首页 > 最新文献

Plant Biotechnology Journal最新文献

英文 中文
A 15.8-Mb Alien Radish Chromosomal Fragment Inversion Drives Fertility Restoration and Telomere Loss of C09 in Brassica oleracea 15.8 mb外源萝卜染色体片段反转驱动甘蓝生育恢复和C09端粒丢失
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-12-02 DOI: 10.1111/pbi.70396
Wenjing Ren, Jinchao Si, Yiliao Feng, Hailong Yu, Jiamin Li, Fengqing Han, Xing Li, Limei Yang, Mu Zhuang, Honghao Lv, Jialei Ji, Feng Cheng, Yong Wang, Yangyong Zhang
<p>Cabbage (<i>Brassica oleracea</i> L. var. <i>capitata</i>) is one of the most important vegetables grown globally (Li et al. <span>2024</span>). Currently, more than 90% of cabbage cultivars are male sterile. Male sterility-based hybridisation facilitates heterosis utilisation and yield enhancement (Han et al. <span>2023</span>). Ogura cytoplasmic male sterility (CMS) is more commonly used due to its maternal inheritance and easy transferability (Ren et al. <span>2020</span>, <span>2022</span>). However, CMS varieties cannot be self-pollinated, thereby limiting germplasm innovation and restricting genetic diversity, which can be solved by fertility restorer lines (Li et al. <span>2021</span>; Ren et al. <span>2022</span>). The <i>Rfo</i> gene exists only in radish but not in any <i>B. oleracea</i> crops. This gene has been transferred from radish into rapeseed, a related species of <i>B. oleracea</i>, providing a promising resource for creating cabbage Ogura CMS fertility restorer lines (FRLs) (Yu et al. <span>2020</span>). In our previous studies, <i>Rfo</i> was successfully transferred from rapeseed into Chinese kale and cabbage through distant hybridisation (Yu et al. <span>2020</span>; Ren et al. <span>2020</span>). However, critical knowledge gaps remain regarding the genome composition and genetic effects of the cabbage Ogura CMS restorer lines.</p><p>Initially, the absence of <i>Rfo</i>-homozygous lines and high heterozygosity hindered <i>de novo</i> genome assembly of Ogura CMS FRLs (Table S1). In this study, BC<sub>7</sub> high-generation Ogura CMS FRLs were developed via successive backcrossing (Figure 1A). To overcome this challenge, we generated a chromosome-level genome assembly for the BC<sub>7</sub> FRL individual RFO7GH by combining Oxford Nanopore ultra-long reads, Illumina short reads for error correction and Hi-C scaffolding for chromosomal phasing (Figure S1A; Figure S2; Table S2). The <i>de novo</i> assembly yielded 40 contigs (N50 = 32.3 Mb) spanning 601.8 Mb from 59 Gb raw data. The final assembly contains more than 98.3% of the genome sequences (591.8 Mb) anchored to nine pseudochromosomes. Crucially, a 15.8-Mb alien radish genomic fragment (R09: 0–15 789 821 bp) containing the <i>Rfo</i> gene was inverted and integrated into the long-arm terminal region of C09 in RFO7GH, replacing the homologous 28.2-Mb cabbage genomic fragment (C09: 0–28 239 208 bp) (Figure 1B). Genome analysis revealed the loss of the telomere on the C09 long arm (Figure 1C). To validate this structural rearrangement, a specific primer set (GR-4F/4R) targeting the recombination breakpoint was designed, which successfully amplified a 4.6-kb junction sequence (Table S3). Sanger sequencing of the amplified products showed 100% concordance with Nanopore data, confirming the assembly accuracy.</p><figure><picture><source media="(min-width: 1650px)" srcset="/cms/asset/acaa9a00-9101-4b30-9f96-e267159a9b61/pbi70396-fig-0001-m.jpg"/><img alt="Details are i
白菜(芸苔甘蓝L. var. capitata)是全球种植的最重要的蔬菜之一(Li et al. 2024)。目前,超过90%的卷心菜品种是雄性不育的。基于雄性不育的杂交有利于杂种优势的利用和产量的提高(Han et al. 2023)。小谷细胞质雄性不育(Ogura cytoplasmic male infertility, CMS)因其母系遗传和易于转移而更常用(Ren et al. 2020, 2022)。但是,CMS品种不能自花授粉,从而限制了种质创新,限制了遗传多样性,这可以通过育性恢复系来解决(Li et al. 2021; Ren et al. 2022)。Rfo基因仅存在于萝卜中,不存在于任何甘蓝作物中。该基因已从萝卜转移到甘蓝的亲缘种油菜籽中,为创建白菜小白菜CMS育性恢复系(frl)提供了有希望的资源(Yu et al. 2020)。在我们之前的研究中,Rfo通过远缘杂交成功地从油菜籽转移到芥蓝和白菜中(Yu et al. 2020; Ren et al. 2020)。然而,关于小白菜CMS恢复系的基因组组成和遗传效应的关键知识差距仍然存在。最初,缺乏rfo纯合子系和高杂合性阻碍了Ogura CMS frl的从头基因组组装(表S1)。本研究通过连续回交培育BC7高代小仓CMS frl(图1A)。为了克服这一挑战,我们结合Oxford Nanopore超长reads、Illumina短reads进行错误校正和Hi-C scaffolding进行染色体分相,为BC7 FRL个体RFO7GH构建了染色体水平的基因组组装(图S1A;图S2;表S2)。重新组装产生40个contigs (N50 = 32.3 Mb),从59 Gb原始数据中跨越601.8 Mb。最终组装包含超过98.3%的基因组序列(591.8 Mb),锚定在9条假染色体上。重要的是,含有Rfo基因的15.8 mb外源萝卜基因组片段(R09: 0-15 789 821 bp)被倒置并整合到RFO7GH中C09的长臂末端区域,取代了同源的28.2 mb白菜基因组片段(C09: 0-28 239 208 bp)(图1B)。基因组分析显示C09长臂上的端粒缺失(图1C)。为了验证这种结构重排,设计了针对重组断点的特定引物集(GR-4F/4R),成功扩增了4.6 kb的连接序列(表S3)。扩增产物的Sanger测序结果与Nanopore数据100%一致,证实了组装的准确性。图1基于高代小仓CMS frl的无外来遗传背景干扰的小仓CMS育性恢复系统。(A)建立生育恢复系统和开发携带CRa基因的抗大白菜的路线图。(B) RFO7GH rfo -负单倍型(Bol_1)和rfo -正单倍型(Bol_2)与萝卜Rapsa_Xiang_V1.0参考基因组比对(http://brassicadb.org)。红框表示15.8 mb外来萝卜基因组片段比对结果。(C)正常C09(上)和rfo阳性C09(下)示意图。红框表示15.8 mb的外来萝卜基因组片段。灰色框代表卷心菜端粒,黄色框代表萝卜端粒。我们的研究不仅恢复了Ogura CMS品种的育性,而且还显示了端粒功能障碍和染色体倒转带来的三个新好处,即在细胞质替换后,无需额外的标记辅助选择,就可以快速丢失外源基因组片段:(i)传播屏障确保了外源片段的快速丢失:对285个群体(n = 51 787)的多代分析显示,Rfo基因存在严重的传播障碍。自花授粉群体的平均传粉率为8.05%,回交群体的平均传粉率为1.18%(表S1)。使用外源萝卜片段特异性的9 kb探针对减数分裂前期I细胞进行荧光原位杂交(FISH),结果显示,只有非常小比例的pmc(29/ 412,7%)携带外源基因组片段(图S3;表S3)。大的染色体倒位和至关重要的端粒丢失似乎严重破坏了基因组的稳定性,使携带15.8 mb外源片段的细胞难以进行减数分裂并产生配子,从而导致快速丢失。(ii)完整的外源片段实现一步清除:C09杂合性从BC1(63%)逐渐下降到BC4 (38%), BC4后稳定,完全抑制重组(图S1B)。设计了26对引物(BoRa1p-BoRa26p),目标序列均匀分布在15.8 mb的外来萝卜基因组片段中(表S3)。 这些引物与断点特异性引物GR-4F/4R一起用于对所有rfo阳性个体进行基因分型。基因分型证实,15.8 mb的外源萝卜片段是所有Ogura CMS frl中与育性恢复完全共分离的最短外源片段(图S4),并且在所有rfo阳性个体中作为一个完整的单元遗传。这种完整性与传输屏障(优势i)相结合,使整个外来碎片能够迅速丢失。对5000多名rfo阴性个体的筛选证实,没有人含有任何外源萝卜片段,进一步证明了外源萝卜片段的快速丢失(图S4)。(iii)生长惩罚提供了万无一失的消除外来碎片携带者:没有外来碎片的个体表现出更强的生长潜力。rfo阳性个体外叶长(LL)和经济产量(EY)显著降低,外叶宽(LW)显著降低(图S1C,D)。虽然外源片段遗传给后代的情况很少(~1%),但由于农艺表现不佳,携带外源片段的个体在选择育种中很容易被淘汰。通过在7个携带棍棒病(CRa)、黑腐病(Xcc3)和枯萎病(Foc1)抗性基因的遗传多样性品种中恢复育性,验证了该系统的有效性。以含cra种质为例,在BC1进行育性恢复和细胞质置换后,从11个组合中获得1044个cra阳性个体(n = 2880)(表S4;图S1E)。在这些个体中,有59个个体表现出显著的生物量减少(23.4%-38.1%,p &lt; 0.001),在选择过程中被表型淘汰(表S4)。综合筛选显示,15.8 mb的片段仅保留28/1044;所有这28个个体都是先前仅基于表型筛选而被淘汰的59个个体的一部分。这证实了该系统仅通过表型筛选清除外来片段的效率。总之,本研究通过远缘杂交和连续回交获得了高代小稻CMS frl。重新组装了高质量的FRL系RFO7GH基因组。构建了一套无外源片段干扰的小白菜育性恢复系统。小仓CMS frl可使雄性不育抗病品种转化为雄性可育种质,在白菜育种中具有一定的应用价值。
{"title":"A 15.8-Mb Alien Radish Chromosomal Fragment Inversion Drives Fertility Restoration and Telomere Loss of C09 in Brassica oleracea","authors":"Wenjing Ren, Jinchao Si, Yiliao Feng, Hailong Yu, Jiamin Li, Fengqing Han, Xing Li, Limei Yang, Mu Zhuang, Honghao Lv, Jialei Ji, Feng Cheng, Yong Wang, Yangyong Zhang","doi":"10.1111/pbi.70396","DOIUrl":"https://doi.org/10.1111/pbi.70396","url":null,"abstract":"&lt;p&gt;Cabbage (&lt;i&gt;Brassica oleracea&lt;/i&gt; L. var. &lt;i&gt;capitata&lt;/i&gt;) is one of the most important vegetables grown globally (Li et al. &lt;span&gt;2024&lt;/span&gt;). Currently, more than 90% of cabbage cultivars are male sterile. Male sterility-based hybridisation facilitates heterosis utilisation and yield enhancement (Han et al. &lt;span&gt;2023&lt;/span&gt;). Ogura cytoplasmic male sterility (CMS) is more commonly used due to its maternal inheritance and easy transferability (Ren et al. &lt;span&gt;2020&lt;/span&gt;, &lt;span&gt;2022&lt;/span&gt;). However, CMS varieties cannot be self-pollinated, thereby limiting germplasm innovation and restricting genetic diversity, which can be solved by fertility restorer lines (Li et al. &lt;span&gt;2021&lt;/span&gt;; Ren et al. &lt;span&gt;2022&lt;/span&gt;). The &lt;i&gt;Rfo&lt;/i&gt; gene exists only in radish but not in any &lt;i&gt;B. oleracea&lt;/i&gt; crops. This gene has been transferred from radish into rapeseed, a related species of &lt;i&gt;B. oleracea&lt;/i&gt;, providing a promising resource for creating cabbage Ogura CMS fertility restorer lines (FRLs) (Yu et al. &lt;span&gt;2020&lt;/span&gt;). In our previous studies, &lt;i&gt;Rfo&lt;/i&gt; was successfully transferred from rapeseed into Chinese kale and cabbage through distant hybridisation (Yu et al. &lt;span&gt;2020&lt;/span&gt;; Ren et al. &lt;span&gt;2020&lt;/span&gt;). However, critical knowledge gaps remain regarding the genome composition and genetic effects of the cabbage Ogura CMS restorer lines.&lt;/p&gt;\u0000&lt;p&gt;Initially, the absence of &lt;i&gt;Rfo&lt;/i&gt;-homozygous lines and high heterozygosity hindered &lt;i&gt;de novo&lt;/i&gt; genome assembly of Ogura CMS FRLs (Table S1). In this study, BC&lt;sub&gt;7&lt;/sub&gt; high-generation Ogura CMS FRLs were developed via successive backcrossing (Figure 1A). To overcome this challenge, we generated a chromosome-level genome assembly for the BC&lt;sub&gt;7&lt;/sub&gt; FRL individual RFO7GH by combining Oxford Nanopore ultra-long reads, Illumina short reads for error correction and Hi-C scaffolding for chromosomal phasing (Figure S1A; Figure S2; Table S2). The &lt;i&gt;de novo&lt;/i&gt; assembly yielded 40 contigs (N50 = 32.3 Mb) spanning 601.8 Mb from 59 Gb raw data. The final assembly contains more than 98.3% of the genome sequences (591.8 Mb) anchored to nine pseudochromosomes. Crucially, a 15.8-Mb alien radish genomic fragment (R09: 0–15 789 821 bp) containing the &lt;i&gt;Rfo&lt;/i&gt; gene was inverted and integrated into the long-arm terminal region of C09 in RFO7GH, replacing the homologous 28.2-Mb cabbage genomic fragment (C09: 0–28 239 208 bp) (Figure 1B). Genome analysis revealed the loss of the telomere on the C09 long arm (Figure 1C). To validate this structural rearrangement, a specific primer set (GR-4F/4R) targeting the recombination breakpoint was designed, which successfully amplified a 4.6-kb junction sequence (Table S3). Sanger sequencing of the amplified products showed 100% concordance with Nanopore data, confirming the assembly accuracy.&lt;/p&gt;\u0000&lt;figure&gt;&lt;picture&gt;\u0000&lt;source media=\"(min-width: 1650px)\" srcset=\"/cms/asset/acaa9a00-9101-4b30-9f96-e267159a9b61/pbi70396-fig-0001-m.jpg\"/&gt;&lt;img alt=\"Details are i","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"93 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145651603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Chemical Probe for Increasing Leaf Tocopherol Levels by Coordinated Modulation of Biosynthesis, Competition and Storage 通过协调调节生物合成、竞争和储存来提高叶片生育酚水平的化学探针
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-12-02 DOI: 10.1111/pbi.70459
Pablo Perez‐Colao, Gaetan Glauser, Jacobo Cruces, Jorge Lozano‐Juste, Manuel Rodriguez‐Concepcion
Plant biofortification with phytonutrients typically relies on metabolic engineering strategies known as ‘push’ (enhancing biosynthetic flux), ‘block’ (inhibiting competing pathways) and ‘pull’ (promoting metabolite storage). Here, we describe a novel synthetic compound, X57, that simultaneously targets biosynthesis, competition and storage to enhance leaf tocopherol content. Tocopherols protect plants against oxidative stress, have a dietary value as vitamin E and are highly appreciated antioxidants in food and cosmetic formulations. X57 exerts a primary ‘push’ effect by inducing tocopherol biosynthesis, in part by reactivating a direct pathway that reduces geranylgeranyl diphosphate (GGPP) to phytyl diphosphate, bypassing the need for chlorophyll‐derived phytol. Accordingly, X57 promotes tocopherol accumulation in etiolated seedlings and restores tocopherol synthesis in mutants deficient in phytol phosphorylation. The ‘block’ effect is mediated by down‐regulation of GGPP consumption for carotenoid synthesis. X57 also induces a ‘pull’ effect via proliferation of plastoglobules (PG), plastidial lipoprotein bodies that synthesise and store tocopherols. X57‐induced PG proliferation is driven by increased tocopherol levels and up‐regulation of genes for PG structural proteins such as fibrillins. The unveiled genetic networks simultaneously coordinating plastidial isoprenoid metabolism and plastid differentiation might only be present in higher plants, because X57 does not promote but reduces tocopherol accumulation in Marchantia polymorpha .
植物营养素的植物生物强化通常依赖于代谢工程策略,即“推动”(增强生物合成通量)、“阻断”(抑制竞争途径)和“拉动”(促进代谢物储存)。在这里,我们描述了一种新的合成化合物X57,它同时针对生物合成、竞争和储存来提高叶片生育酚的含量。生育酚保护植物免受氧化应激,具有维生素E的饮食价值,在食品和化妆品配方中是非常受欢迎的抗氧化剂。X57通过诱导生育酚的生物合成发挥主要的“推动”作用,部分原因是通过重新激活将香叶二磷酸(GGPP)还原为二磷酸植基的直接途径,绕过对叶绿素衍生的叶绿醇的需要。因此,X57促进黄化幼苗中生育酚的积累,并恢复缺乏叶绿醇磷酸化突变体中生育酚的合成。“阻断”效应是由类胡萝卜素合成中GGPP消耗的下调介导的。X57还通过质体红蛋白(PG)的增殖诱导“拉动”效应,质体红蛋白是合成和储存生育酚的质体脂蛋白体。X57诱导的PG增殖是由生育酚水平升高和PG结构蛋白(如纤原蛋白)基因上调驱动的。同时协调质体类异戊二烯代谢和质体分化的遗传网络可能只存在于高等植物中,因为X57不会促进而会减少多形地药中生育酚的积累。
{"title":"A Chemical Probe for Increasing Leaf Tocopherol Levels by Coordinated Modulation of Biosynthesis, Competition and Storage","authors":"Pablo Perez‐Colao, Gaetan Glauser, Jacobo Cruces, Jorge Lozano‐Juste, Manuel Rodriguez‐Concepcion","doi":"10.1111/pbi.70459","DOIUrl":"https://doi.org/10.1111/pbi.70459","url":null,"abstract":"Plant biofortification with phytonutrients typically relies on metabolic engineering strategies known as ‘push’ (enhancing biosynthetic flux), ‘block’ (inhibiting competing pathways) and ‘pull’ (promoting metabolite storage). Here, we describe a novel synthetic compound, X57, that simultaneously targets biosynthesis, competition and storage to enhance leaf tocopherol content. Tocopherols protect plants against oxidative stress, have a dietary value as vitamin E and are highly appreciated antioxidants in food and cosmetic formulations. X57 exerts a primary ‘push’ effect by inducing tocopherol biosynthesis, in part by reactivating a direct pathway that reduces geranylgeranyl diphosphate (GGPP) to phytyl diphosphate, bypassing the need for chlorophyll‐derived phytol. Accordingly, X57 promotes tocopherol accumulation in etiolated seedlings and restores tocopherol synthesis in mutants deficient in phytol phosphorylation. The ‘block’ effect is mediated by down‐regulation of GGPP consumption for carotenoid synthesis. X57 also induces a ‘pull’ effect via proliferation of plastoglobules (PG), plastidial lipoprotein bodies that synthesise and store tocopherols. X57‐induced PG proliferation is driven by increased tocopherol levels and up‐regulation of genes for PG structural proteins such as fibrillins. The unveiled genetic networks simultaneously coordinating plastidial isoprenoid metabolism and plastid differentiation might only be present in higher plants, because X57 does not promote but reduces tocopherol accumulation in <jats:styled-content style=\"fixed-case\"> <jats:italic>Marchantia polymorpha</jats:italic> </jats:styled-content> .","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"55 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145651185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BaMV-Vectored Compact AsCas12f1-HKRA Enables Transgene-Free Genome Editing in Moso Bamboo (Phyllostachys edulis). bamv载体Compact AsCas12f1-HKRA实现毛竹(Phyllostachys edulis)的无转基因基因组编辑
IF 10.5 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-12-02 DOI: 10.1111/pbi.70474
Lin Wu, Yuying Gu, Hongjue Guo, Jun Zhang, Jun Yang, Mengying Zhang, Huihui Wang, Liangzhen Zhao, Hangxiao Zhang, Lianfeng Gu
{"title":"BaMV-Vectored Compact AsCas12f1-HKRA Enables Transgene-Free Genome Editing in Moso Bamboo (Phyllostachys edulis).","authors":"Lin Wu, Yuying Gu, Hongjue Guo, Jun Zhang, Jun Yang, Mengying Zhang, Huihui Wang, Liangzhen Zhao, Hangxiao Zhang, Lianfeng Gu","doi":"10.1111/pbi.70474","DOIUrl":"https://doi.org/10.1111/pbi.70474","url":null,"abstract":"","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":""},"PeriodicalIF":10.5,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145652879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stabilisation of Tomato Yellow Leaf Curl China Virus Infectious Clones Through Micro‐Homology Mediated End Joining 利用微同源介导末端连接技术稳定番茄黄曲叶病毒侵染克隆
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-11-30 DOI: 10.1111/pbi.70455
Anxiang Wang, Tian Meng, Ju Wang, Xiaomei Xu, Dan Li, Zhanqing Lv, Aiqi Yan, Mian Zhou, Bo Ding, Qiuying Yang
Tomato yellow leaf curl China virus (TYLCCNV) is a major agricultural pathogen and primary model for circular single‐stranded DNA (cssDNA) virus studies. The infectious clones of TYLCCNV and other cssDNA viruses are usually constructed as two tandem copies of the small viral genomes in Agrobacterium‐ mediated T‐DNA vectors. However, during our experiment, we observed that successive cultivation of the agrobacterial infectious clone of TYLCCNV led to a reduction or complete loss of its virulence in host plants. Further analysis revealed that the instability of this infectious clone is analogous to the mechanism of viral genome release from the dimeric infectious clones of cssDNA viruses during rolling circle replication, with key contributing factors being the activity of the viral Replication protein (Rep) and the replication origins. Unlike the infectious clones of RNA viruses, which often utilize introns to disrupt toxic protein coding sequences in order to achieve stabilization, the infectious clones of DNA viruses are unable to remove introns before releasing viral genomes. To address this challenge, we developed a micro‐homology mediated end joining (MMEJ)‐based system that disrupts the Rep coding sequences with an I‐ Sce I site flanked by microhomologous regions, stabilizing the infectious clone in prokaryotic cells. Then the transiently co‐expressed I‐ Sce I enzyme seamlessly removes the introduced I‐ Sce I site through MMEJ repair in plant hosts, resulting in efficient release of functional TYLCCNV viral genomes in planta . Theoretically, this approach can be applied to the construction of stable infectious clones for all plant DNA viruses.
中国番茄黄卷叶病毒(TYLCCNV)是一种重要的农业病原,也是环状单链DNA (cssDNA)病毒研究的主要模型。TYLCCNV和其他cssDNA病毒的感染性克隆通常是在农杆菌介导的T - DNA载体中构建小病毒基因组的两个串联拷贝。然而,在我们的实验中,我们观察到连续培养TYLCCNV的农杆菌感染克隆导致其在宿主植物中的毒力降低或完全丧失。进一步分析表明,该传染性克隆的不稳定性与cssDNA病毒二聚体感染性克隆在滚圈复制过程中释放病毒基因组的机制类似,关键因素是病毒复制蛋白(Rep)的活性和复制起点。RNA病毒的感染性克隆通常利用内含子破坏有毒蛋白质编码序列以达到稳定,而DNA病毒的感染性克隆在释放病毒基因组之前无法去除内含子。为了解决这一挑战,我们开发了一种基于微同源介导的末端连接(MMEJ)的系统,该系统通过微同源区域两侧的I - Sce I位点破坏Rep编码序列,稳定原核细胞中的感染性克隆。然后,瞬时共表达的I - Sce I酶通过MMEJ修复在植物宿主中无缝地去除引入的I - Sce I位点,从而在植物中有效地释放功能性TYLCCNV病毒基因组。理论上,该方法可应用于所有植物DNA病毒的稳定感染克隆的构建。
{"title":"Stabilisation of Tomato Yellow Leaf Curl China Virus Infectious Clones Through Micro‐Homology Mediated End Joining","authors":"Anxiang Wang, Tian Meng, Ju Wang, Xiaomei Xu, Dan Li, Zhanqing Lv, Aiqi Yan, Mian Zhou, Bo Ding, Qiuying Yang","doi":"10.1111/pbi.70455","DOIUrl":"https://doi.org/10.1111/pbi.70455","url":null,"abstract":"<jats:italic>Tomato yellow leaf curl China virus</jats:italic> (TYLCCNV) is a major agricultural pathogen and primary model for circular single‐stranded DNA (cssDNA) virus studies. The infectious clones of TYLCCNV and other cssDNA viruses are usually constructed as two tandem copies of the small viral genomes in <jats:italic>Agrobacterium‐</jats:italic> mediated T‐DNA vectors. However, during our experiment, we observed that successive cultivation of the agrobacterial infectious clone of TYLCCNV led to a reduction or complete loss of its virulence in host plants. Further analysis revealed that the instability of this infectious clone is analogous to the mechanism of viral genome release from the dimeric infectious clones of cssDNA viruses during rolling circle replication, with key contributing factors being the activity of the viral Replication protein (Rep) and the replication origins. Unlike the infectious clones of RNA viruses, which often utilize introns to disrupt toxic protein coding sequences in order to achieve stabilization, the infectious clones of DNA viruses are unable to remove introns before releasing viral genomes. To address this challenge, we developed a micro‐homology mediated end joining (MMEJ)‐based system that disrupts the Rep coding sequences with an I‐ <jats:italic>Sce</jats:italic> I site flanked by microhomologous regions, stabilizing the infectious clone in prokaryotic cells. Then the transiently co‐expressed I‐ <jats:italic>Sce</jats:italic> I enzyme seamlessly removes the introduced I‐ <jats:italic>Sce</jats:italic> I site through MMEJ repair in plant hosts, resulting in efficient release of functional TYLCCNV viral genomes <jats:italic>in planta</jats:italic> . Theoretically, this approach can be applied to the construction of stable infectious clones for all plant DNA viruses.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"124 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145619427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimisation of Agrobacterium ‐Mediated Seedling Leaf Transformation Across Multiple Sorghum Genotypes 农杆菌介导的高粱多基因型幼苗叶片转化的优化
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-11-30 DOI: 10.1111/pbi.70438
Mercy K. Azanu, Keunsub Lee, Kan Wang
{"title":"Optimisation of Agrobacterium ‐Mediated Seedling Leaf Transformation Across Multiple Sorghum Genotypes","authors":"Mercy K. Azanu, Keunsub Lee, Kan Wang","doi":"10.1111/pbi.70438","DOIUrl":"https://doi.org/10.1111/pbi.70438","url":null,"abstract":"","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"6 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145619426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The TaMADS2-TaTBL21 Module Enhances Wheat Resistance to Stripe Rust by Activating TaGKL-Mediated Immunity. TaMADS2-TaTBL21模块通过激活tagkl介导的免疫增强小麦对条锈病的抗性
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-11-28 DOI: 10.1111/pbi.70476
Shijia Zhao,Hao Chu,Yanan Lu,Jiaqi Chen,Xu Wang,Guangxiang Tian,Mingjing Zhang,Pengyu Song,Yanhui Zhang,Guihua Bai,Gangming Zhan,Zhensheng Kang,Wenming Zheng,ZhengQing Fu,Na Liu
Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst) poses a catastrophic threat to global food security. While MADS-box transcription factors regulate development and abiotic stress, their roles in plant-pathogen immunity remain enigmatic. In this study, we identified TaMADS2, a Pst-induced MADS-box gene, as a positive regulator of wheat resistance. Functional analyses demonstrated that TaMADS2 overexpression significantly enhanced Pst resistance, whereas its knockdown rendered wheat more susceptible. Further investigation revealed that TaMADS2 interacts with trichome birefringence-like protein 21 (TaTBL21) to activate glycerol kinase-like (TaGKL) expression. Silencing TaGKL in wild-type or TaMADS2-overexpressing lines compromised resistance, with elevated Pst biomass. Notably, dual silencing of TaMADS2 and TaGKL further heightened susceptibility, confirming their synergistic defence role. Mechanistically, the TaMADS2-TaTBL21 complex promotes wheat resistance to stripe rust disease by upregulating TaGKL expression, leading to the accumulation of the key defence metabolites salicylic acid (SA) and glycerol-3-phosphate (G3P). Our study unveils a novel TaMADS2-TaTBL21-TaGKL module that potentiates wheat resistance against stripe rust, offering strategic targets for breeding resistant wheat.
小麦条锈病(锈病)对全球粮食安全构成灾难性威胁。虽然MADS-box转录因子调节发育和非生物胁迫,但它们在植物病原体免疫中的作用仍然是一个谜。在这项研究中,我们发现了一个pst诱导的MADS-box基因TaMADS2作为小麦抗性的正调控因子。功能分析表明,TaMADS2过表达显著增强了小麦对Pst的抗性,而TaMADS2过表达使小麦对Pst更敏感。进一步研究发现TaMADS2与毛状体双折射样蛋白21 (TaTBL21)相互作用,激活甘油激酶样蛋白(TaGKL)表达。在野生型或tamads2过表达系中沉默TaGKL会降低抗性,导致Pst生物量升高。值得注意的是,TaMADS2和TaGKL的双重沉默进一步提高了易感性,证实了它们的协同防御作用。机制上,TaMADS2-TaTBL21复合体通过上调TaGKL表达促进小麦对条锈病的抗性,导致关键防御代谢物水杨酸(SA)和甘油-3-磷酸(G3P)的积累。我们的研究揭示了一种新的TaMADS2-TaTBL21-TaGKL模块,该模块增强了小麦对条锈病的抗性,为培育抗性小麦提供了战略目标。
{"title":"The TaMADS2-TaTBL21 Module Enhances Wheat Resistance to Stripe Rust by Activating TaGKL-Mediated Immunity.","authors":"Shijia Zhao,Hao Chu,Yanan Lu,Jiaqi Chen,Xu Wang,Guangxiang Tian,Mingjing Zhang,Pengyu Song,Yanhui Zhang,Guihua Bai,Gangming Zhan,Zhensheng Kang,Wenming Zheng,ZhengQing Fu,Na Liu","doi":"10.1111/pbi.70476","DOIUrl":"https://doi.org/10.1111/pbi.70476","url":null,"abstract":"Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst) poses a catastrophic threat to global food security. While MADS-box transcription factors regulate development and abiotic stress, their roles in plant-pathogen immunity remain enigmatic. In this study, we identified TaMADS2, a Pst-induced MADS-box gene, as a positive regulator of wheat resistance. Functional analyses demonstrated that TaMADS2 overexpression significantly enhanced Pst resistance, whereas its knockdown rendered wheat more susceptible. Further investigation revealed that TaMADS2 interacts with trichome birefringence-like protein 21 (TaTBL21) to activate glycerol kinase-like (TaGKL) expression. Silencing TaGKL in wild-type or TaMADS2-overexpressing lines compromised resistance, with elevated Pst biomass. Notably, dual silencing of TaMADS2 and TaGKL further heightened susceptibility, confirming their synergistic defence role. Mechanistically, the TaMADS2-TaTBL21 complex promotes wheat resistance to stripe rust disease by upregulating TaGKL expression, leading to the accumulation of the key defence metabolites salicylic acid (SA) and glycerol-3-phosphate (G3P). Our study unveils a novel TaMADS2-TaTBL21-TaGKL module that potentiates wheat resistance against stripe rust, offering strategic targets for breeding resistant wheat.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"10 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145613202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Omics Combined With Mitochondrial Feeding Assays Reveal a Novel Energy Metabolism Strategy for Floral Thermogenesis in Magnolia Driven by Synergistic Supply of Multiple Substrates. 多组学联合线粒体摄食分析揭示了一种由多种基质协同供应驱动的木兰花产热新能量代谢策略。
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-11-28 DOI: 10.1111/pbi.70479
Siqin Wang,Jiying Li,Zhang Wang,Miao Yu,Chang Liu,Dongye Liu,Ruohan Wang
The high demand for energy during floral thermogenesis drives the synergistic operation of multiple energy substrates for the rapid temperature rise and successful reproduction of flowers. However, how thermogenic plants precisely regulate substrate supply and metabolic pathways within a short time to support large-scale energy and heat release remains a mystery. This study revealed the elaborate synergistic supply mechanism of multi-source substrates in Magnolia denudata during thermogenesis. Transcriptome analysis showed that genes related to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) were significantly upregulated during the thermogenic stage (S2). Mitochondrial feeding assays using isotopically labelled substrates revealed that during the thermogenic stage, both the amount of pyruvate imported via the mitochondrial pyruvate carrier (MPC) and NAD-malic enzyme (NAD-ME) increased, and their synergistic effect accelerated the metabolic flow of the TCA cycle. Targeted lipidomics analysis indicated that the content of 63.6% fatty acids in the fatty acid degradation pathway decreased, while the key enzyme genes involved in triacylglycerol lipase (TGL) and fatty acid β-oxidation pathways were highly expressed during the thermogenic stage. In addition, enhanced expression of genes related to alanine aminotransferase (AlaAT) and glutamate dehydrogenase (GDH) suggested that amino acid metabolism might provide additional substrates for thermogenesis. This study clarifies the synergistic energy supply of carbohydrate, fatty acid and amino acid metabolism during thermogenesis in M. denudata, providing new evidence for understanding the metabolic regulatory flexibility of floral thermogenesis in plants.
植物在产热过程中对能量的大量需求,推动了多种能量基质协同作用,从而实现了温度的快速上升和花朵的成功繁殖。然而,产热植物如何在短时间内精确调节底物供应和代谢途径以支持大规模的能量和热量释放仍然是一个谜。本研究揭示了白玉兰产热过程中多源基质的协同供给机制。转录组分析显示,与三羧酸(TCA)循环和氧化磷酸化(OXPHOS)相关的基因在产热阶段显著上调(S2)。使用同位素标记底物的线粒体摄食实验显示,在产热阶段,通过线粒体丙酮酸载体(MPC)和nada -苹果酸酶(nada - me)输入的丙酮酸量都增加了,它们的协同作用加速了TCA循环的代谢流动。靶向脂质组学分析表明,脂肪酸降解途径中63.6%的脂肪酸含量下降,而三酰甘油脂肪酶(TGL)和脂肪酸β-氧化途径的关键酶基因在产热阶段高表达。此外,丙氨酸转氨酶(AlaAT)和谷氨酸脱氢酶(GDH)相关基因的表达增强表明,氨基酸代谢可能为产热提供了额外的底物。本研究阐明了油松产热过程中碳水化合物、脂肪酸和氨基酸代谢的协同能量供应,为了解植物花的产热代谢调节灵活性提供了新的证据。
{"title":"Multi-Omics Combined With Mitochondrial Feeding Assays Reveal a Novel Energy Metabolism Strategy for Floral Thermogenesis in Magnolia Driven by Synergistic Supply of Multiple Substrates.","authors":"Siqin Wang,Jiying Li,Zhang Wang,Miao Yu,Chang Liu,Dongye Liu,Ruohan Wang","doi":"10.1111/pbi.70479","DOIUrl":"https://doi.org/10.1111/pbi.70479","url":null,"abstract":"The high demand for energy during floral thermogenesis drives the synergistic operation of multiple energy substrates for the rapid temperature rise and successful reproduction of flowers. However, how thermogenic plants precisely regulate substrate supply and metabolic pathways within a short time to support large-scale energy and heat release remains a mystery. This study revealed the elaborate synergistic supply mechanism of multi-source substrates in Magnolia denudata during thermogenesis. Transcriptome analysis showed that genes related to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) were significantly upregulated during the thermogenic stage (S2). Mitochondrial feeding assays using isotopically labelled substrates revealed that during the thermogenic stage, both the amount of pyruvate imported via the mitochondrial pyruvate carrier (MPC) and NAD-malic enzyme (NAD-ME) increased, and their synergistic effect accelerated the metabolic flow of the TCA cycle. Targeted lipidomics analysis indicated that the content of 63.6% fatty acids in the fatty acid degradation pathway decreased, while the key enzyme genes involved in triacylglycerol lipase (TGL) and fatty acid β-oxidation pathways were highly expressed during the thermogenic stage. In addition, enhanced expression of genes related to alanine aminotransferase (AlaAT) and glutamate dehydrogenase (GDH) suggested that amino acid metabolism might provide additional substrates for thermogenesis. This study clarifies the synergistic energy supply of carbohydrate, fatty acid and amino acid metabolism during thermogenesis in M. denudata, providing new evidence for understanding the metabolic regulatory flexibility of floral thermogenesis in plants.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"71 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145613203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid Genetic Stabilisation of Transgenic and Edited Wheat Through Transformation of Immature Haploid Embryos 通过未成熟单倍体胚胎转化转基因和编辑小麦的快速遗传稳定
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-11-28 DOI: 10.1111/pbi.70477
Zhiyang Han, Buquan Zhao, Ming Fan, Shuangxi Zhang, Hao Peng, Xi Li, Surong Wang, Weihong Huang, Xingyu Yao, Chunwu Yang, Ke Wang, Xingguo Ye, Huali Tang
Wheat is one of the globally important food crops, but its genetically modified application lags behind other staple crops due to its complex genome and low transformation efficiency. Normally, traditional transgenic and gene‐edited wheat requires multiple selfing generations for obtaining homozygous lines, which delayed the development of genetically modified wheat varieties. In this study, we crossed a haploid inducer line with purple embryos (HIPE) as a male parent with a wheat cultivar Fielder, and then chose the haploid immature embryos without purple colour to be transformed with the Agrobacterium cells carrying the expression vectors with GUS , RUBY , and Cas9 and sgRNAs for targeting TaWaxy for generating both transgenic and gene editing wheat plants. Consequently, 139 haploid transgenic wheat plants were obtained with transformation efficiencies ranging from 66.7% to 78.4% according to molecular analysis, histochemical staining assay and colour observation. After chromosome doubling treatment to the haploid transgenic plantlets, homozygous transgenic and gene‐edited wheat lines were produced in T 0 generation. Genetic analysis of T 1 generation plants confirmed the stable inheritance of the transgenes and edited alleles without segregation. Finally, we established, for the first time, an efficient genetic transformation system based on the use of wheat haploid immature embryos, enabling direct acquisition of homozygous transgenic and gene‐edited wheat in T 0 generation. This approach can significantly shorten the wheat transgenic and gene‐edited breeding cycle and will provide a novel strategy for the genetic improvement of other polyploid crops.
小麦是全球重要的粮食作物之一,但由于其基因组复杂、转化效率低,其转基因应用滞后于其他主粮作物。通常,传统的转基因和基因编辑小麦需要多代自交才能获得纯合子系,这耽误了转基因小麦品种的发展。本研究以紫胚单倍体诱导系(HIPE)为父本,与小麦品种Fielder杂交,选择无紫色的单倍体未成熟胚,用农杆菌细胞转染GUS、RUBY、Cas9和sgrna表达载体,以TaWaxy为靶点,制备转基因和基因编辑小麦植株。通过分子分析、组织化学染色和颜色观察,获得了139个单倍体转基因小麦植株,转化效率在66.7% ~ 78.4%之间。对单倍体转基因植株进行染色体加倍处理后,在t0代获得了转基因纯合子和基因编辑小麦品系。对t1代植株进行遗传分析,证实转基因和编辑等位基因遗传稳定,无分离。最后,我们首次建立了基于小麦单倍体未成熟胚的高效遗传转化体系,实现了在T 0代直接获得纯合子转基因和基因编辑小麦。该方法可显著缩短小麦转基因和基因编辑育种周期,并将为其他多倍体作物的遗传改良提供新的策略。
{"title":"Rapid Genetic Stabilisation of Transgenic and Edited Wheat Through Transformation of Immature Haploid Embryos","authors":"Zhiyang Han, Buquan Zhao, Ming Fan, Shuangxi Zhang, Hao Peng, Xi Li, Surong Wang, Weihong Huang, Xingyu Yao, Chunwu Yang, Ke Wang, Xingguo Ye, Huali Tang","doi":"10.1111/pbi.70477","DOIUrl":"https://doi.org/10.1111/pbi.70477","url":null,"abstract":"Wheat is one of the globally important food crops, but its genetically modified application lags behind other staple crops due to its complex genome and low transformation efficiency. Normally, traditional transgenic and gene‐edited wheat requires multiple selfing generations for obtaining homozygous lines, which delayed the development of genetically modified wheat varieties. In this study, we crossed a haploid inducer line with purple embryos (HIPE) as a male parent with a wheat cultivar Fielder, and then chose the haploid immature embryos without purple colour to be transformed with the <jats:italic>Agrobacterium</jats:italic> cells carrying the expression vectors with <jats:italic>GUS</jats:italic> , <jats:italic>RUBY</jats:italic> , and <jats:italic>Cas9</jats:italic> and <jats:italic>sgRNAs</jats:italic> for targeting <jats:italic>TaWaxy</jats:italic> for generating both transgenic and gene editing wheat plants. Consequently, 139 haploid transgenic wheat plants were obtained with transformation efficiencies ranging from 66.7% to 78.4% according to molecular analysis, histochemical staining assay and colour observation. After chromosome doubling treatment to the haploid transgenic plantlets, homozygous transgenic and gene‐edited wheat lines were produced in T <jats:sub>0</jats:sub> generation. Genetic analysis of T <jats:sub>1</jats:sub> generation plants confirmed the stable inheritance of the transgenes and edited alleles without segregation. Finally, we established, for the first time, an efficient genetic transformation system based on the use of wheat haploid immature embryos, enabling direct acquisition of homozygous transgenic and gene‐edited wheat in T <jats:sub>0</jats:sub> generation. This approach can significantly shorten the wheat transgenic and gene‐edited breeding cycle and will provide a novel strategy for the genetic improvement of other polyploid crops.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"36 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145610902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High‐Efficiency Genome Editing of Chlorella sp. by CRISPR /Cas9 利用CRISPR /Cas9高效编辑小球藻基因组
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-11-27 DOI: 10.1111/pbi.70423
Xinyu Cui, Yi Xin, Yuan Xiao, Bixin Zhang, Qinhua Gan, Yandu Lu
{"title":"High‐Efficiency Genome Editing of Chlorella sp. by CRISPR /Cas9","authors":"Xinyu Cui, Yi Xin, Yuan Xiao, Bixin Zhang, Qinhua Gan, Yandu Lu","doi":"10.1111/pbi.70423","DOIUrl":"https://doi.org/10.1111/pbi.70423","url":null,"abstract":"","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"20 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Auto‐Activated NLR ‐Protein OsRGA3 D605V Confers Rice Triple Resistance and Deactivates Resistance After Phosphorylation by OsILA1 自激活NLR蛋白OsRGA3 D605V赋予水稻三重抗性,并在OsILA1磷酸化后使抗性失活
IF 13.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-11-27 DOI: 10.1111/pbi.70471
Yuan Zhong, Su Chen, Bo Sun, Min Liu, Zhenying Shi, Xuexia Miao, Haichao Li
The incidence of pests and diseases seriously impacts rice production, and NLR genes play a crucial role in the regulation of immune signalling in rice. Here, we identified an NLR gene OsRGA3 that positively regulates rice resistance to brown planthopper (BPH) and rice blast disease (RBD). The mutant OsRGA3 D605V as an auto‐activated form of OsRGA3 can form a resistosome and exhibit Ca 2+ permeable channel activity, triggering a hypersensitive response (HR) and providing rice with enhanced resistance to BPH, RBD and bacterial leaf blight (BLB). Biochemistry experiments confirmed that a Raf‐like MAPKKK OsILA1 interacts with OsRGA3 by Y2H, LCA, Pull‐down and BLI assay. OsILA1 negatively regulates rice resistance to BPH, RBD and BLB. Further study discovered that OsILA1 inhibits HR triggered by OsRGA3 D605V through phosphorylation of Y15 and Y138 sites to avoid an excessive immune response of plants. This study discovered a new MAPK‐NLR module with triple bio‐stress resistance that can be self‐activated and then deactivated by phosphorylation.
病虫害的发生严重影响水稻生产,NLR基因在水稻免疫信号调控中起着至关重要的作用。在这里,我们发现了一个NLR基因OsRGA3,它正调控水稻对褐飞虱(BPH)和稻瘟病(RBD)的抗性。突变体OsRGA3 D605V作为OsRGA3的自激活形式,可以形成抗性体,并表现出ca2 +可渗透通道活性,引发超敏反应(HR),从而增强水稻对BPH、RBD和细菌性叶枯病(BLB)的抗性。生物化学实验通过Y2H、LCA、Pull - down和BLI实验证实了一个Raf - like MAPKKK OsILA1与OsRGA3相互作用。OsILA1负调控水稻对BPH、RBD和BLB的抗性。进一步研究发现,OsILA1通过磷酸化Y15和Y138位点抑制OsRGA3 D605V引发的HR,避免植物过度免疫应答。本研究发现了一种新的MAPK - NLR模块,具有三重生物胁迫抗性,可以自我激活,然后通过磷酸化使其失活。
{"title":"An Auto‐Activated NLR ‐Protein OsRGA3 D605V Confers Rice Triple Resistance and Deactivates Resistance After Phosphorylation by OsILA1","authors":"Yuan Zhong, Su Chen, Bo Sun, Min Liu, Zhenying Shi, Xuexia Miao, Haichao Li","doi":"10.1111/pbi.70471","DOIUrl":"https://doi.org/10.1111/pbi.70471","url":null,"abstract":"The incidence of pests and diseases seriously impacts rice production, and <jats:italic>NLR</jats:italic> genes play a crucial role in the regulation of immune signalling in rice. Here, we identified an <jats:italic>NLR</jats:italic> gene <jats:italic>OsRGA3</jats:italic> that positively regulates rice resistance to brown planthopper (BPH) and rice blast disease (RBD). The mutant OsRGA3 <jats:sup>D605V</jats:sup> as an auto‐activated form of OsRGA3 can form a resistosome and exhibit Ca <jats:sup>2+</jats:sup> permeable channel activity, triggering a hypersensitive response (HR) and providing rice with enhanced resistance to BPH, RBD and bacterial leaf blight (BLB). Biochemistry experiments confirmed that a Raf‐like MAPKKK OsILA1 interacts with OsRGA3 by Y2H, LCA, Pull‐down and BLI assay. OsILA1 negatively regulates rice resistance to BPH, RBD and BLB. Further study discovered that OsILA1 inhibits HR triggered by OsRGA3 <jats:sup>D605V</jats:sup> through phosphorylation of Y15 and Y138 sites to avoid an excessive immune response of plants. This study discovered a new MAPK‐NLR module with triple bio‐stress resistance that can be self‐activated and then deactivated by phosphorylation.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"7 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145609195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Plant Biotechnology Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1