Pub Date : 2021-06-13DOI: 10.3390/COATINGS11060711
Marouan Rejeb, Ahmed Koubaa, F. Elleuch, F. Godard, bastien Migneault, M. Khlif, H. Mrad
Wood polymer composites (WPC) are sensitive to moisture because of the hydrophilic nature of the wood fibers. The main objective of this study was to improve the dimensional stability of WPCs by coating. Polypropylene and polylactic acid were reinforced by three pulp fibers (kraft, thermomechanical (TMP), and chemothermomechanical (CTMP)) at three fiber contents (50, 60, and 70% w/w). The resulting WPCs were coated using two commercial coatings, epoxy and acrylic. Kraft fiber WPCs were less sensitive to moisture than TMP and CTMP WPCs. These differences were explained by the crystallinity of the kraft fibers and their better interfacial adhesion to the polymers. The epoxy coating proved to be more effective than the acrylic coating and significantly reduced the water absorption and the thickness swell for all formulations. Negative relationships between the contact angle and water absorption were obtained. These relationships depend on the fiber content and type, the matrix nature, and the coating.
{"title":"Effects of Coating on the Dimensional Stability of Wood-Polymer Composites","authors":"Marouan Rejeb, Ahmed Koubaa, F. Elleuch, F. Godard, bastien Migneault, M. Khlif, H. Mrad","doi":"10.3390/COATINGS11060711","DOIUrl":"https://doi.org/10.3390/COATINGS11060711","url":null,"abstract":"Wood polymer composites (WPC) are sensitive to moisture because of the hydrophilic nature of the wood fibers. The main objective of this study was to improve the dimensional stability of WPCs by coating. Polypropylene and polylactic acid were reinforced by three pulp fibers (kraft, thermomechanical (TMP), and chemothermomechanical (CTMP)) at three fiber contents (50, 60, and 70% w/w). The resulting WPCs were coated using two commercial coatings, epoxy and acrylic. Kraft fiber WPCs were less sensitive to moisture than TMP and CTMP WPCs. These differences were explained by the crystallinity of the kraft fibers and their better interfacial adhesion to the polymers. The epoxy coating proved to be more effective than the acrylic coating and significantly reduced the water absorption and the thickness swell for all formulations. Negative relationships between the contact angle and water absorption were obtained. These relationships depend on the fiber content and type, the matrix nature, and the coating.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":"17 1","pages":"711"},"PeriodicalIF":0.0,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83548016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-13DOI: 10.3390/COATINGS11060712
C. M. P. Kumar, Avinash Lakshmikanthan, M. Chandrashekarappa, D. Pimenov, K. Giasin
Zinc (Zn) is one of the five most widely consumed metals in the world. Indeed, more than 50% of all the zinc produced is used in zinc-galvanizing processes to protect steel from corrosion. Zn-based coatings have the potential for use as a corrosion-resistant barrier, but their wider use is restricted due to the poor mechanical properties of Zn that are needed to protect steel and other metals from rusting. The addition of other alloying elements such as Ni (Nickle) and WC (Tungsten Carbide) to Zn coating can improve its performance. This study investigates, the corrosion performance of Zn–Ni coating and Zn–Ni–WC composite nanocoatings fabricated on mild steel substrate in an environmentally friendly bath solution. The influence of WC nanoparticles on Zn–Ni deposition was also investigated. The surface morphologies, texture coefficients via XRD (X-ray diffraction), SEM (Scanning Electron Microscopy), and EDS (Energy-dispersive X-ray spectroscopy) were analyzed. The electrochemical test such as polarization curves (PC) and electrochemical impedance spectroscopy (EIS) resulted in a corrosion rate of 0.6948 A/min for Zn–Ni–WC composite nanocoating, and 1.192 A/min for Zn–Ni coating. The results showed that the Zn–Ni–WC composite nanocoating reduced the corrosion rate by 41.71% and showed an 8.56% increase in microhardness compared to the hardness of the Zn–Ni coating. These results are augmented to better wettable characteristics of zinc, which developed good interfacial metallurgical adhesion amongst the Ni and WC elements. The results of the novel Zn–Ni–WC nanocomposite coatings achieved a great improvement of mechanical property and corrosion protection to the steel substrate surface.
锌是世界上消费最广泛的五种金属之一。事实上,生产的所有锌中有50%以上用于锌镀锌工艺,以保护钢材免受腐蚀。锌基涂层具有用作耐腐蚀屏障的潜力,但由于锌的机械性能较差,因此其广泛使用受到限制,而锌需要保护钢和其他金属不生锈。在锌镀层中加入Ni(镍)、WC(碳化钨)等其他合金元素可以改善镀层的性能。研究了在低碳钢基体上制备的Zn-Ni涂层和Zn-Ni - wc复合纳米涂层在环保镀液中的腐蚀性能。研究了纳米WC对Zn-Ni沉积的影响。通过XRD (x射线衍射)、SEM(扫描电子显微镜)和EDS(能量色散x射线能谱)分析了材料的表面形貌和织构系数。极化曲线(PC)和电化学阻抗谱(EIS)等电化学测试结果表明,Zn-Ni - wc复合纳米涂层的腐蚀速率为0.6948 a /min, Zn-Ni复合纳米涂层的腐蚀速率为1.192 a /min。结果表明,与Zn-Ni涂层相比,Zn-Ni - wc复合纳米涂层的腐蚀速率降低了41.71%,显微硬度提高了8.56%。锌具有较好的可湿性,在镍和WC元素之间形成了良好的界面冶金附着力。结果表明,新型的Zn-Ni-WC纳米复合涂层对钢基体表面的力学性能和防腐性能都有很大的改善。
{"title":"Electrodeposition Based Preparation of Zn–Ni Alloy and Zn–Ni–WC Nano-Composite Coatings for Corrosion-Resistant Applications","authors":"C. M. P. Kumar, Avinash Lakshmikanthan, M. Chandrashekarappa, D. Pimenov, K. Giasin","doi":"10.3390/COATINGS11060712","DOIUrl":"https://doi.org/10.3390/COATINGS11060712","url":null,"abstract":"Zinc (Zn) is one of the five most widely consumed metals in the world. Indeed, more than 50% of all the zinc produced is used in zinc-galvanizing processes to protect steel from corrosion. Zn-based coatings have the potential for use as a corrosion-resistant barrier, but their wider use is restricted due to the poor mechanical properties of Zn that are needed to protect steel and other metals from rusting. The addition of other alloying elements such as Ni (Nickle) and WC (Tungsten Carbide) to Zn coating can improve its performance. This study investigates, the corrosion performance of Zn–Ni coating and Zn–Ni–WC composite nanocoatings fabricated on mild steel substrate in an environmentally friendly bath solution. The influence of WC nanoparticles on Zn–Ni deposition was also investigated. The surface morphologies, texture coefficients via XRD (X-ray diffraction), SEM (Scanning Electron Microscopy), and EDS (Energy-dispersive X-ray spectroscopy) were analyzed. The electrochemical test such as polarization curves (PC) and electrochemical impedance spectroscopy (EIS) resulted in a corrosion rate of 0.6948 A/min for Zn–Ni–WC composite nanocoating, and 1.192 A/min for Zn–Ni coating. The results showed that the Zn–Ni–WC composite nanocoating reduced the corrosion rate by 41.71% and showed an 8.56% increase in microhardness compared to the hardness of the Zn–Ni coating. These results are augmented to better wettable characteristics of zinc, which developed good interfacial metallurgical adhesion amongst the Ni and WC elements. The results of the novel Zn–Ni–WC nanocomposite coatings achieved a great improvement of mechanical property and corrosion protection to the steel substrate surface.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":"29 1","pages":"712"},"PeriodicalIF":0.0,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75947235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-11DOI: 10.3390/COATINGS11060703
I. Stambolova, D. Stoyanova, M. Shipochka, N. Boshkova, A. Eliyas, S. Simeonova, N. Grozev, N. Boshkov
Dense, highly textured, hydrophobic ZrO2-TiO2 (1:1) coatings with amorphous structure were prepared using the sol-gel method. Both organic and inorganic zirconium precursor salts were used. The present study dealt with the investigation of their protective ability in a selected model corrosive medium with chloride ions as corrosion activators. The coatings showed good anticorrosion performance during the test, which was demonstrated both by the weight loss method and potentiodynamic polarization curves. The samples were characterized by means of X-ray diffraction (XRD), Atomic Force Microscopy (AFM), contact angle measurements, Infrared spectroscopy (IRS), Scanning Electron Microscopy (SEM), Differential Thermal analysis (DTA-TG) and X-ray photoelectron spectroscopy (XPS). It was established that the extent of influence of some factors, like treatment temperature (Ttr) and type of zirconium precursor, was different. The PD curves of samples treated at 400 °C (A4 and B4, respectively) demonstrated an increased effect of the precursor in comparison to Ttr, since the application of organic Zr salt led to deterioration of the anodic passivation zones. Contrary to this, the coatings obtained from both the organic and inorganic Zr precursor salts with Ttr = 500 °C had similar corrosion efficiency, i.e., the influence of the precursor was minimized. All investigated coatings had no visible corrosion damage. It seems that some complex structural and surface parameters, such as amorphous dense structure, surface smoothness, hydrophobicity and the surface chemical composition (low hydroxyl groups content), were responsible for the increased anticorrosion properties of the composite films.
{"title":"Surface Morphological and Chemical Features of Anticorrosion ZrO2–TiO2 Coatings: Impact of Zirconium Precursor","authors":"I. Stambolova, D. Stoyanova, M. Shipochka, N. Boshkova, A. Eliyas, S. Simeonova, N. Grozev, N. Boshkov","doi":"10.3390/COATINGS11060703","DOIUrl":"https://doi.org/10.3390/COATINGS11060703","url":null,"abstract":"Dense, highly textured, hydrophobic ZrO2-TiO2 (1:1) coatings with amorphous structure were prepared using the sol-gel method. Both organic and inorganic zirconium precursor salts were used. The present study dealt with the investigation of their protective ability in a selected model corrosive medium with chloride ions as corrosion activators. The coatings showed good anticorrosion performance during the test, which was demonstrated both by the weight loss method and potentiodynamic polarization curves. The samples were characterized by means of X-ray diffraction (XRD), Atomic Force Microscopy (AFM), contact angle measurements, Infrared spectroscopy (IRS), Scanning Electron Microscopy (SEM), Differential Thermal analysis (DTA-TG) and X-ray photoelectron spectroscopy (XPS). It was established that the extent of influence of some factors, like treatment temperature (Ttr) and type of zirconium precursor, was different. The PD curves of samples treated at 400 °C (A4 and B4, respectively) demonstrated an increased effect of the precursor in comparison to Ttr, since the application of organic Zr salt led to deterioration of the anodic passivation zones. Contrary to this, the coatings obtained from both the organic and inorganic Zr precursor salts with Ttr = 500 °C had similar corrosion efficiency, i.e., the influence of the precursor was minimized. All investigated coatings had no visible corrosion damage. It seems that some complex structural and surface parameters, such as amorphous dense structure, surface smoothness, hydrophobicity and the surface chemical composition (low hydroxyl groups content), were responsible for the increased anticorrosion properties of the composite films.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":"1 1","pages":"703"},"PeriodicalIF":0.0,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83521912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-11DOI: 10.3390/COATINGS11060704
K. Pélissier, D. Thierry
It is well known that the surface state (cleanliness, composition) of galvanized steel prior to the application of an organic coating is an important parameter. The surface state will affect the adhesion properties of the complete system and therefore will also impact its corrosion resistance and its tendency to blistering. Before the application of a pretreatment layer, galvanized steel strips are normally alkaline cleaned. This step is known to remove the native oxide film formed on hot dip galvanized steel after processing and appears as one of the most important steps to study the impact of the surface properties on the performance of painted systems. This study focused on making use of the cleaning step to input a variability on the surface composition (mainly surface concentration of aluminum) and evaluate its consequence(s) on the performance of a complete paint system. The results showed that, a variability in terms of surface aluminum concentration could be achieved by the cleaning step and that signs of performance improvement in terms of adhesion and tendency to blistering were spotted with a low content of aluminum at the surface.
{"title":"Multiscale and Multi-Technical Approach to Characterize the Hot-Dip Galvanized Steel Surface and Its Consequence(s) on Paint Adhesion and Tendency to Blistering","authors":"K. Pélissier, D. Thierry","doi":"10.3390/COATINGS11060704","DOIUrl":"https://doi.org/10.3390/COATINGS11060704","url":null,"abstract":"It is well known that the surface state (cleanliness, composition) of galvanized steel prior to the application of an organic coating is an important parameter. The surface state will affect the adhesion properties of the complete system and therefore will also impact its corrosion resistance and its tendency to blistering. Before the application of a pretreatment layer, galvanized steel strips are normally alkaline cleaned. This step is known to remove the native oxide film formed on hot dip galvanized steel after processing and appears as one of the most important steps to study the impact of the surface properties on the performance of painted systems. This study focused on making use of the cleaning step to input a variability on the surface composition (mainly surface concentration of aluminum) and evaluate its consequence(s) on the performance of a complete paint system. The results showed that, a variability in terms of surface aluminum concentration could be achieved by the cleaning step and that signs of performance improvement in terms of adhesion and tendency to blistering were spotted with a low content of aluminum at the surface.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":"40 1","pages":"704"},"PeriodicalIF":0.0,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76673349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-11DOI: 10.3390/COATINGS11060702
M. Bouttemy, S. Béchu, B. Spencer, Pia Dally, P. Chapon, A. Etcheberry
Chemical characterization at buried interfaces is a real challenge, as the physico-chemical processes operating at the interface govern the properties of many systems and devices. We have developed a methodology based on the combined use of pulsed RF GD-OES (pulsed Radio Frequency Glow Discharge Optical Emission Spectrometry) and XPS (X-ray Photoelectron Spectroscopy) to facilitate the access to deeply buried locations (taking advantage of the high profiling rate of the GD-OES) and perform an accurate chemical diagnosis using XPS directly inside the GD crater. The reliability of the chemical information is, however, influenced by a perturbed layer present at the surface of the crater, hindering traditional XPS examination due to a relatively short sampling depth. Sampling below the perturbed layer may, however, can be achieved using a higher energy excitation source with an increased sampling depth, and is enabled here by a new laboratory-based HAXPES (Hard X-ray PhotoElectron Spectroscopy) (Ga-Kα, 9.25 keV). This new approach combining HAXPES with pulsed RF GD-OES requires benchmarking and is here demonstrated and evaluated on InP. The perturbed depth is estimated and the consistency of the chemical information measured is demonstrated, offering a new route for advanced chemical depth profiling through coatings and heterostructures.
{"title":"Combined Pulsed RF GD-OES and HAXPES for Quantified Depth Profiling through Coatings","authors":"M. Bouttemy, S. Béchu, B. Spencer, Pia Dally, P. Chapon, A. Etcheberry","doi":"10.3390/COATINGS11060702","DOIUrl":"https://doi.org/10.3390/COATINGS11060702","url":null,"abstract":"Chemical characterization at buried interfaces is a real challenge, as the physico-chemical processes operating at the interface govern the properties of many systems and devices. We have developed a methodology based on the combined use of pulsed RF GD-OES (pulsed Radio Frequency Glow Discharge Optical Emission Spectrometry) and XPS (X-ray Photoelectron Spectroscopy) to facilitate the access to deeply buried locations (taking advantage of the high profiling rate of the GD-OES) and perform an accurate chemical diagnosis using XPS directly inside the GD crater. The reliability of the chemical information is, however, influenced by a perturbed layer present at the surface of the crater, hindering traditional XPS examination due to a relatively short sampling depth. Sampling below the perturbed layer may, however, can be achieved using a higher energy excitation source with an increased sampling depth, and is enabled here by a new laboratory-based HAXPES (Hard X-ray PhotoElectron Spectroscopy) (Ga-Kα, 9.25 keV). This new approach combining HAXPES with pulsed RF GD-OES requires benchmarking and is here demonstrated and evaluated on InP. The perturbed depth is estimated and the consistency of the chemical information measured is demonstrated, offering a new route for advanced chemical depth profiling through coatings and heterostructures.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":"1 1","pages":"702"},"PeriodicalIF":0.0,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90886943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-11DOI: 10.3390/COATINGS11060700
L. Su, Guanqun Zhuo, Ha-young Song, Jianyong Yang, Kaiyong Jiang
In this study, B modified silicide coatings were prepared on Nb-Si based alloy with Al2O3 or SiO2 inert-filler by pack cementation technology. Both coatings primarily consisted of a (Nb,X)Si2 with a (Nb,X)B2 + (Nb,X)Si2 outer layer. After oxidation at 1250 °C for 100 h, the coatings showed good oxidation resistance due to the formation of a dense silica. The oxidation products of the coating prepared with Al2O3 inert-filler consisted of SiO2, TiO2 and Cr2O3, while that of the coating prepared with SiO2 inert-filler consisted of SiO2, TiO2, Cr2O3, and HfO2. The different oxidation products may be due to the different oxidation process of these two sample at initial oxidation stage.
{"title":"Effect of Al2O3 and SiO2 Inert-Fillers on the Microstructural Evolution and High Temperature Oxidation Resistance of B Modified Silicides Coatings Prepared by Pack Cementation Technology","authors":"L. Su, Guanqun Zhuo, Ha-young Song, Jianyong Yang, Kaiyong Jiang","doi":"10.3390/COATINGS11060700","DOIUrl":"https://doi.org/10.3390/COATINGS11060700","url":null,"abstract":"In this study, B modified silicide coatings were prepared on Nb-Si based alloy with Al2O3 or SiO2 inert-filler by pack cementation technology. Both coatings primarily consisted of a (Nb,X)Si2 with a (Nb,X)B2 + (Nb,X)Si2 outer layer. After oxidation at 1250 °C for 100 h, the coatings showed good oxidation resistance due to the formation of a dense silica. The oxidation products of the coating prepared with Al2O3 inert-filler consisted of SiO2, TiO2 and Cr2O3, while that of the coating prepared with SiO2 inert-filler consisted of SiO2, TiO2, Cr2O3, and HfO2. The different oxidation products may be due to the different oxidation process of these two sample at initial oxidation stage.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":"11 1","pages":"700"},"PeriodicalIF":0.0,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91255309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-11DOI: 10.3390/COATINGS11060701
Faksawat Poohphajai, J. Sandak, M. Sailer, L. Rautkari, T. Belt, A. Sandak
The service life performance of timber products exposed to natural weathering is a critical factor limiting the broad use of wood as an external building element. The goal of this study was to investigate the in-service characterization of an innovative biofinish coating system. It is a novel surface finishing solution based on the bioinspired concept of living fungal cells designed for effective wood protection. The performance of Scots pine (Pinus sylvestris L.) wood coated with biofinish was compared with uncoated references. Samples were exposed to natural weathering for 12 months under the climatic conditions of northern Italy. The visual appearance, colour, gloss, wettability, and 3D surface topography of the wood surface were examined. Results revealed that the total colour changes (∆E) of biofinish-coated wood were negligible. Untreated Scots pine wood revealed the changes in colour after just three months of exposure. The gloss changes of both surface types were small. The contact angle measured on biofinish-coated wood was higher compared to that of uncoated Scots pine. Surface roughness increased in uncoated wood due to the erosion effect caused by the weathering progress. Conversely, the surface roughness of biofinish-coated samples decreased along the exposure time. This phenomenon was explained by two self-healing mechanisms: migration of non-polymerized oil to the cracked surface, where it polymerizes and creates a closed layer, and local regrowth to cover damaged spots by living fungal cells present in the coating. The obtained results revealed the superior aesthetic performance of the biofinish surface treatment against natural weathering. By considering the fully bio-based nature of the investigated coating, it was concluded that this solution can be an attractive alternative for state-of-the-art wood protection technologies.
{"title":"Bioinspired Living Coating System in Service: Evaluation of the Wood Protected with Biofinish during One-Year Natural Weathering","authors":"Faksawat Poohphajai, J. Sandak, M. Sailer, L. Rautkari, T. Belt, A. Sandak","doi":"10.3390/COATINGS11060701","DOIUrl":"https://doi.org/10.3390/COATINGS11060701","url":null,"abstract":"The service life performance of timber products exposed to natural weathering is a critical factor limiting the broad use of wood as an external building element. The goal of this study was to investigate the in-service characterization of an innovative biofinish coating system. It is a novel surface finishing solution based on the bioinspired concept of living fungal cells designed for effective wood protection. The performance of Scots pine (Pinus sylvestris L.) wood coated with biofinish was compared with uncoated references. Samples were exposed to natural weathering for 12 months under the climatic conditions of northern Italy. The visual appearance, colour, gloss, wettability, and 3D surface topography of the wood surface were examined. Results revealed that the total colour changes (∆E) of biofinish-coated wood were negligible. Untreated Scots pine wood revealed the changes in colour after just three months of exposure. The gloss changes of both surface types were small. The contact angle measured on biofinish-coated wood was higher compared to that of uncoated Scots pine. Surface roughness increased in uncoated wood due to the erosion effect caused by the weathering progress. Conversely, the surface roughness of biofinish-coated samples decreased along the exposure time. This phenomenon was explained by two self-healing mechanisms: migration of non-polymerized oil to the cracked surface, where it polymerizes and creates a closed layer, and local regrowth to cover damaged spots by living fungal cells present in the coating. The obtained results revealed the superior aesthetic performance of the biofinish surface treatment against natural weathering. By considering the fully bio-based nature of the investigated coating, it was concluded that this solution can be an attractive alternative for state-of-the-art wood protection technologies.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":"1 1","pages":"701"},"PeriodicalIF":0.0,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89213213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-10DOI: 10.3390/COATINGS11060693
Wen-jie Cheng, Hongbing Liu, Tan Jie, Zhishui Yu, Q. Shu
In this paper, the microstructure analysis and performance research of dual laser beam welded 2060-T8/2099-T83 aluminum–lithium alloys were carried out. First, the macroscopic morphology and microstructure characteristics of T-joint aluminum–lithium alloys under different welding conditions were observed. Then the effect of welding parameters and pore defects on tensile and fatigue properties of the weld were carried out and the experimental results were analyzed. It was found that the weld heat input has a significant influence on the penetration of the welded aluminum–lithium alloys joint. When the laser power is too high, the weld will absorb more laser energy and the increase in the evaporation of magnesium will further increase the weld penetration. When the penetration depth increases, the transverse tensile strength tends to decrease. There is no obvious rule for the effect of pore defects on the tensile strength of the weld. At the same time, the heat input of the weld is inversely proportional to the porosity. When the weld heat input increases from 19.41 to 23.33 kJ/m, the porosity decreases from 5.35% to 2.08%. During the fatigue test, it was confirmed that the existence of pore defects would reduce the fatigue life of the weld. In addition, from the analysis of the fatigue fracture morphology it can be found that when the porosity is low, the weld toe is the main source of fatigue cracks. The crack propagation zone shows a typical beach pattern and the final fracture of the base metal presents the characteristics of a brittle fracture. While, when the porosity is high, the crack source is mainly located at the pore defects. T-joint fractures from the inside of the weld and the fracture in the final fracture zone have obvious pore defects and dimples.
{"title":"Microstructure Analysis and Fatigue Behavior of Laser Beam Welding 2060-T8/2099-T83 Aluminum–Lithium Alloys","authors":"Wen-jie Cheng, Hongbing Liu, Tan Jie, Zhishui Yu, Q. Shu","doi":"10.3390/COATINGS11060693","DOIUrl":"https://doi.org/10.3390/COATINGS11060693","url":null,"abstract":"In this paper, the microstructure analysis and performance research of dual laser beam welded 2060-T8/2099-T83 aluminum–lithium alloys were carried out. First, the macroscopic morphology and microstructure characteristics of T-joint aluminum–lithium alloys under different welding conditions were observed. Then the effect of welding parameters and pore defects on tensile and fatigue properties of the weld were carried out and the experimental results were analyzed. It was found that the weld heat input has a significant influence on the penetration of the welded aluminum–lithium alloys joint. When the laser power is too high, the weld will absorb more laser energy and the increase in the evaporation of magnesium will further increase the weld penetration. When the penetration depth increases, the transverse tensile strength tends to decrease. There is no obvious rule for the effect of pore defects on the tensile strength of the weld. At the same time, the heat input of the weld is inversely proportional to the porosity. When the weld heat input increases from 19.41 to 23.33 kJ/m, the porosity decreases from 5.35% to 2.08%. During the fatigue test, it was confirmed that the existence of pore defects would reduce the fatigue life of the weld. In addition, from the analysis of the fatigue fracture morphology it can be found that when the porosity is low, the weld toe is the main source of fatigue cracks. The crack propagation zone shows a typical beach pattern and the final fracture of the base metal presents the characteristics of a brittle fracture. While, when the porosity is high, the crack source is mainly located at the pore defects. T-joint fractures from the inside of the weld and the fracture in the final fracture zone have obvious pore defects and dimples.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":"5 1","pages":"693"},"PeriodicalIF":0.0,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84113480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-10DOI: 10.3390/COATINGS11060695
Chaoyu Han, Li Ma, Xudong Sui, Bojiang Ma, Guosheng Huang
Fe-based amorphous alloys (FAA) have excellent anti-corrosion and anti-abrasive comprehensive performances. However, sprayed thin FAA coatings with high porosity cannot provide efficient protection, or even accelerate the corrosion rate of the substrate due to galvanic corrosion. Laser re-melting densifying is usually used to improve the anti-corrosion performance of sprayed coatings. There are two disadvantages of the common laser re-melting method, including crystallization and residual stress. In the present paper, a low density energy laser re-melting method was used to improve the performance of cold spraying (CS) FeCoCrMoBCY FAA coating on 40Cr substrate. The results show that the CS FAA coatings were crystallized partially during the melting process. The hardness of the coating is improved at the melting zone after laser re-melting, which improves the anti-abrasive performance. Potentiodynamic test results show that laser re-melting can decrease the corrosion rate, but the salt spray test indicates that low energy density re-melting cannot eliminate penetrated diffusion passage. Further optimization should be conducted to improve the anticorrosion performance for this method.
{"title":"Influence of Low Energy Density Laser Re-Melting on the Properties of Cold Sprayed FeCoCrMoBCY Amorphous Alloy Coatings","authors":"Chaoyu Han, Li Ma, Xudong Sui, Bojiang Ma, Guosheng Huang","doi":"10.3390/COATINGS11060695","DOIUrl":"https://doi.org/10.3390/COATINGS11060695","url":null,"abstract":"Fe-based amorphous alloys (FAA) have excellent anti-corrosion and anti-abrasive comprehensive performances. However, sprayed thin FAA coatings with high porosity cannot provide efficient protection, or even accelerate the corrosion rate of the substrate due to galvanic corrosion. Laser re-melting densifying is usually used to improve the anti-corrosion performance of sprayed coatings. There are two disadvantages of the common laser re-melting method, including crystallization and residual stress. In the present paper, a low density energy laser re-melting method was used to improve the performance of cold spraying (CS) FeCoCrMoBCY FAA coating on 40Cr substrate. The results show that the CS FAA coatings were crystallized partially during the melting process. The hardness of the coating is improved at the melting zone after laser re-melting, which improves the anti-abrasive performance. Potentiodynamic test results show that laser re-melting can decrease the corrosion rate, but the salt spray test indicates that low energy density re-melting cannot eliminate penetrated diffusion passage. Further optimization should be conducted to improve the anticorrosion performance for this method.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":"30 1","pages":"695"},"PeriodicalIF":0.0,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75871398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-10DOI: 10.3390/COATINGS11060696
O. Sánchez, M. Hernández-Vélez
Zinc Oxide (ZnO) is a well-known II–VI semiconductor with a direct bandgap around 3 [...]
氧化锌(ZnO)是一种众所周知的II-VI半导体,其直接带隙在3[…]
{"title":"Special Issue “1D, 2D, and 3D ZnO: Synthesis, Characterization, and Applications”","authors":"O. Sánchez, M. Hernández-Vélez","doi":"10.3390/COATINGS11060696","DOIUrl":"https://doi.org/10.3390/COATINGS11060696","url":null,"abstract":"Zinc Oxide (ZnO) is a well-known II–VI semiconductor with a direct bandgap around 3 [...]","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":"1 1","pages":"696"},"PeriodicalIF":0.0,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82171401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}