W. Wang, K. Vos, J. Taylor, C. Jenkins, B. Bala, L. Whitehead, Z. Peng
In recent years, there has been significant momentum in applying deep learning (DL) to machine health monitoring (MHM). It has been widely claimed that DL methodologies are superior to more traditional techniques in this area. This paper aims to investigate this claim by analysing a real-world dataset of helicopter sensor faults provided by Airbus. Specifically, we will address the problem of machine sensor health unsupervised classification. In a 2019 worldwide competition hosted by Airbus, Fujitsu Systems Europe (FSE) won first prize by achieving an F1-score of 93% using a DL model based on generative adversarial networks (GAN). In another comprehensive study, various modified and existing image encoding methods were compared for the convolutional auto-encoder (CAE) model. The best classification result was achieved using the scalogram as the image encoding method, with an F1-score of 91%. In this paper, we use these two studies as benchmarks to compare with basic statistical analysis methods and the one-class supporting vector machine (SVM). Our comparative study demonstrates that while DL-based techniques have great potential, they are not always superior to traditional methods. We therefore recommend that all future published studies of applying DL methods to MHM include appropriately selected traditional reference methods, wherever possible.
{"title":"Is deep learning superior to traditional techniques in machine health monitoring applications","authors":"W. Wang, K. Vos, J. Taylor, C. Jenkins, B. Bala, L. Whitehead, Z. Peng","doi":"10.1017/aer.2023.60","DOIUrl":"https://doi.org/10.1017/aer.2023.60","url":null,"abstract":"\u0000 In recent years, there has been significant momentum in applying deep learning (DL) to machine health monitoring (MHM). It has been widely claimed that DL methodologies are superior to more traditional techniques in this area. This paper aims to investigate this claim by analysing a real-world dataset of helicopter sensor faults provided by Airbus. Specifically, we will address the problem of machine sensor health unsupervised classification. In a 2019 worldwide competition hosted by Airbus, Fujitsu Systems Europe (FSE) won first prize by achieving an F1-score of 93% using a DL model based on generative adversarial networks (GAN). In another comprehensive study, various modified and existing image encoding methods were compared for the convolutional auto-encoder (CAE) model. The best classification result was achieved using the scalogram as the image encoding method, with an F1-score of 91%. In this paper, we use these two studies as benchmarks to compare with basic statistical analysis methods and the one-class supporting vector machine (SVM). Our comparative study demonstrates that while DL-based techniques have great potential, they are not always superior to traditional methods. We therefore recommend that all future published studies of applying DL methods to MHM include appropriately selected traditional reference methods, wherever possible.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81835311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. Tao, W. Wang, Z. Ye, Y.N. Wang, J.Q. Luo, J. Cui
Throughout the course of a flight mission, a range of aerodynamic conditions, including design-point conditions and off-design conditions, are encountered. As the bypass ratio increases and the fan-pressure ratio decreases to reduce the engine’s specific fuel consumption, the engine diameters increase, which results in an increase in the nacelle weight and overall drag. To reduce its weight and drag, a shorter nacelle with a length-to-diameter ratio $L/D = 0.35$ is investigated. In this study, an adaptive cokriging-based multi-objective optimisation method is applied to the design of a short aero-engine nacelle. Two nacelle performance metrics were employed as the objective functions for the optimisation routine. The cruise drag coefficient is evaluated under cruise conditions, whereas the intake pressure recovery is evaluated under takeoff conditions. The cokriging metamodel are refined using an effective infilling strategy, where high-fidelity samples are infilled via the modified Pareto fitness, and low-fidelity samples are infilled via the Pareto front. By combining parameterised geometry generation, automated mesh generation, numerical simulations, surrogate model construction, Pareto front exploration based on the non-dominated sorting genetic algorithm-II and sample infilling, an integrated multi-objective optimisation framework for short aero-engine nacelles is developed. Two-objective and three-objective test functions are used to validate the effectiveness of the proposed framework. After the optimisation process, a set of non-dominated nacelle designs is obtained with better aerodynamic performance than the original design, demonstrating the effectiveness of the optimisation framework. Compared with the kriging-based optimisation framework, the cokriging-based optimisation framework outperforms the single-fidelity method with a higher hypervolume value at the same number of iteration loops.
{"title":"Multi-fidelity and multi-objective aerodynamic short nacelle shape optimisation under different flight conditions","authors":"G. Tao, W. Wang, Z. Ye, Y.N. Wang, J.Q. Luo, J. Cui","doi":"10.1017/aer.2023.66","DOIUrl":"https://doi.org/10.1017/aer.2023.66","url":null,"abstract":"Throughout the course of a flight mission, a range of aerodynamic conditions, including design-point conditions and off-design conditions, are encountered. As the bypass ratio increases and the fan-pressure ratio decreases to reduce the engine’s specific fuel consumption, the engine diameters increase, which results in an increase in the nacelle weight and overall drag. To reduce its weight and drag, a shorter nacelle with a length-to-diameter ratio $L/D = 0.35$ is investigated. In this study, an adaptive cokriging-based multi-objective optimisation method is applied to the design of a short aero-engine nacelle. Two nacelle performance metrics were employed as the objective functions for the optimisation routine. The cruise drag coefficient is evaluated under cruise conditions, whereas the intake pressure recovery is evaluated under takeoff conditions. The cokriging metamodel are refined using an effective infilling strategy, where high-fidelity samples are infilled via the modified Pareto fitness, and low-fidelity samples are infilled via the Pareto front. By combining parameterised geometry generation, automated mesh generation, numerical simulations, surrogate model construction, Pareto front exploration based on the non-dominated sorting genetic algorithm-II and sample infilling, an integrated multi-objective optimisation framework for short aero-engine nacelles is developed. Two-objective and three-objective test functions are used to validate the effectiveness of the proposed framework. After the optimisation process, a set of non-dominated nacelle designs is obtained with better aerodynamic performance than the original design, demonstrating the effectiveness of the optimisation framework. Compared with the kriging-based optimisation framework, the cokriging-based optimisation framework outperforms the single-fidelity method with a higher hypervolume value at the same number of iteration loops.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87415629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Ren, Y. Wang, L. Wang, J.B. Zhou, H.J. Chang, Y. Cai, B. Lei
Coupling of clearance joint and harsh aerodynamic heating environment is an inevitable nonlinear factor in folding mechanism of the fin of high-speed aircrafts that remarkably modifies natural frequencies and modes of vibration from the initial design state. However, accurately predicting dynamic properties of deployable fin with full consideration of these effects is not common industry practice. A practical semi-analytical model based on Hertz contact theory and ESDU-78035 model is proposed in this study to investigate high-temperature connection stiffness of local hinged–locked mechanisms. Material property degradation and clearance variation caused by thermal expansion are comprehensively considered and quantified in this model. Vibration characteristics of the assembled deployable fin are then solved using finite element method (FEM). The real-time evolutionary process of thermal mode of the fin is discussed. And natural frequencies of fixed-value and time-varying connection stiffness are compared. The simulation results of this study demonstrate that the relative error of structure temperature between the sequential approach and fully coupled simulations is less than 6.98%. The connection stiffness (slope of the load-displacement curve) of the folding mechanism under high temperature conditions decreases by 3.52%, and the variation is mainly caused by the degradation of the elastic modulus of the material, while the clearance change due to the thermal expansion has no significant effect on the slope. The natural frequency of the deployable fin exhibits an inverse correlation with the temperature change trend, and the first three frequencies decrease by 1.67, 7.75, and 16.28 Hz compared to the initial value, respectively.
{"title":"Design-oriented dynamic model of deployable fin under time-varying elevated temperature environment","authors":"H. Ren, Y. Wang, L. Wang, J.B. Zhou, H.J. Chang, Y. Cai, B. Lei","doi":"10.1017/aer.2023.69","DOIUrl":"https://doi.org/10.1017/aer.2023.69","url":null,"abstract":"\u0000 Coupling of clearance joint and harsh aerodynamic heating environment is an inevitable nonlinear factor in folding mechanism of the fin of high-speed aircrafts that remarkably modifies natural frequencies and modes of vibration from the initial design state. However, accurately predicting dynamic properties of deployable fin with full consideration of these effects is not common industry practice. A practical semi-analytical model based on Hertz contact theory and ESDU-78035 model is proposed in this study to investigate high-temperature connection stiffness of local hinged–locked mechanisms. Material property degradation and clearance variation caused by thermal expansion are comprehensively considered and quantified in this model. Vibration characteristics of the assembled deployable fin are then solved using finite element method (FEM). The real-time evolutionary process of thermal mode of the fin is discussed. And natural frequencies of fixed-value and time-varying connection stiffness are compared. The simulation results of this study demonstrate that the relative error of structure temperature between the sequential approach and fully coupled simulations is less than 6.98%. The connection stiffness (slope of the load-displacement curve) of the folding mechanism under high temperature conditions decreases by 3.52%, and the variation is mainly caused by the degradation of the elastic modulus of the material, while the clearance change due to the thermal expansion has no significant effect on the slope. The natural frequency of the deployable fin exhibits an inverse correlation with the temperature change trend, and the first three frequencies decrease by 1.67, 7.75, and 16.28 Hz compared to the initial value, respectively.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"78 12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87906823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper proposes a methodology to define and quantify the precision uncertainties in aerothermodynamic cycle model comparisons. The total uncertainty depends on biases and random errors commonly found in such comparisons. These biases and random errors are classified and discussed based on observations found in the literature. The biases account for effects such as differences in model inputs, the configurations being simulated, and thermodynamic packages. Random errors consider the effects on the physics modeling and numerical methods used in cycle models. The methodology is applied to a comparison of two cycle models, designated as the model subject to comparison and reference model, respectively. The former is the so-called Aerothermodynamic Generic Cycle Model developed in-house at the Laboratory of Applied Research in Active Control, Avionics and AeroServoElasticity (LARCASE); the latter is an equivalent model programmed in the Numerical Propulsion System Simulation (NPSS). The proposed methodology is intended to quantify the bias and random errors effects on different cycle parameters of interest, such as thrust, specific fuel consumption, among others. Each bias and random errors are determined by deliberately preventing the effects from other biases and random errors. The methodology presented in this paper can be extended to other cycle model comparisons. Moreover, the uncertainty figures derived in this work are recommended to be used in other model comparisons when no better reference is available.
{"title":"A methodology to determine the precision uncertainty in gas turbine engine cycle models","authors":"M. D. J. Gurrola Arrieta, R. Botez","doi":"10.1017/aer.2023.64","DOIUrl":"https://doi.org/10.1017/aer.2023.64","url":null,"abstract":"\u0000 This paper proposes a methodology to define and quantify the precision uncertainties in aerothermodynamic cycle model comparisons. The total uncertainty depends on biases and random errors commonly found in such comparisons. These biases and random errors are classified and discussed based on observations found in the literature. The biases account for effects such as differences in model inputs, the configurations being simulated, and thermodynamic packages. Random errors consider the effects on the physics modeling and numerical methods used in cycle models. The methodology is applied to a comparison of two cycle models, designated as the model subject to comparison and reference model, respectively. The former is the so-called Aerothermodynamic Generic Cycle Model developed in-house at the Laboratory of Applied Research in Active Control, Avionics and AeroServoElasticity (LARCASE); the latter is an equivalent model programmed in the Numerical Propulsion System Simulation (NPSS). The proposed methodology is intended to quantify the bias and random errors effects on different cycle parameters of interest, such as thrust, specific fuel consumption, among others. Each bias and random errors are determined by deliberately preventing the effects from other biases and random errors. The methodology presented in this paper can be extended to other cycle model comparisons. Moreover, the uncertainty figures derived in this work are recommended to be used in other model comparisons when no better reference is available.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"81 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87007176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The boundary layer thickness on a compressor blade suction surface increases rapidly under a adverse pressure gradient and even separates from the blade surface. This paper proposes a novel method for developing the slot inside the blade, with the inlet of the slot located at the leading edge of the blade and the outlet located at the suction surface, using the momentum of the incoming flow to form a high velocity jet to control the boundary layer on the suction surface. For a plane cascade with a diffusion factor of 0.45, the effects of the main slot parametres (such as the shape of the slot and the positions of the slot inlet and outlet) on the flow in the slot, the flow field and the aerodynamic performance of the cascade were investigated with a numerical method. When the aerodynamic performance of cascades with slotted and unslotted blades was compared, it was found that a reasonable slot structure can effectively inhibit the development of the boundary layer on the blade suction surface and greatly improve the aerodynamic performance of the cascade. Based on the influence of the slot parametres of the above cascade, the slot of a plane cascade with a diffusion factor of 0.60 was designed. The numerical calculation results show that the slotted cascade with a diffusion factor of 0.60 outperformed the slotted cascade with a diffusion factor of 0.45. This result showed that the higher the cascade load, the greater the performance improvement from slotting. Furthermore, the unslotted and slotted cascades were tested, and the test results agreed well with the calculations. The aerodynamic performance of the slotted cascade was better than that of the unslotted cascade, which verifies the accuracy of the calculation method and the feasibility of blade slotting for suppressing the development of boundary layers on suction surfaces and reducing flow loss.
{"title":"Control of the boundary layer on compressor blade suction surfaces with the momentum jet","authors":"H. Zheng, Z. Zhou, L. Liu","doi":"10.1017/aer.2023.67","DOIUrl":"https://doi.org/10.1017/aer.2023.67","url":null,"abstract":"\u0000 The boundary layer thickness on a compressor blade suction surface increases rapidly under a adverse pressure gradient and even separates from the blade surface. This paper proposes a novel method for developing the slot inside the blade, with the inlet of the slot located at the leading edge of the blade and the outlet located at the suction surface, using the momentum of the incoming flow to form a high velocity jet to control the boundary layer on the suction surface. For a plane cascade with a diffusion factor of 0.45, the effects of the main slot parametres (such as the shape of the slot and the positions of the slot inlet and outlet) on the flow in the slot, the flow field and the aerodynamic performance of the cascade were investigated with a numerical method. When the aerodynamic performance of cascades with slotted and unslotted blades was compared, it was found that a reasonable slot structure can effectively inhibit the development of the boundary layer on the blade suction surface and greatly improve the aerodynamic performance of the cascade. Based on the influence of the slot parametres of the above cascade, the slot of a plane cascade with a diffusion factor of 0.60 was designed. The numerical calculation results show that the slotted cascade with a diffusion factor of 0.60 outperformed the slotted cascade with a diffusion factor of 0.45. This result showed that the higher the cascade load, the greater the performance improvement from slotting. Furthermore, the unslotted and slotted cascades were tested, and the test results agreed well with the calculations. The aerodynamic performance of the slotted cascade was better than that of the unslotted cascade, which verifies the accuracy of the calculation method and the feasibility of blade slotting for suppressing the development of boundary layers on suction surfaces and reducing flow loss.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"88 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80282100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To study the performance of the main windshield of a commercial aircraft that has been verified to be airworthy by bird-strike tests against unmanned aerial vehicle (UAV) impact at high-speed, a typical light UAV with various possible flight postures and the main windshield of a commercial aircraft are considered. The transient impact responses at critical moments, energy change and contact force of a multi-layer windshield impacted by a UAV with different postures are investigated using a simulation method based on the models verified by the high-speed impact test between the whole UAV and the full-size nose. This study shows that the flight posture of the UAV has a significant effect on the damage to the windshield. When the abdomen of a typical light UAV maintains a posture parallel to the plane of the windshield, the high-speed impact would cause catastrophic damage to the windshield and no longer be airworthy. Simultaneously, the damage to the aircraft windshield caused by UAV collision is far more serious than that caused by bird strikes under similar collision conditions. The mass-concentrated components of the UAV and their high-hardness characteristics are the main factors of affecting multi-layer glass of windshield damage. The degree of damage to the windshield is positively related to the absorbed energy rather than the impact contact force. In this study, the impact simulation results between the windshield and UAV with different flight postures are verified qualitatively by testing, which provides a rational understanding and technical pre-research support for emerging and increasingly frequent potential safety hazards in air transport practice.
{"title":"Effect on damage of aircraft windshield impacted by light UAV with different postures","authors":"X.H. Lu, Y.C. Zhang, Z. Zhang","doi":"10.1017/aer.2023.65","DOIUrl":"https://doi.org/10.1017/aer.2023.65","url":null,"abstract":"\u0000 To study the performance of the main windshield of a commercial aircraft that has been verified to be airworthy by bird-strike tests against unmanned aerial vehicle (UAV) impact at high-speed, a typical light UAV with various possible flight postures and the main windshield of a commercial aircraft are considered. The transient impact responses at critical moments, energy change and contact force of a multi-layer windshield impacted by a UAV with different postures are investigated using a simulation method based on the models verified by the high-speed impact test between the whole UAV and the full-size nose. This study shows that the flight posture of the UAV has a significant effect on the damage to the windshield. When the abdomen of a typical light UAV maintains a posture parallel to the plane of the windshield, the high-speed impact would cause catastrophic damage to the windshield and no longer be airworthy. Simultaneously, the damage to the aircraft windshield caused by UAV collision is far more serious than that caused by bird strikes under similar collision conditions. The mass-concentrated components of the UAV and their high-hardness characteristics are the main factors of affecting multi-layer glass of windshield damage. The degree of damage to the windshield is positively related to the absorbed energy rather than the impact contact force. In this study, the impact simulation results between the windshield and UAV with different flight postures are verified qualitatively by testing, which provides a rational understanding and technical pre-research support for emerging and increasingly frequent potential safety hazards in air transport practice.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90053755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Thoma, K. Thomessen, A. Gardi, A. Fisher, C. Braun
Even the shortest flight through unknown, cluttered environments requires reliable local path planning algorithms to avoid unforeseen obstacles. The algorithm must evaluate alternative flight paths and identify the best path if an obstacle blocks its way. Commonly, weighted sums are used here. This work shows that weighted Chebyshev distances and factorial achievement scalarising functions are suitable alternatives to weighted sums if combined with the 3DVFH* local path planning algorithm. Both methods considerably reduce the failure probability of simulated flights in various environments. The standard 3DVFH* uses a weighted sum and has a failure probability of 50% in the test environments. A factorial achievement scalarising function, which minimises the worst combination of two out of four objective functions, reaches a failure probability of 26%; A weighted Chebyshev distance, which optimises the worst objective, has a failure probability of 30%. These results show promise for further enhancements and to support broader applicability.
{"title":"Prioritising paths: An improved cost function for local path planning for UAV in medical applications","authors":"A. Thoma, K. Thomessen, A. Gardi, A. Fisher, C. Braun","doi":"10.1017/aer.2023.68","DOIUrl":"https://doi.org/10.1017/aer.2023.68","url":null,"abstract":"\u0000 Even the shortest flight through unknown, cluttered environments requires reliable local path planning algorithms to avoid unforeseen obstacles. The algorithm must evaluate alternative flight paths and identify the best path if an obstacle blocks its way. Commonly, weighted sums are used here. This work shows that weighted Chebyshev distances and factorial achievement scalarising functions are suitable alternatives to weighted sums if combined with the 3DVFH* local path planning algorithm. Both methods considerably reduce the failure probability of simulated flights in various environments. The standard 3DVFH* uses a weighted sum and has a failure probability of 50% in the test environments. A factorial achievement scalarising function, which minimises the worst combination of two out of four objective functions, reaches a failure probability of 26%; A weighted Chebyshev distance, which optimises the worst objective, has a failure probability of 30%. These results show promise for further enhancements and to support broader applicability.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87319881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tight budgets often limit the scope of test campaigns within the development programmes of small uncrewed air vehicles (UAVs). This paper explores a range of combinations of instrumentation suites and protocols for both wind tunnel and flight evaluation, focusing on the key aspect of drawing up the drag curve of the airframe. Through extensive testing of a 5kg maximum take-off mass, fixed wing, twin motor, richly instrumented test platform, we show that automated glides over a range of airspeeds and the slow down manoeuvre are effective ways of determining power-off drag, while estimating thrust from propeller speed, and voltage and current sensing based methods work well for the power-on case. We also seek the most time-efficient and robust mix of the above manoeuvres to yield a given drag curve accuracy level and we find wind condition impacts the manoeuvre makeup of the optimal strategy.
{"title":"Experimental evaluation of the drag curves of small fixed wing UAVs","authors":"A. Weishäupl, L. McLay, A. Sóbester","doi":"10.1017/aer.2023.61","DOIUrl":"https://doi.org/10.1017/aer.2023.61","url":null,"abstract":"\u0000 Tight budgets often limit the scope of test campaigns within the development programmes of small uncrewed air vehicles (UAVs). This paper explores a range of combinations of instrumentation suites and protocols for both wind tunnel and flight evaluation, focusing on the key aspect of drawing up the drag curve of the airframe. Through extensive testing of a 5kg maximum take-off mass, fixed wing, twin motor, richly instrumented test platform, we show that automated glides over a range of airspeeds and the slow down manoeuvre are effective ways of determining power-off drag, while estimating thrust from propeller speed, and voltage and current sensing based methods work well for the power-on case. We also seek the most time-efficient and robust mix of the above manoeuvres to yield a given drag curve accuracy level and we find wind condition impacts the manoeuvre makeup of the optimal strategy.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80500825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, an adaptive neural output-constrained control algorithm is proposed for a class of non-affine kinetic kill vehicle (KKV) systems. The key point is that the non-affine control law can be designed and the output of the KKV system conform to the output limit with the aid of the proposed method. Due to the aerodynamic moments, the actual control torque is non-affine, which can be addressed by introducing an integral process to the design of the controller. Besides, in order to improve the control precision, a nonlinear mapping is put forward so that the output constraint can be transformed to the constraint of the introduced dynamic signal that can be simply achieved. From the simulation results it can be concluded that the states of the KKV system can track the desired trajectories in spite of different working conditions and the control precision is higher compared with other control methods.
{"title":"Output constrained neural adaptive control for a class of KKVs with non-affine inputs and unmodeled dynamics","authors":"X. Ning, J. Liu, Z. Wang, C. Luo","doi":"10.1017/aer.2023.44","DOIUrl":"https://doi.org/10.1017/aer.2023.44","url":null,"abstract":"\u0000 In this paper, an adaptive neural output-constrained control algorithm is proposed for a class of non-affine kinetic kill vehicle (KKV) systems. The key point is that the non-affine control law can be designed and the output of the KKV system conform to the output limit with the aid of the proposed method. Due to the aerodynamic moments, the actual control torque is non-affine, which can be addressed by introducing an integral process to the design of the controller. Besides, in order to improve the control precision, a nonlinear mapping is put forward so that the output constraint can be transformed to the constraint of the introduced dynamic signal that can be simply achieved. From the simulation results it can be concluded that the states of the KKV system can track the desired trajectories in spite of different working conditions and the control precision is higher compared with other control methods.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73904565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Since the 1980s National Flying Laboratory Centre has used the Jetstream family of aircraft as a flying classroom, providing university students and developing professionals with real-world exposure to theoretical concepts in the form of practical flight test instruction. Recently the Jetstream was replaced with a newer Saab-340B. The work in this paper presents an experimental analysis of instruction using the Jetstream, compared with known best practices, to inform its replacement process. Flight activities were observed, and participating students (n = 60) were surveyed at four set intervals to establish their mood and interest towards the module. A pen and paper test, comparing what participants learned compared to a controlled group was also administered. While the module was still able to excite, motivate and re-contextualise previously taught information to students, upgrades to the aging technology suite, specifically to support data analysis and briefing was one of the greatest needs from the newer aircraft.
{"title":"Establishing best practices in the use of an upgraded airborne teaching laboratory","authors":"S. Daniels, G. Braithwaite, G. Gratton","doi":"10.1017/aer.2023.47","DOIUrl":"https://doi.org/10.1017/aer.2023.47","url":null,"abstract":"\u0000 Since the 1980s National Flying Laboratory Centre has used the Jetstream family of aircraft as a flying classroom, providing university students and developing professionals with real-world exposure to theoretical concepts in the form of practical flight test instruction. Recently the Jetstream was replaced with a newer Saab-340B. The work in this paper presents an experimental analysis of instruction using the Jetstream, compared with known best practices, to inform its replacement process. Flight activities were observed, and participating students (n = 60) were surveyed at four set intervals to establish their mood and interest towards the module. A pen and paper test, comparing what participants learned compared to a controlled group was also administered. While the module was still able to excite, motivate and re-contextualise previously taught information to students, upgrades to the aging technology suite, specifically to support data analysis and briefing was one of the greatest needs from the newer aircraft.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72603399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}