Majeed, Gopal Singh, Ram Kumar Sharma","doi":"10.1111/pbi.14446","DOIUrl":"https://doi.org/10.1111/pbi.14446","url":null,"abstract":"<i>Stevia rebaudiana</i> Bertoni is popular source of plant-derived <i>low/no-calorie</i> natural sweeteners (LNCSs), collectively known as steviol glycosides (SGs). Nevertheless, genetic predisposition for targeted biosynthesis of SGs is complex due to multi-substrate functionality of key uridine diphosphate glycosyltransferases (UGTs). Here, we created a high-quality monoploid assembly of 1.34 Gb with N50 value of 110 Mb, 55 551 predicted protein-coding genes, and ~80% repetitive regions in Rebaudioside-A (Reb-A) enriched cultivar of <i>S. rebaudiana</i>. Additionally, a haplotype-based chromosome assembly consisting of haplotype A and haplotype B with an overall genome size of 2.33Gb was resolved, harbouring 639 634 variants including single nucleotide polymorphisms (SNPs), indels and structural variants (SVs). Furthermore, a lineage-specific whole genome duplication analysis revealed that gene families encoding UGTs and Cytochrome-P450 (CYPs) were tandemly duplicated. Additionally, expression analysis revealed five tandemly duplicated gene copies of UGT76G1 having significant correlations with Reb-A content, and identified key residue (leu200val) in the glycosylation of Reb-A. Furthermore, missense variations identified in the acceptor region of UGT76G1 in haplotype resolve genome, transcriptional and molecular docking analysis were confirmed with resequencing of 10 diverse stevia genotypes (~25X). Gene regulatory network analysis identified key transcription factors (MYB, bHLH, bZIP and AP2-ERF) as potential regulators of SG biosynthesis. Overall, this study provides haplotype-resolved chromosome-level genome assembly for genome editing and enhancing breeding efforts for targeted biosynthesis of SGs in <i>S. rebaudiana.</i>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"103 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Biotechnology Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1