Jianping Liu, Xin Li, Ke Wang, Tao Wang, Yang Meng, Zhi Peng, Jinli Huang, Jiaohan Huo, Xiaoqi Zhu, Jinyong Yang, Yongxi Fan, Feiyun Xu, Qian Zhang, Zhengrui Wang, Ya Wang, Hao Chen, Weifeng Xu
Heat stress significantly impacts global rice production, highlighting the critical need to understand the genetic basis of heat resistance in rice. U2AF (U2 snRNP auxiliary factor) is an essential splicing complex with critical roles in recognizing the 3′-splice site of precursor messenger RNAs (pre-mRNAs). The U2AF small subunit (U2AF35) can bind to the 3′-AG intron border and promote U2 snRNP binding to the branch-point sequences of introns through interaction with the U2AF large subunit (U2AF65). However, the functions of U2AF35 in plants are poorly understood. In this study, we discovered that the OsU2AF35a gene was vigorously induced by heat stress and could positively regulate rice thermotolerance during both the seedling and reproductive growth stages. OsU2AF35a interacts with OsU2AF65a within the nucleus, and both of them can form condensates through liquid–liquid phase separation (LLPS) following heat stress. The intrinsically disordered regions (IDR) are accountable for their LLPS. OsU2AF35a condensation is indispensable for thermotolerance. RNA-seq analysis disclosed that, subsequent to heat treatment, the expression levels of several genes associated with water deficiency and oxidative stress in osu2af35a-1 were markedly lower than those in ZH11. In accordance with this, OsU2AF35a is capable of positively regulating the oxidative stress resistance of rice. The pre-mRNAs of a considerable number of genes in the osu2af35a-1 mutant exhibited defective splicing, among which was the OsHSA32 gene. Knocking out OsHSA32 significantly reduced the thermotolerance of rice, while overexpressing OsHSA32 could partially rescue the heat sensitivity of osu2af35a-1. Together, our findings uncovered the essential role of OsU2AF35a in rice heat stress response through protein separation and regulating alternative pre-mRNA splicing.
{"title":"The splicing auxiliary factor OsU2AF35a enhances thermotolerance via protein separation and promoting proper splicing of OsHSA32 pre-mRNA in rice","authors":"Jianping Liu, Xin Li, Ke Wang, Tao Wang, Yang Meng, Zhi Peng, Jinli Huang, Jiaohan Huo, Xiaoqi Zhu, Jinyong Yang, Yongxi Fan, Feiyun Xu, Qian Zhang, Zhengrui Wang, Ya Wang, Hao Chen, Weifeng Xu","doi":"10.1111/pbi.14587","DOIUrl":"https://doi.org/10.1111/pbi.14587","url":null,"abstract":"Heat stress significantly impacts global rice production, highlighting the critical need to understand the genetic basis of heat resistance in rice. U2AF (<span style=\"text-decoration:underline\">U2</span> snRNP <span style=\"text-decoration:underline\">a</span>uxiliary <span style=\"text-decoration:underline\">f</span>actor) is an essential splicing complex with critical roles in recognizing the 3′-splice site of precursor messenger RNAs (pre-mRNAs). The U2AF small subunit (U2AF35) can bind to the 3′-AG intron border and promote U2 snRNP binding to the branch-point sequences of introns through interaction with the U2AF large subunit (U2AF65). However, the functions of U2AF35 in plants are poorly understood. In this study, we discovered that the <i>OsU2AF35a</i> gene was vigorously induced by heat stress and could positively regulate rice thermotolerance during both the seedling and reproductive growth stages. OsU2AF35a interacts with OsU2AF65a within the nucleus, and both of them can form condensates through liquid–liquid phase separation (LLPS) following heat stress. The intrinsically disordered regions (IDR) are accountable for their LLPS. OsU2AF35a condensation is indispensable for thermotolerance. RNA-seq analysis disclosed that, subsequent to heat treatment, the expression levels of several genes associated with water deficiency and oxidative stress in <i>osu2af35a-1</i> were markedly lower than those in ZH11. In accordance with this, OsU2AF35a is capable of positively regulating the oxidative stress resistance of rice. The pre-mRNAs of a considerable number of genes in the <i>osu2af35a-1</i> mutant exhibited defective splicing, among which was the <i>OsHSA32</i> gene. Knocking out <i>OsHSA32</i> significantly reduced the thermotolerance of rice, while overexpressing <i>OsHSA32</i> could partially rescue the heat sensitivity of <i>osu2af35a-1</i>. Together, our findings uncovered the essential role of OsU2AF35a in rice heat stress response through protein separation and regulating alternative pre-mRNA splicing.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"12 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guanghao Guo, Kaihong Bai, Yikun Hou, Zhen Gong, Huaizhi Zhang, Qiuhong Wu, Ping Lu, Miaomiao Li, Lingli Dong, Jingzhong Xie, Yongxing Chen, Panpan Zhang, Keyu Zhu, Beibei Li, Wenling Li, Lei Dong, Yijun Yang, Dan Qiu, Gaojie Wang, Hee-Kyung Ahn, He Zhao, Chengguo Yuan, Wenqi Shi, Minfeng Xue, Lijun Yang, Dazao Yu, Yusheng Zhao, Yuhang Chen, Hongjie Li, Tiezhu Hu, Guan-Zhu Han, Jonathan D G Jones, Zhiyong Liu
Powdery mildew poses a significant threat to global wheat production and most cloned and deployed resistance genes for wheat breeding encode nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Although two genetically linked NLRs function together as an NLR pair have been reported in other species, this phenomenon has been relatively less studied in wheat. Here, we demonstrate that two tightly linked NLR genes, RXL and Pm5e, arranged in a head-to-head orientation, function together as an NLR pair to mediate powdery mildew resistance in wheat. The resistance function of the RXL/Pm5e pair is validated by mutagenesis, gene silencing, and gene-editing assays. Interestingly, both RXL and Pm5e encode atypical NLRs, with RXL possessing a truncated NB-ARC (nucleotide binding adaptor shared by APAF-1, plant R proteins and CED-4) domain and Pm5e featuring an atypical coiled-coil (CC) domain. Notably, RXL and Pm5e lack an integrated domain associated with effector recognition found in all previously reported NLR pairs. Additionally, RXL and Pm5e exhibit a preference for forming hetero-complexes rather than homo-complexes, highlighting their cooperative role in disease resistance. We further show that the CC domain of Pm5e specifically suppresses the hypersensitive response induced by the CC domain of RXL through competitive interaction, revealing regulatory mechanisms within this NLR pair. Our study sheds light on the molecular mechanism underlying RXL/Pm5e-mediated powdery mildew resistance and provides a new example of an NLR pair in wheat disease resistance.
{"title":"The wheat NLR pair RXL/Pm5e confers resistance to powdery mildew","authors":"Guanghao Guo, Kaihong Bai, Yikun Hou, Zhen Gong, Huaizhi Zhang, Qiuhong Wu, Ping Lu, Miaomiao Li, Lingli Dong, Jingzhong Xie, Yongxing Chen, Panpan Zhang, Keyu Zhu, Beibei Li, Wenling Li, Lei Dong, Yijun Yang, Dan Qiu, Gaojie Wang, Hee-Kyung Ahn, He Zhao, Chengguo Yuan, Wenqi Shi, Minfeng Xue, Lijun Yang, Dazao Yu, Yusheng Zhao, Yuhang Chen, Hongjie Li, Tiezhu Hu, Guan-Zhu Han, Jonathan D G Jones, Zhiyong Liu","doi":"10.1111/pbi.14584","DOIUrl":"https://doi.org/10.1111/pbi.14584","url":null,"abstract":"Powdery mildew poses a significant threat to global wheat production and most cloned and deployed resistance genes for wheat breeding encode nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Although two genetically linked NLRs function together as an NLR pair have been reported in other species, this phenomenon has been relatively less studied in wheat. Here, we demonstrate that two tightly linked NLR genes, <i>RXL</i> and <i>Pm5e</i>, arranged in a head-to-head orientation, function together as an <i>NLR</i> pair to mediate powdery mildew resistance in wheat. The resistance function of the <i>RXL</i>/<i>Pm5e</i> pair is validated by mutagenesis, gene silencing, and gene-editing assays. Interestingly, both <i>RXL</i> and <i>Pm5e</i> encode atypical NLRs, with RXL possessing a truncated NB-ARC (nucleotide binding adaptor shared by APAF-1, plant R proteins and CED-4) domain and Pm5e featuring an atypical coiled-coil (CC) domain. Notably, RXL and Pm5e lack an integrated domain associated with effector recognition found in all previously reported NLR pairs. Additionally, RXL and Pm5e exhibit a preference for forming hetero-complexes rather than homo-complexes, highlighting their cooperative role in disease resistance. We further show that the CC domain of Pm5e specifically suppresses the hypersensitive response induced by the CC domain of RXL through competitive interaction, revealing regulatory mechanisms within this NLR pair. Our study sheds light on the molecular mechanism underlying <i>RXL</i>/<i>Pm5e-</i>mediated powdery mildew resistance and provides a new example of an <i>NLR</i> pair in wheat disease resistance.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"10 1","pages":""},"PeriodicalIF":13.8,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bei Gao, Jichen Zhao, Xiaoshuang Li, Jianhua Zhang, Melvin J. Oliver, Daoyuan Zhang
<p>The extremophile desert moss <i>Syntrichia caninervis</i>, from the Gurbantunggut Desert in China, was capable of surviving simulated Mars conditions (Li <i>et al</i>., <span>2024</span>). <i>Syntrichia caninervis</i> has become a research model for plant desiccation tolerance (Oliver <i>et al</i>., <span>2020</span>). The chromosome-level genome of <i>S. caninervis</i>, from gametophytes originating from the Mojave Desert, was sequenced and assembled (Silva <i>et al</i>., <span>2021</span>), facilitating research on gene function (Li <i>et al</i>., <span>2023</span>) and comparative and evolutionary genomics (Zhang <i>et al</i>., <span>2024</span>). This <i>S. caninervis</i> genome was considered an initial version (ScMoj v1). Because the ScMoj v1 genome relies on assembly of short reads, it has issues with continuity, gaps and assembly errors related to repetitive sequences. Here we generated a high-quality genome for the <i>S. caninervis</i> isolated from the Gurbantunggut Desert (designated ScGur).</p>