首页 > 最新文献

THE Coatings最新文献

英文 中文
Effect of Annealing Temperature on Microstructure and Resistivity of TiC Thin Films 退火温度对TiC薄膜微观结构和电阻率的影响
Pub Date : 2021-04-15 DOI: 10.3390/COATINGS11040457
Litipu Aihaiti, K. Tuokedaerhan, B. Sadeh, M. Zhang, Xiangqian Shen, Abuduwaili Mijiti
Titanium carbide (TiC) thin films were prepared by non-reactive simultaneous double magnetron sputtering. After deposition, all samples were annealed at different temperatures under high-vacuum conditions. This paper mainly discusses the influence of deposition methods and annealing temperatures on microstructure, surface topography, bonding states and electrical resistivity of TiC films. XRD (X-ray diffraction) results show that TiC thin films can still form crystals without annealing, and the crystallinity of thin films is improved after annealing. The estimated grain size of the TiC films varies from 8.5 nm to 14.7 nm with annealing temperature. It can be seen from SEM (scanning electron microscope) images that surfaces of the films are composed of irregular particles, and when the temperature reaches to 800 °C, the shape of the particles becomes spherical. Growth rate of film is about 30.8 nm/min. Oxygen-related peaks were observed in XPS (X-ray photoelectron spectroscopy) spectra, which is due to the absorption of oxygen atoms on the surface of the film when exposed to air. Raman spectra confirm the formation of TiC crystals and amorphous states of carbon. Resistivity of TiC films decreases monotonically from 666.73 to 86.01 μΩ·cm with the increase in annealing temperature. In brief, the TiC thin films prepared in this study show good crystallinity, thermal stability and low resistivity, which can meet the requirements of metal gate applications.
采用非反应同步双磁控溅射法制备了碳化钛(TiC)薄膜。沉积后,在不同温度下进行高真空退火。本文主要讨论了沉积方法和退火温度对TiC薄膜微观结构、表面形貌、键合状态和电阻率的影响。XRD (x射线衍射)结果表明,TiC薄膜在不退火的情况下仍能形成晶体,且退火后薄膜的结晶度有所提高。TiC薄膜的晶粒尺寸随退火温度的变化在8.5 ~ 14.7 nm之间。从SEM(扫描电子显微镜)图像可以看出,薄膜表面由不规则的颗粒组成,当温度达到800℃时,颗粒的形状变为球形。膜的生长速度约为30.8 nm/min。在XPS (x射线光电子能谱)光谱中观察到氧相关峰,这是由于暴露于空气时膜表面氧原子的吸收。拉曼光谱证实了TiC晶体和非晶态碳的形成。随着退火温度的升高,TiC薄膜的电阻率从666.73单调降低到86.01 μΩ·cm。总之,本研究制备的TiC薄膜结晶度好,热稳定性好,电阻率低,可以满足金属栅极应用的要求。
{"title":"Effect of Annealing Temperature on Microstructure and Resistivity of TiC Thin Films","authors":"Litipu Aihaiti, K. Tuokedaerhan, B. Sadeh, M. Zhang, Xiangqian Shen, Abuduwaili Mijiti","doi":"10.3390/COATINGS11040457","DOIUrl":"https://doi.org/10.3390/COATINGS11040457","url":null,"abstract":"Titanium carbide (TiC) thin films were prepared by non-reactive simultaneous double magnetron sputtering. After deposition, all samples were annealed at different temperatures under high-vacuum conditions. This paper mainly discusses the influence of deposition methods and annealing temperatures on microstructure, surface topography, bonding states and electrical resistivity of TiC films. XRD (X-ray diffraction) results show that TiC thin films can still form crystals without annealing, and the crystallinity of thin films is improved after annealing. The estimated grain size of the TiC films varies from 8.5 nm to 14.7 nm with annealing temperature. It can be seen from SEM (scanning electron microscope) images that surfaces of the films are composed of irregular particles, and when the temperature reaches to 800 °C, the shape of the particles becomes spherical. Growth rate of film is about 30.8 nm/min. Oxygen-related peaks were observed in XPS (X-ray photoelectron spectroscopy) spectra, which is due to the absorption of oxygen atoms on the surface of the film when exposed to air. Raman spectra confirm the formation of TiC crystals and amorphous states of carbon. Resistivity of TiC films decreases monotonically from 666.73 to 86.01 μΩ·cm with the increase in annealing temperature. In brief, the TiC thin films prepared in this study show good crystallinity, thermal stability and low resistivity, which can meet the requirements of metal gate applications.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76253549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Enhancing Lithium Manganese Oxide Electrochemical Behavior by Doping and Surface Modifications 通过掺杂和表面改性增强锰酸锂的电化学行为
Pub Date : 2021-04-15 DOI: 10.3390/COATINGS11040456
Alexandru-Horațiu Mărincaş, P. Ilea
Lithium manganese oxide is regarded as a capable cathode material for lithium-ion batteries, but it suffers from relative low conductivity, manganese dissolution in electrolyte and structural distortion from cubic to tetragonal during elevated temperature tests. This review covers a comprehensive study about the main directions taken into consideration to supress the drawbacks of lithium manganese oxide: structure doping and surface modification by coating. Regarding the doping of LiMn2O4, several perspectives are studied, which include doping with single or multiple cations, only anions and combined doping with cations and anions. Surface modification approach consists in coating with different materials like carbonaceous compounds, oxides, phosphates and solid electrolyte solutions. The modified lithium manganese oxide performs better than pristine samples, showing improved cyclability, better behaviour at high discharge c-rates and elevated temperate and improves lithium ions diffusion coefficient.
锂锰氧化物被认为是锂离子电池的一种性能优良的正极材料,但在高温试验中存在电导率相对较低、锰在电解液中溶解、结构从立方变形为四边形等问题。本文综述了抑制锰酸锂缺陷的主要研究方向:结构掺杂和表面涂层改性。对于LiMn2O4的掺杂,研究了单阳离子掺杂、多阳离子掺杂、单阴离子掺杂、阳离子与阴离子复合掺杂等几种观点。表面改性方法包括用碳质化合物、氧化物、磷酸盐和固体电解质溶液等不同的材料进行涂层。与原始样品相比,改性后的锰酸锂表现出更好的循环性能,在高放电倍率和高温下表现出更好的性能,并提高了锂离子的扩散系数。
{"title":"Enhancing Lithium Manganese Oxide Electrochemical Behavior by Doping and Surface Modifications","authors":"Alexandru-Horațiu Mărincaş, P. Ilea","doi":"10.3390/COATINGS11040456","DOIUrl":"https://doi.org/10.3390/COATINGS11040456","url":null,"abstract":"Lithium manganese oxide is regarded as a capable cathode material for lithium-ion batteries, but it suffers from relative low conductivity, manganese dissolution in electrolyte and structural distortion from cubic to tetragonal during elevated temperature tests. This review covers a comprehensive study about the main directions taken into consideration to supress the drawbacks of lithium manganese oxide: structure doping and surface modification by coating. Regarding the doping of LiMn2O4, several perspectives are studied, which include doping with single or multiple cations, only anions and combined doping with cations and anions. Surface modification approach consists in coating with different materials like carbonaceous compounds, oxides, phosphates and solid electrolyte solutions. The modified lithium manganese oxide performs better than pristine samples, showing improved cyclability, better behaviour at high discharge c-rates and elevated temperate and improves lithium ions diffusion coefficient.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84421420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Alloyed High-k-Based Resistive Switching Memory in Contact Hole Structures 接触孔结构中的合金高基电阻开关存储器
Pub Date : 2021-04-14 DOI: 10.3390/COATINGS11040451
B. Kim, C. Mahata, Hojeong Ryu, M. Ismail, Byung‐Do Yang, Sungjun Kim
Resistive random-access memory (RRAM) devices are noticeable next generation memory devices. However, only few studies have been conducted regarding RRAM devices made of alloy. In this paper, we investigate the resistive switching behaviors of an Au/Ti/HfTiOx/p-Si memory device. The bipolar switching is characterized depending on compliance current under DC sweep mode. Good retention in the low-resistance state and high-resistance state is attained for nonvolatile memory and long-term memory in a synapse device. For practical switching operation, the pulse transient characteristics are studied for set and reset processes. Moreover, a synaptic weight change is achieved by a moderate pulse input for the potentiation and depression characteristics of the synaptic device. We reveal that the high-resistance state and low-resistance state are dominated by Schottky emissions.
电阻式随机存取存储器(RRAM)是引人注目的下一代存储器。然而,关于合金材料的RRAM器件的研究很少。本文研究了Au/Ti/HfTiOx/p-Si存储器件的电阻开关行为。双极开关的特性取决于直流扫描模式下的顺应电流。对于突触装置中的非易失性记忆和长时记忆,在低电阻状态和高电阻状态下获得良好的保持。在实际的开关操作中,研究了设置和复位过程的脉冲瞬态特性。此外,通过为突触装置的增强和抑制特性提供适度的脉冲输入来实现突触重量的变化。我们发现高阻态和低阻态以肖特基辐射为主。
{"title":"Alloyed High-k-Based Resistive Switching Memory in Contact Hole Structures","authors":"B. Kim, C. Mahata, Hojeong Ryu, M. Ismail, Byung‐Do Yang, Sungjun Kim","doi":"10.3390/COATINGS11040451","DOIUrl":"https://doi.org/10.3390/COATINGS11040451","url":null,"abstract":"Resistive random-access memory (RRAM) devices are noticeable next generation memory devices. However, only few studies have been conducted regarding RRAM devices made of alloy. In this paper, we investigate the resistive switching behaviors of an Au/Ti/HfTiOx/p-Si memory device. The bipolar switching is characterized depending on compliance current under DC sweep mode. Good retention in the low-resistance state and high-resistance state is attained for nonvolatile memory and long-term memory in a synapse device. For practical switching operation, the pulse transient characteristics are studied for set and reset processes. Moreover, a synaptic weight change is achieved by a moderate pulse input for the potentiation and depression characteristics of the synaptic device. We reveal that the high-resistance state and low-resistance state are dominated by Schottky emissions.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86241354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Gold, Silver, and Electrum Electroless Plating on Additively Manufactured Laser Powder-Bed Fusion AlSi10Mg Parts: A Review 激光粉末床熔合AlSi10Mg零件的化学镀金、银和铜的研究进展
Pub Date : 2021-04-06 DOI: 10.3390/COATINGS11040422
D. Ashkenazi, A. Inberg, Y. Shacham-Diamand, A. Stern
Additive manufacturing (AM) revolutionary technologies open new opportunities and challenges. They allow low-cost manufacturing of parts with complex geometries and short time-to-market of products that can be exclusively customized. Additive manufactured parts often need post-printing surface modification. This study aims to review novel environmental-friendly surface finishing process of 3D-printed AlSi10Mg parts by electroless deposition of gold, silver, and gold–silver alloy (e.g., electrum) and to propose a full process methodology suitable for effective metallization. This deposition technique is simple and low cost method, allowing the metallization of both conductive and insulating materials. The AlSi10Mg parts were produced by the additive manufacturing laser powder bed fusion (AM-LPBF) process. Gold, silver, and their alloys were chosen as coatings due to their esthetic appearance, good corrosion resistance, and excellent electrical and thermal conductivity. The metals were deposited on 3D-printed disk-shaped specimens at 80 and 90 °C using a dedicated surface activation method where special functionalization of the printed AlSi10Mg was performed to assure a uniform catalytic surface yielding a good adhesion of the deposited metal to the substrate. Various methods were used to examine the coating quality, including light microscopy, optical profilometry, XRD, X-ray fluorescence, SEM–energy-dispersive spectroscopy (EDS), focused ion beam (FIB)-SEM, and XPS analyses. The results indicate that the developed coatings yield satisfactory quality, and the suggested surface finishing process can be used for many AM products and applications.
增材制造(AM)的革命性技术带来了新的机遇和挑战。它们允许低成本制造具有复杂几何形状的零件,并且可以专门定制产品的短时间上市。增材制造的零件通常需要在打印后进行表面改性。本研究旨在回顾3d打印AlSi10Mg零件的新型环保表面处理工艺,即化学沉积金、银和金银合金(如银电解液),并提出一种适合有效金属化的完整工艺方法。这种沉积技术是一种简单、低成本的方法,可以实现导电材料和绝缘材料的金属化。采用增材制造激光粉末床熔融(AM-LPBF)工艺制备AlSi10Mg零件。金、银及其合金因其美观的外观、良好的耐腐蚀性以及优异的导电性和导热性而被选为涂层。金属在80和90°C下沉积在3d打印的圆盘状试样上,使用专用的表面活化方法,对打印的AlSi10Mg进行特殊的功能化,以确保均匀的催化表面,使沉积的金属与衬底具有良好的附着力。采用各种方法检测涂层质量,包括光学显微镜、光学轮廓仪、XRD、x射线荧光、sem -能量色散光谱(EDS)、聚焦离子束(FIB)-SEM和XPS分析。结果表明,所开发的涂层质量令人满意,所建议的表面处理工艺可用于许多增材制造产品和应用。
{"title":"Gold, Silver, and Electrum Electroless Plating on Additively Manufactured Laser Powder-Bed Fusion AlSi10Mg Parts: A Review","authors":"D. Ashkenazi, A. Inberg, Y. Shacham-Diamand, A. Stern","doi":"10.3390/COATINGS11040422","DOIUrl":"https://doi.org/10.3390/COATINGS11040422","url":null,"abstract":"Additive manufacturing (AM) revolutionary technologies open new opportunities and challenges. They allow low-cost manufacturing of parts with complex geometries and short time-to-market of products that can be exclusively customized. Additive manufactured parts often need post-printing surface modification. This study aims to review novel environmental-friendly surface finishing process of 3D-printed AlSi10Mg parts by electroless deposition of gold, silver, and gold–silver alloy (e.g., electrum) and to propose a full process methodology suitable for effective metallization. This deposition technique is simple and low cost method, allowing the metallization of both conductive and insulating materials. The AlSi10Mg parts were produced by the additive manufacturing laser powder bed fusion (AM-LPBF) process. Gold, silver, and their alloys were chosen as coatings due to their esthetic appearance, good corrosion resistance, and excellent electrical and thermal conductivity. The metals were deposited on 3D-printed disk-shaped specimens at 80 and 90 °C using a dedicated surface activation method where special functionalization of the printed AlSi10Mg was performed to assure a uniform catalytic surface yielding a good adhesion of the deposited metal to the substrate. Various methods were used to examine the coating quality, including light microscopy, optical profilometry, XRD, X-ray fluorescence, SEM–energy-dispersive spectroscopy (EDS), focused ion beam (FIB)-SEM, and XPS analyses. The results indicate that the developed coatings yield satisfactory quality, and the suggested surface finishing process can be used for many AM products and applications.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75989011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Heat Transfer in Nanomaterial Suspension (CuO and Al2O3) Using KKL Model 基于KKL模型的纳米悬浮液(CuO和Al2O3)传热研究
Pub Date : 2021-04-04 DOI: 10.3390/COATINGS11040417
M. Awais, Saeed Ehsan Awan, M. Raja, M. Nawaz, Wasim Ullah Khan, Muhammad Yousaf Malik, Yigang He
Novel nonlinear power-law flux models were utilized to model the heat transport phe-nomenon in nano-micropolar fluid over a flexible surface. The nonlinear conservation laws (mass, momentum, energy, mass transport and angular momentum) and KKL cor-relations for nanomaterial under novel flux model were solved numerically. Computed results were used to study the shear-thinning and shear-thickening nature of nano pol-ymer suspension by considering n-diffusion theory. Normalized velocity, temperature and micro-rotation profiles were investigated under the variation of physical parame-ters. Shear stresses at the wall for nanoparticles (CuO and Al2O3) were recorded and dis-played in the table. Error analyses for different physical parameters were prepared for various parameters to validate the obtained results.
利用非线性幂律通量模型模拟了纳米微极流体在柔性表面上的热传输现象。对新型通量模型下纳米材料的非线性守恒定律(质量、动量、能量、质量输运和角动量)和KKL相关关系进行了数值求解。利用计算结果,考虑n扩散理论,研究了纳米高分子悬浮液的剪切减薄和剪切增厚特性。研究了物理参数变化下的归一化速度、温度和微旋转曲线。表中记录并显示了纳米颗粒(CuO和Al2O3)在管壁处的剪切应力。对不同物理参数进行了误差分析,验证了所得结果。
{"title":"Heat Transfer in Nanomaterial Suspension (CuO and Al2O3) Using KKL Model","authors":"M. Awais, Saeed Ehsan Awan, M. Raja, M. Nawaz, Wasim Ullah Khan, Muhammad Yousaf Malik, Yigang He","doi":"10.3390/COATINGS11040417","DOIUrl":"https://doi.org/10.3390/COATINGS11040417","url":null,"abstract":"Novel nonlinear power-law flux models were utilized to model the heat transport phe-nomenon in nano-micropolar fluid over a flexible surface. The nonlinear conservation laws (mass, momentum, energy, mass transport and angular momentum) and KKL cor-relations for nanomaterial under novel flux model were solved numerically. Computed results were used to study the shear-thinning and shear-thickening nature of nano pol-ymer suspension by considering n-diffusion theory. Normalized velocity, temperature and micro-rotation profiles were investigated under the variation of physical parame-ters. Shear stresses at the wall for nanoparticles (CuO and Al2O3) were recorded and dis-played in the table. Error analyses for different physical parameters were prepared for various parameters to validate the obtained results.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76757700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
High Stability of Liquid-Typed White Light-Emitting Diode with Zn0.8Cd0.2S White Quantum Dots Zn0.8Cd0.2S白量子点液体型白光二极管的高稳定性
Pub Date : 2021-04-02 DOI: 10.3390/COATINGS11040415
Chin-Chuan Huang, Kuo-Hsiung Chu, C. Sher, Chunliang Lin, Y. Su, Chia-Wei Sun, H. Kuo
In this study, we demonstrate a new design of white light-emitting diode (WLED) with high stability and luminous efficiency as well as positive aging. Colloidal ternary Zn0.8Cd0.2S (named Zn0.8) white quantum dots (WQDs) were prepared by chemical route and dispersed in xylene, integrating them into an ultraviolet light-emitting diode (UV-LED) to form WQD-white light emitting diode (WQD-WLED). High efficiency, high color quality and excellent reliability of WQD-WLED with neutral white correlated color temperature (CCT) can be obtained. The experimental results indicate that the stability of relative luminous efficiency and color rendering index (CRI) of the WQD-WLED can reach up to 160 and 82%, respectively. Moreover, the WQD-WLED can operate more than 1000 h under 100 mA, and the quantity of WQDs in the glass package can be reduced.
在这项研究中,我们展示了一种新的白光发光二极管(WLED),具有高稳定性和发光效率,并且具有正老化性。采用化学方法制备了胶体三元Zn0.8 cd0.2 s(命名为Zn0.8)白量子点(WQDs),并将其分散在二甲苯中,将其集成到紫外发光二极管(UV-LED)中,形成wqd -白光发光二极管(WQD-WLED)。具有中性白色相关色温(CCT)的WQD-WLED可以获得高效率、高色质和优异的可靠性。实验结果表明,WQD-WLED的相对发光效率和显色指数(CRI)的稳定性分别可达160和82%。此外,WQD-WLED可以在100 mA下工作1000小时以上,并且可以减少玻璃封装中的wqd数量。
{"title":"High Stability of Liquid-Typed White Light-Emitting Diode with Zn0.8Cd0.2S White Quantum Dots","authors":"Chin-Chuan Huang, Kuo-Hsiung Chu, C. Sher, Chunliang Lin, Y. Su, Chia-Wei Sun, H. Kuo","doi":"10.3390/COATINGS11040415","DOIUrl":"https://doi.org/10.3390/COATINGS11040415","url":null,"abstract":"In this study, we demonstrate a new design of white light-emitting diode (WLED) with high stability and luminous efficiency as well as positive aging. Colloidal ternary Zn0.8Cd0.2S (named Zn0.8) white quantum dots (WQDs) were prepared by chemical route and dispersed in xylene, integrating them into an ultraviolet light-emitting diode (UV-LED) to form WQD-white light emitting diode (WQD-WLED). High efficiency, high color quality and excellent reliability of WQD-WLED with neutral white correlated color temperature (CCT) can be obtained. The experimental results indicate that the stability of relative luminous efficiency and color rendering index (CRI) of the WQD-WLED can reach up to 160 and 82%, respectively. Moreover, the WQD-WLED can operate more than 1000 h under 100 mA, and the quantity of WQDs in the glass package can be reduced.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88062814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Improve the Performance of SONOS Type UV TD Sensors Using IOHAOS with Enhanced UV Transparency ITO Gate 利用具有增强UV透明度ITO栅极的IOHAOS改善SONOS型UV TD传感器的性能
Pub Date : 2021-04-01 DOI: 10.3390/COATINGS11040408
W. Hsieh, Fun-Cheng Jong, Wei-Ting Tseng
This research demonstrates that an indium tin oxide–silicon oxide–hafnium aluminum oxide-silicon oxide–silicon device with enhanced UV transparency ITO gate (hereafter E-IOHAOS) can greatly increase the sensing response performance of a SONOS type ultraviolet radiation total dose (hereafter UV TD) sensor. Post annealing process is used to optimize UV optical transmission and electrical resistivity characterization in ITO film. Via nano-columns (NCols) crystalline transformation of ITO film, UV transparency of ITO film can be enhanced. UV radiation causes the threshold voltage VT of the E-IOHAOS device to increase, and the increase of the VT of E-IOHAOS device is also related to the UV TD. The experimental results show that under UV TD irradiation of 100 mW·s/cm2, ultraviolet light can change the threshold voltage VT of E-IOHAOS to 12.5 V. Moreover, the VT fading rate of ten-years retention on E-IOHAOS is below 10%. The VT change of E-IOHAOS is almost 1.25 times that of poly silicon–aluminum oxide–hafnium aluminum oxide–silicon oxide–silicon with poly silicon gate device (hereafter SAHAOS). The sensing response performance of an E-IOHAOS UV TD sensor is greatly improved by annealed ITO gate.
本研究证明了一种具有增强紫外透明ITO栅极(以下简称E-IOHAOS)的氧化铟锡-氧化硅-氧化铪铝-氧化硅-硅器件可以大大提高SONOS型紫外辐射总剂量(以下简称UV TD)传感器的传感响应性能。采用后退火工艺优化ITO薄膜的紫外光传输和电阻率表征。通过纳米柱(NCols)对ITO薄膜进行结晶转化,可以提高ITO薄膜的紫外透明度。UV辐射导致E-IOHAOS器件的阈值电压VT升高,而E-IOHAOS器件VT的升高也与UV TD有关。实验结果表明,在100 mW·s/cm2的UV TD照射下,紫外光可使E-IOHAOS的阈值电压VT达到12.5 V。此外,E-IOHAOS上10年保留的VT衰减率低于10%。E-IOHAOS的VT变化几乎是多晶硅栅极器件(以下简称SAHAOS)多晶硅-氧化铝-氧化铝铪-氧化硅-硅的1.25倍。采用退火ITO栅极,大大提高了E-IOHAOS UV TD传感器的传感响应性能。
{"title":"Improve the Performance of SONOS Type UV TD Sensors Using IOHAOS with Enhanced UV Transparency ITO Gate","authors":"W. Hsieh, Fun-Cheng Jong, Wei-Ting Tseng","doi":"10.3390/COATINGS11040408","DOIUrl":"https://doi.org/10.3390/COATINGS11040408","url":null,"abstract":"This research demonstrates that an indium tin oxide–silicon oxide–hafnium aluminum oxide-silicon oxide–silicon device with enhanced UV transparency ITO gate (hereafter E-IOHAOS) can greatly increase the sensing response performance of a SONOS type ultraviolet radiation total dose (hereafter UV TD) sensor. Post annealing process is used to optimize UV optical transmission and electrical resistivity characterization in ITO film. Via nano-columns (NCols) crystalline transformation of ITO film, UV transparency of ITO film can be enhanced. UV radiation causes the threshold voltage VT of the E-IOHAOS device to increase, and the increase of the VT of E-IOHAOS device is also related to the UV TD. The experimental results show that under UV TD irradiation of 100 mW·s/cm2, ultraviolet light can change the threshold voltage VT of E-IOHAOS to 12.5 V. Moreover, the VT fading rate of ten-years retention on E-IOHAOS is below 10%. The VT change of E-IOHAOS is almost 1.25 times that of poly silicon–aluminum oxide–hafnium aluminum oxide–silicon oxide–silicon with poly silicon gate device (hereafter SAHAOS). The sensing response performance of an E-IOHAOS UV TD sensor is greatly improved by annealed ITO gate.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76891304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Application of Nanotechnology in Immunity against Infection 纳米技术在抗感染免疫中的应用
Pub Date : 2021-04-01 DOI: 10.3390/COATINGS11040430
Jingxin Zhang, Weiyue Shi, Q. Ma, H. Cui, Liang Zhang
The immune system has a physiological defense function, protecting the body from infectious diseases. Antibiotics have long been one of the most important means to treat infectious diseases, but in recent years, with the emergence of more and more multidrug-resistant (MDR) bacteria, it has become urgent to find new ways or drugs to treat infectious diseases. Nanoparticles (NPs) have attracted extensive attention owing to the special properties within the particle size range of 1–100 nanometers. In addition, NPs also have special shape symmetry and relative structural stability. The emergence of nanotechnology has brought new light to the widespread existence of MDR by its different antibacterial mechanisms. In addition to antibiotic nanocarriers being able to improve the antibacterial effect of antibiotics, some NPs also have certain antibacterial effect. What is more interesting is that linking functional groups on the surface of NPS as coatings can improve the stability of the whole system and improve the biocompatibility. The present review overviews the development of antimicrobial agents, so as to better understand the causes and mechanisms of antibiotic resistance in most microbial species, and to better think and explore new strategies to solve the problem. At the same time, this review introduces how nanotechnology can be applied to anti-infection immunity and its practical application and advantages in the treatment of infection.
免疫系统具有生理防御功能,保护身体免受传染病的侵害。抗生素一直是治疗传染病最重要的手段之一,但近年来,随着耐多药细菌(MDR)的出现,寻找治疗传染病的新方法或药物已成为当务之急。纳米粒子因其在1 ~ 100纳米粒径范围内的特殊性能而受到广泛关注。此外,NPs还具有特殊的形状对称性和相对的结构稳定性。纳米技术的出现通过其不同的抗菌机制为耐多药的广泛存在带来了新的曙光。抗生素纳米载体除了能够提高抗生素的抗菌效果外,某些NPs也具有一定的抗菌作用。更有趣的是,在NPS表面连接官能团作为涂层可以提高整个体系的稳定性,提高生物相容性。本文综述了抗菌药物的研究进展,以便更好地了解大多数微生物物种的抗生素耐药原因和机制,更好地思考和探索解决这一问题的新策略。同时,综述了纳米技术在抗感染免疫中的应用及其在感染治疗中的实际应用和优势。
{"title":"Application of Nanotechnology in Immunity against Infection","authors":"Jingxin Zhang, Weiyue Shi, Q. Ma, H. Cui, Liang Zhang","doi":"10.3390/COATINGS11040430","DOIUrl":"https://doi.org/10.3390/COATINGS11040430","url":null,"abstract":"The immune system has a physiological defense function, protecting the body from infectious diseases. Antibiotics have long been one of the most important means to treat infectious diseases, but in recent years, with the emergence of more and more multidrug-resistant (MDR) bacteria, it has become urgent to find new ways or drugs to treat infectious diseases. Nanoparticles (NPs) have attracted extensive attention owing to the special properties within the particle size range of 1–100 nanometers. In addition, NPs also have special shape symmetry and relative structural stability. The emergence of nanotechnology has brought new light to the widespread existence of MDR by its different antibacterial mechanisms. In addition to antibiotic nanocarriers being able to improve the antibacterial effect of antibiotics, some NPs also have certain antibacterial effect. What is more interesting is that linking functional groups on the surface of NPS as coatings can improve the stability of the whole system and improve the biocompatibility. The present review overviews the development of antimicrobial agents, so as to better understand the causes and mechanisms of antibiotic resistance in most microbial species, and to better think and explore new strategies to solve the problem. At the same time, this review introduces how nanotechnology can be applied to anti-infection immunity and its practical application and advantages in the treatment of infection.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75378937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Study of the Annealing Effect on the γ-Phase Aluminum Oxide Films Prepared by the High-Vacuum MOCVD System 高真空MOCVD系统制备γ相氧化铝膜的退火效应研究
Pub Date : 2021-03-29 DOI: 10.3390/COATINGS11040389
Zhaohan Li, Yangmei Xin, Yunyan Liu, Huiqiang Liu, Dan Yu, J. Xiu
γ-phase aluminum oxide (γ-Al2O3) films are grown on MgO (100) wafers by metal organic chemical vapor deposition (MOCVD). Post-annealing process is conducted to study the influence of annealing temperature on the properties of the films. Structural analyses indicate that all the deposited and annealed films present a preferred growth orientation of γ-Al2O3 (220) along the MgO (200) direction. And the film annealed at 1100 °C exhibits the best film quality compared with those of the films grown and annealed at other temperatures. Scanning electron microscopy measurements also imply the best surface morphology for the γ-Al2O3 film annealed at 1100 °C, which is in good accordance with the structural analyses. Optical transmittance spectra show good transparency for all the deposited and annealed films in the visible wavelength region with an average transmittance value of 83.5%. The optical bandgaps are estimated to be in the range of 5.56–5.79 eV for the deposited and annealed films. Semiconductor films with high optical transmittance in the visible region as well as wide bandgaps are appropriate for the manufacture of transparent optoelectronic devices and ultraviolet optoelectronic devices.
采用金属有机化学气相沉积(MOCVD)技术在MgO(100)晶圆上生长了γ相氧化铝(γ-Al2O3)薄膜。进行后退火工艺,研究退火温度对薄膜性能的影响。结构分析表明,所有沉积和退火膜均表现出γ-Al2O3(220)沿MgO(200)方向的优先生长取向。在1100℃退火的薄膜比在其他温度下生长和退火的薄膜表现出最好的薄膜质量。扫描电镜结果表明,经1100℃退火后的γ-Al2O3薄膜表面形貌最佳,与结构分析结果吻合较好。透射光谱显示,沉积和退火后的薄膜在可见光区具有良好的透光性,平均透射率为83.5%。沉积和退火薄膜的光学带隙估计在5.56 ~ 5.79 eV之间。具有可见光区高透光率和宽禁带的半导体薄膜适合于制造透明光电器件和紫外光电器件。
{"title":"Study of the Annealing Effect on the γ-Phase Aluminum Oxide Films Prepared by the High-Vacuum MOCVD System","authors":"Zhaohan Li, Yangmei Xin, Yunyan Liu, Huiqiang Liu, Dan Yu, J. Xiu","doi":"10.3390/COATINGS11040389","DOIUrl":"https://doi.org/10.3390/COATINGS11040389","url":null,"abstract":"γ-phase aluminum oxide (γ-Al2O3) films are grown on MgO (100) wafers by metal organic chemical vapor deposition (MOCVD). Post-annealing process is conducted to study the influence of annealing temperature on the properties of the films. Structural analyses indicate that all the deposited and annealed films present a preferred growth orientation of γ-Al2O3 (220) along the MgO (200) direction. And the film annealed at 1100 °C exhibits the best film quality compared with those of the films grown and annealed at other temperatures. Scanning electron microscopy measurements also imply the best surface morphology for the γ-Al2O3 film annealed at 1100 °C, which is in good accordance with the structural analyses. Optical transmittance spectra show good transparency for all the deposited and annealed films in the visible wavelength region with an average transmittance value of 83.5%. The optical bandgaps are estimated to be in the range of 5.56–5.79 eV for the deposited and annealed films. Semiconductor films with high optical transmittance in the visible region as well as wide bandgaps are appropriate for the manufacture of transparent optoelectronic devices and ultraviolet optoelectronic devices.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87607874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
High Entropy Alloy Coatings and Technology 高熵合金涂层与技术
Pub Date : 2021-03-24 DOI: 10.3390/COATINGS11040372
Ashutosh Sharma
Recently, the materials research community has seen a great increase in the development of multicomponent alloys, known as high entropy alloys (HEAs) with extraordinary properties and applications. In surface protection and engineering, diverse applications of HEAs are also being counted to benefit from their attractive performances in various environments. Thermally sprayed HEA coatings have outperformed conventional coating materials and have accelerated further advancement in this field. Therefore, this review article overviews the initial developments and outcomes in the field of HEA coatings. The authors have also categorized these HEA coatings in metallic, ceramic, and composite HEA coatings and discussed various developments in each of the categories in detail. Various fabrication strategies, properties, and important applications of these HEAs are highlighted. Further, various issues and future possibilities in this area for coatings development are recommended.
近年来,材料研究界在开发多组分合金方面有了很大的进展,这些合金被称为高熵合金(HEAs),具有非凡的性能和应用。在表面保护和工程中,HEAs的各种应用也被计算在内,以受益于它们在各种环境中的诱人性能。热喷涂HEA涂层已经超越了传统的涂层材料,加速了该领域的进一步发展。因此,本文综述了HEA涂料领域的初步发展和成果。作者还将HEA涂层分为金属HEA涂层、陶瓷HEA涂层和复合HEA涂层,并详细讨论了每种类别的各种发展。重点介绍了这些HEAs的各种制造策略、性能和重要应用。此外,还提出了该领域涂料发展的各种问题和未来的可能性。
{"title":"High Entropy Alloy Coatings and Technology","authors":"Ashutosh Sharma","doi":"10.3390/COATINGS11040372","DOIUrl":"https://doi.org/10.3390/COATINGS11040372","url":null,"abstract":"Recently, the materials research community has seen a great increase in the development of multicomponent alloys, known as high entropy alloys (HEAs) with extraordinary properties and applications. In surface protection and engineering, diverse applications of HEAs are also being counted to benefit from their attractive performances in various environments. Thermally sprayed HEA coatings have outperformed conventional coating materials and have accelerated further advancement in this field. Therefore, this review article overviews the initial developments and outcomes in the field of HEA coatings. The authors have also categorized these HEA coatings in metallic, ceramic, and composite HEA coatings and discussed various developments in each of the categories in detail. Various fabrication strategies, properties, and important applications of these HEAs are highlighted. Further, various issues and future possibilities in this area for coatings development are recommended.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88420968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 39
期刊
THE Coatings
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1