Pub Date : 2021-04-15DOI: 10.3390/COATINGS11040457
Litipu Aihaiti, K. Tuokedaerhan, B. Sadeh, M. Zhang, Xiangqian Shen, Abuduwaili Mijiti
Titanium carbide (TiC) thin films were prepared by non-reactive simultaneous double magnetron sputtering. After deposition, all samples were annealed at different temperatures under high-vacuum conditions. This paper mainly discusses the influence of deposition methods and annealing temperatures on microstructure, surface topography, bonding states and electrical resistivity of TiC films. XRD (X-ray diffraction) results show that TiC thin films can still form crystals without annealing, and the crystallinity of thin films is improved after annealing. The estimated grain size of the TiC films varies from 8.5 nm to 14.7 nm with annealing temperature. It can be seen from SEM (scanning electron microscope) images that surfaces of the films are composed of irregular particles, and when the temperature reaches to 800 °C, the shape of the particles becomes spherical. Growth rate of film is about 30.8 nm/min. Oxygen-related peaks were observed in XPS (X-ray photoelectron spectroscopy) spectra, which is due to the absorption of oxygen atoms on the surface of the film when exposed to air. Raman spectra confirm the formation of TiC crystals and amorphous states of carbon. Resistivity of TiC films decreases monotonically from 666.73 to 86.01 μΩ·cm with the increase in annealing temperature. In brief, the TiC thin films prepared in this study show good crystallinity, thermal stability and low resistivity, which can meet the requirements of metal gate applications.
{"title":"Effect of Annealing Temperature on Microstructure and Resistivity of TiC Thin Films","authors":"Litipu Aihaiti, K. Tuokedaerhan, B. Sadeh, M. Zhang, Xiangqian Shen, Abuduwaili Mijiti","doi":"10.3390/COATINGS11040457","DOIUrl":"https://doi.org/10.3390/COATINGS11040457","url":null,"abstract":"Titanium carbide (TiC) thin films were prepared by non-reactive simultaneous double magnetron sputtering. After deposition, all samples were annealed at different temperatures under high-vacuum conditions. This paper mainly discusses the influence of deposition methods and annealing temperatures on microstructure, surface topography, bonding states and electrical resistivity of TiC films. XRD (X-ray diffraction) results show that TiC thin films can still form crystals without annealing, and the crystallinity of thin films is improved after annealing. The estimated grain size of the TiC films varies from 8.5 nm to 14.7 nm with annealing temperature. It can be seen from SEM (scanning electron microscope) images that surfaces of the films are composed of irregular particles, and when the temperature reaches to 800 °C, the shape of the particles becomes spherical. Growth rate of film is about 30.8 nm/min. Oxygen-related peaks were observed in XPS (X-ray photoelectron spectroscopy) spectra, which is due to the absorption of oxygen atoms on the surface of the film when exposed to air. Raman spectra confirm the formation of TiC crystals and amorphous states of carbon. Resistivity of TiC films decreases monotonically from 666.73 to 86.01 μΩ·cm with the increase in annealing temperature. In brief, the TiC thin films prepared in this study show good crystallinity, thermal stability and low resistivity, which can meet the requirements of metal gate applications.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76253549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-15DOI: 10.3390/COATINGS11040456
Alexandru-Horațiu Mărincaş, P. Ilea
Lithium manganese oxide is regarded as a capable cathode material for lithium-ion batteries, but it suffers from relative low conductivity, manganese dissolution in electrolyte and structural distortion from cubic to tetragonal during elevated temperature tests. This review covers a comprehensive study about the main directions taken into consideration to supress the drawbacks of lithium manganese oxide: structure doping and surface modification by coating. Regarding the doping of LiMn2O4, several perspectives are studied, which include doping with single or multiple cations, only anions and combined doping with cations and anions. Surface modification approach consists in coating with different materials like carbonaceous compounds, oxides, phosphates and solid electrolyte solutions. The modified lithium manganese oxide performs better than pristine samples, showing improved cyclability, better behaviour at high discharge c-rates and elevated temperate and improves lithium ions diffusion coefficient.
{"title":"Enhancing Lithium Manganese Oxide Electrochemical Behavior by Doping and Surface Modifications","authors":"Alexandru-Horațiu Mărincaş, P. Ilea","doi":"10.3390/COATINGS11040456","DOIUrl":"https://doi.org/10.3390/COATINGS11040456","url":null,"abstract":"Lithium manganese oxide is regarded as a capable cathode material for lithium-ion batteries, but it suffers from relative low conductivity, manganese dissolution in electrolyte and structural distortion from cubic to tetragonal during elevated temperature tests. This review covers a comprehensive study about the main directions taken into consideration to supress the drawbacks of lithium manganese oxide: structure doping and surface modification by coating. Regarding the doping of LiMn2O4, several perspectives are studied, which include doping with single or multiple cations, only anions and combined doping with cations and anions. Surface modification approach consists in coating with different materials like carbonaceous compounds, oxides, phosphates and solid electrolyte solutions. The modified lithium manganese oxide performs better than pristine samples, showing improved cyclability, better behaviour at high discharge c-rates and elevated temperate and improves lithium ions diffusion coefficient.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84421420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-14DOI: 10.3390/COATINGS11040451
B. Kim, C. Mahata, Hojeong Ryu, M. Ismail, Byung‐Do Yang, Sungjun Kim
Resistive random-access memory (RRAM) devices are noticeable next generation memory devices. However, only few studies have been conducted regarding RRAM devices made of alloy. In this paper, we investigate the resistive switching behaviors of an Au/Ti/HfTiOx/p-Si memory device. The bipolar switching is characterized depending on compliance current under DC sweep mode. Good retention in the low-resistance state and high-resistance state is attained for nonvolatile memory and long-term memory in a synapse device. For practical switching operation, the pulse transient characteristics are studied for set and reset processes. Moreover, a synaptic weight change is achieved by a moderate pulse input for the potentiation and depression characteristics of the synaptic device. We reveal that the high-resistance state and low-resistance state are dominated by Schottky emissions.
{"title":"Alloyed High-k-Based Resistive Switching Memory in Contact Hole Structures","authors":"B. Kim, C. Mahata, Hojeong Ryu, M. Ismail, Byung‐Do Yang, Sungjun Kim","doi":"10.3390/COATINGS11040451","DOIUrl":"https://doi.org/10.3390/COATINGS11040451","url":null,"abstract":"Resistive random-access memory (RRAM) devices are noticeable next generation memory devices. However, only few studies have been conducted regarding RRAM devices made of alloy. In this paper, we investigate the resistive switching behaviors of an Au/Ti/HfTiOx/p-Si memory device. The bipolar switching is characterized depending on compliance current under DC sweep mode. Good retention in the low-resistance state and high-resistance state is attained for nonvolatile memory and long-term memory in a synapse device. For practical switching operation, the pulse transient characteristics are studied for set and reset processes. Moreover, a synaptic weight change is achieved by a moderate pulse input for the potentiation and depression characteristics of the synaptic device. We reveal that the high-resistance state and low-resistance state are dominated by Schottky emissions.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86241354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-06DOI: 10.3390/COATINGS11040422
D. Ashkenazi, A. Inberg, Y. Shacham-Diamand, A. Stern
Additive manufacturing (AM) revolutionary technologies open new opportunities and challenges. They allow low-cost manufacturing of parts with complex geometries and short time-to-market of products that can be exclusively customized. Additive manufactured parts often need post-printing surface modification. This study aims to review novel environmental-friendly surface finishing process of 3D-printed AlSi10Mg parts by electroless deposition of gold, silver, and gold–silver alloy (e.g., electrum) and to propose a full process methodology suitable for effective metallization. This deposition technique is simple and low cost method, allowing the metallization of both conductive and insulating materials. The AlSi10Mg parts were produced by the additive manufacturing laser powder bed fusion (AM-LPBF) process. Gold, silver, and their alloys were chosen as coatings due to their esthetic appearance, good corrosion resistance, and excellent electrical and thermal conductivity. The metals were deposited on 3D-printed disk-shaped specimens at 80 and 90 °C using a dedicated surface activation method where special functionalization of the printed AlSi10Mg was performed to assure a uniform catalytic surface yielding a good adhesion of the deposited metal to the substrate. Various methods were used to examine the coating quality, including light microscopy, optical profilometry, XRD, X-ray fluorescence, SEM–energy-dispersive spectroscopy (EDS), focused ion beam (FIB)-SEM, and XPS analyses. The results indicate that the developed coatings yield satisfactory quality, and the suggested surface finishing process can be used for many AM products and applications.
{"title":"Gold, Silver, and Electrum Electroless Plating on Additively Manufactured Laser Powder-Bed Fusion AlSi10Mg Parts: A Review","authors":"D. Ashkenazi, A. Inberg, Y. Shacham-Diamand, A. Stern","doi":"10.3390/COATINGS11040422","DOIUrl":"https://doi.org/10.3390/COATINGS11040422","url":null,"abstract":"Additive manufacturing (AM) revolutionary technologies open new opportunities and challenges. They allow low-cost manufacturing of parts with complex geometries and short time-to-market of products that can be exclusively customized. Additive manufactured parts often need post-printing surface modification. This study aims to review novel environmental-friendly surface finishing process of 3D-printed AlSi10Mg parts by electroless deposition of gold, silver, and gold–silver alloy (e.g., electrum) and to propose a full process methodology suitable for effective metallization. This deposition technique is simple and low cost method, allowing the metallization of both conductive and insulating materials. The AlSi10Mg parts were produced by the additive manufacturing laser powder bed fusion (AM-LPBF) process. Gold, silver, and their alloys were chosen as coatings due to their esthetic appearance, good corrosion resistance, and excellent electrical and thermal conductivity. The metals were deposited on 3D-printed disk-shaped specimens at 80 and 90 °C using a dedicated surface activation method where special functionalization of the printed AlSi10Mg was performed to assure a uniform catalytic surface yielding a good adhesion of the deposited metal to the substrate. Various methods were used to examine the coating quality, including light microscopy, optical profilometry, XRD, X-ray fluorescence, SEM–energy-dispersive spectroscopy (EDS), focused ion beam (FIB)-SEM, and XPS analyses. The results indicate that the developed coatings yield satisfactory quality, and the suggested surface finishing process can be used for many AM products and applications.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75989011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-04DOI: 10.3390/COATINGS11040417
M. Awais, Saeed Ehsan Awan, M. Raja, M. Nawaz, Wasim Ullah Khan, Muhammad Yousaf Malik, Yigang He
Novel nonlinear power-law flux models were utilized to model the heat transport phe-nomenon in nano-micropolar fluid over a flexible surface. The nonlinear conservation laws (mass, momentum, energy, mass transport and angular momentum) and KKL cor-relations for nanomaterial under novel flux model were solved numerically. Computed results were used to study the shear-thinning and shear-thickening nature of nano pol-ymer suspension by considering n-diffusion theory. Normalized velocity, temperature and micro-rotation profiles were investigated under the variation of physical parame-ters. Shear stresses at the wall for nanoparticles (CuO and Al2O3) were recorded and dis-played in the table. Error analyses for different physical parameters were prepared for various parameters to validate the obtained results.
{"title":"Heat Transfer in Nanomaterial Suspension (CuO and Al2O3) Using KKL Model","authors":"M. Awais, Saeed Ehsan Awan, M. Raja, M. Nawaz, Wasim Ullah Khan, Muhammad Yousaf Malik, Yigang He","doi":"10.3390/COATINGS11040417","DOIUrl":"https://doi.org/10.3390/COATINGS11040417","url":null,"abstract":"Novel nonlinear power-law flux models were utilized to model the heat transport phe-nomenon in nano-micropolar fluid over a flexible surface. The nonlinear conservation laws (mass, momentum, energy, mass transport and angular momentum) and KKL cor-relations for nanomaterial under novel flux model were solved numerically. Computed results were used to study the shear-thinning and shear-thickening nature of nano pol-ymer suspension by considering n-diffusion theory. Normalized velocity, temperature and micro-rotation profiles were investigated under the variation of physical parame-ters. Shear stresses at the wall for nanoparticles (CuO and Al2O3) were recorded and dis-played in the table. Error analyses for different physical parameters were prepared for various parameters to validate the obtained results.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76757700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-02DOI: 10.3390/COATINGS11040415
Chin-Chuan Huang, Kuo-Hsiung Chu, C. Sher, Chunliang Lin, Y. Su, Chia-Wei Sun, H. Kuo
In this study, we demonstrate a new design of white light-emitting diode (WLED) with high stability and luminous efficiency as well as positive aging. Colloidal ternary Zn0.8Cd0.2S (named Zn0.8) white quantum dots (WQDs) were prepared by chemical route and dispersed in xylene, integrating them into an ultraviolet light-emitting diode (UV-LED) to form WQD-white light emitting diode (WQD-WLED). High efficiency, high color quality and excellent reliability of WQD-WLED with neutral white correlated color temperature (CCT) can be obtained. The experimental results indicate that the stability of relative luminous efficiency and color rendering index (CRI) of the WQD-WLED can reach up to 160 and 82%, respectively. Moreover, the WQD-WLED can operate more than 1000 h under 100 mA, and the quantity of WQDs in the glass package can be reduced.
{"title":"High Stability of Liquid-Typed White Light-Emitting Diode with Zn0.8Cd0.2S White Quantum Dots","authors":"Chin-Chuan Huang, Kuo-Hsiung Chu, C. Sher, Chunliang Lin, Y. Su, Chia-Wei Sun, H. Kuo","doi":"10.3390/COATINGS11040415","DOIUrl":"https://doi.org/10.3390/COATINGS11040415","url":null,"abstract":"In this study, we demonstrate a new design of white light-emitting diode (WLED) with high stability and luminous efficiency as well as positive aging. Colloidal ternary Zn0.8Cd0.2S (named Zn0.8) white quantum dots (WQDs) were prepared by chemical route and dispersed in xylene, integrating them into an ultraviolet light-emitting diode (UV-LED) to form WQD-white light emitting diode (WQD-WLED). High efficiency, high color quality and excellent reliability of WQD-WLED with neutral white correlated color temperature (CCT) can be obtained. The experimental results indicate that the stability of relative luminous efficiency and color rendering index (CRI) of the WQD-WLED can reach up to 160 and 82%, respectively. Moreover, the WQD-WLED can operate more than 1000 h under 100 mA, and the quantity of WQDs in the glass package can be reduced.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88062814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-01DOI: 10.3390/COATINGS11040408
W. Hsieh, Fun-Cheng Jong, Wei-Ting Tseng
This research demonstrates that an indium tin oxide–silicon oxide–hafnium aluminum oxide-silicon oxide–silicon device with enhanced UV transparency ITO gate (hereafter E-IOHAOS) can greatly increase the sensing response performance of a SONOS type ultraviolet radiation total dose (hereafter UV TD) sensor. Post annealing process is used to optimize UV optical transmission and electrical resistivity characterization in ITO film. Via nano-columns (NCols) crystalline transformation of ITO film, UV transparency of ITO film can be enhanced. UV radiation causes the threshold voltage VT of the E-IOHAOS device to increase, and the increase of the VT of E-IOHAOS device is also related to the UV TD. The experimental results show that under UV TD irradiation of 100 mW·s/cm2, ultraviolet light can change the threshold voltage VT of E-IOHAOS to 12.5 V. Moreover, the VT fading rate of ten-years retention on E-IOHAOS is below 10%. The VT change of E-IOHAOS is almost 1.25 times that of poly silicon–aluminum oxide–hafnium aluminum oxide–silicon oxide–silicon with poly silicon gate device (hereafter SAHAOS). The sensing response performance of an E-IOHAOS UV TD sensor is greatly improved by annealed ITO gate.
{"title":"Improve the Performance of SONOS Type UV TD Sensors Using IOHAOS with Enhanced UV Transparency ITO Gate","authors":"W. Hsieh, Fun-Cheng Jong, Wei-Ting Tseng","doi":"10.3390/COATINGS11040408","DOIUrl":"https://doi.org/10.3390/COATINGS11040408","url":null,"abstract":"This research demonstrates that an indium tin oxide–silicon oxide–hafnium aluminum oxide-silicon oxide–silicon device with enhanced UV transparency ITO gate (hereafter E-IOHAOS) can greatly increase the sensing response performance of a SONOS type ultraviolet radiation total dose (hereafter UV TD) sensor. Post annealing process is used to optimize UV optical transmission and electrical resistivity characterization in ITO film. Via nano-columns (NCols) crystalline transformation of ITO film, UV transparency of ITO film can be enhanced. UV radiation causes the threshold voltage VT of the E-IOHAOS device to increase, and the increase of the VT of E-IOHAOS device is also related to the UV TD. The experimental results show that under UV TD irradiation of 100 mW·s/cm2, ultraviolet light can change the threshold voltage VT of E-IOHAOS to 12.5 V. Moreover, the VT fading rate of ten-years retention on E-IOHAOS is below 10%. The VT change of E-IOHAOS is almost 1.25 times that of poly silicon–aluminum oxide–hafnium aluminum oxide–silicon oxide–silicon with poly silicon gate device (hereafter SAHAOS). The sensing response performance of an E-IOHAOS UV TD sensor is greatly improved by annealed ITO gate.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76891304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-04-01DOI: 10.3390/COATINGS11040430
Jingxin Zhang, Weiyue Shi, Q. Ma, H. Cui, Liang Zhang
The immune system has a physiological defense function, protecting the body from infectious diseases. Antibiotics have long been one of the most important means to treat infectious diseases, but in recent years, with the emergence of more and more multidrug-resistant (MDR) bacteria, it has become urgent to find new ways or drugs to treat infectious diseases. Nanoparticles (NPs) have attracted extensive attention owing to the special properties within the particle size range of 1–100 nanometers. In addition, NPs also have special shape symmetry and relative structural stability. The emergence of nanotechnology has brought new light to the widespread existence of MDR by its different antibacterial mechanisms. In addition to antibiotic nanocarriers being able to improve the antibacterial effect of antibiotics, some NPs also have certain antibacterial effect. What is more interesting is that linking functional groups on the surface of NPS as coatings can improve the stability of the whole system and improve the biocompatibility. The present review overviews the development of antimicrobial agents, so as to better understand the causes and mechanisms of antibiotic resistance in most microbial species, and to better think and explore new strategies to solve the problem. At the same time, this review introduces how nanotechnology can be applied to anti-infection immunity and its practical application and advantages in the treatment of infection.
{"title":"Application of Nanotechnology in Immunity against Infection","authors":"Jingxin Zhang, Weiyue Shi, Q. Ma, H. Cui, Liang Zhang","doi":"10.3390/COATINGS11040430","DOIUrl":"https://doi.org/10.3390/COATINGS11040430","url":null,"abstract":"The immune system has a physiological defense function, protecting the body from infectious diseases. Antibiotics have long been one of the most important means to treat infectious diseases, but in recent years, with the emergence of more and more multidrug-resistant (MDR) bacteria, it has become urgent to find new ways or drugs to treat infectious diseases. Nanoparticles (NPs) have attracted extensive attention owing to the special properties within the particle size range of 1–100 nanometers. In addition, NPs also have special shape symmetry and relative structural stability. The emergence of nanotechnology has brought new light to the widespread existence of MDR by its different antibacterial mechanisms. In addition to antibiotic nanocarriers being able to improve the antibacterial effect of antibiotics, some NPs also have certain antibacterial effect. What is more interesting is that linking functional groups on the surface of NPS as coatings can improve the stability of the whole system and improve the biocompatibility. The present review overviews the development of antimicrobial agents, so as to better understand the causes and mechanisms of antibiotic resistance in most microbial species, and to better think and explore new strategies to solve the problem. At the same time, this review introduces how nanotechnology can be applied to anti-infection immunity and its practical application and advantages in the treatment of infection.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75378937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-29DOI: 10.3390/COATINGS11040389
Zhaohan Li, Yangmei Xin, Yunyan Liu, Huiqiang Liu, Dan Yu, J. Xiu
γ-phase aluminum oxide (γ-Al2O3) films are grown on MgO (100) wafers by metal organic chemical vapor deposition (MOCVD). Post-annealing process is conducted to study the influence of annealing temperature on the properties of the films. Structural analyses indicate that all the deposited and annealed films present a preferred growth orientation of γ-Al2O3 (220) along the MgO (200) direction. And the film annealed at 1100 °C exhibits the best film quality compared with those of the films grown and annealed at other temperatures. Scanning electron microscopy measurements also imply the best surface morphology for the γ-Al2O3 film annealed at 1100 °C, which is in good accordance with the structural analyses. Optical transmittance spectra show good transparency for all the deposited and annealed films in the visible wavelength region with an average transmittance value of 83.5%. The optical bandgaps are estimated to be in the range of 5.56–5.79 eV for the deposited and annealed films. Semiconductor films with high optical transmittance in the visible region as well as wide bandgaps are appropriate for the manufacture of transparent optoelectronic devices and ultraviolet optoelectronic devices.
{"title":"Study of the Annealing Effect on the γ-Phase Aluminum Oxide Films Prepared by the High-Vacuum MOCVD System","authors":"Zhaohan Li, Yangmei Xin, Yunyan Liu, Huiqiang Liu, Dan Yu, J. Xiu","doi":"10.3390/COATINGS11040389","DOIUrl":"https://doi.org/10.3390/COATINGS11040389","url":null,"abstract":"γ-phase aluminum oxide (γ-Al2O3) films are grown on MgO (100) wafers by metal organic chemical vapor deposition (MOCVD). Post-annealing process is conducted to study the influence of annealing temperature on the properties of the films. Structural analyses indicate that all the deposited and annealed films present a preferred growth orientation of γ-Al2O3 (220) along the MgO (200) direction. And the film annealed at 1100 °C exhibits the best film quality compared with those of the films grown and annealed at other temperatures. Scanning electron microscopy measurements also imply the best surface morphology for the γ-Al2O3 film annealed at 1100 °C, which is in good accordance with the structural analyses. Optical transmittance spectra show good transparency for all the deposited and annealed films in the visible wavelength region with an average transmittance value of 83.5%. The optical bandgaps are estimated to be in the range of 5.56–5.79 eV for the deposited and annealed films. Semiconductor films with high optical transmittance in the visible region as well as wide bandgaps are appropriate for the manufacture of transparent optoelectronic devices and ultraviolet optoelectronic devices.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87607874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-24DOI: 10.3390/COATINGS11040372
Ashutosh Sharma
Recently, the materials research community has seen a great increase in the development of multicomponent alloys, known as high entropy alloys (HEAs) with extraordinary properties and applications. In surface protection and engineering, diverse applications of HEAs are also being counted to benefit from their attractive performances in various environments. Thermally sprayed HEA coatings have outperformed conventional coating materials and have accelerated further advancement in this field. Therefore, this review article overviews the initial developments and outcomes in the field of HEA coatings. The authors have also categorized these HEA coatings in metallic, ceramic, and composite HEA coatings and discussed various developments in each of the categories in detail. Various fabrication strategies, properties, and important applications of these HEAs are highlighted. Further, various issues and future possibilities in this area for coatings development are recommended.
{"title":"High Entropy Alloy Coatings and Technology","authors":"Ashutosh Sharma","doi":"10.3390/COATINGS11040372","DOIUrl":"https://doi.org/10.3390/COATINGS11040372","url":null,"abstract":"Recently, the materials research community has seen a great increase in the development of multicomponent alloys, known as high entropy alloys (HEAs) with extraordinary properties and applications. In surface protection and engineering, diverse applications of HEAs are also being counted to benefit from their attractive performances in various environments. Thermally sprayed HEA coatings have outperformed conventional coating materials and have accelerated further advancement in this field. Therefore, this review article overviews the initial developments and outcomes in the field of HEA coatings. The authors have also categorized these HEA coatings in metallic, ceramic, and composite HEA coatings and discussed various developments in each of the categories in detail. Various fabrication strategies, properties, and important applications of these HEAs are highlighted. Further, various issues and future possibilities in this area for coatings development are recommended.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88420968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}