Aim: To achieve colon-targeted release of mefenamic acid from its ester-linked amylose prodrugs.Materials & methods: The prodrug was characterized by 1H NMR and IR spectroscopy. Drug activation and release profile was studied in enzyme enriched simulated physiological media via UV-vis spectroscopy and was validated with HPLC analysis. ELISA assay was employed for evaluating the % inhibition of COX-1 and COX-2 inhibition at different concentrations of the prodrug preincubated with ester and/ or amylose hydrolyzing enzymes. SEM studies further validated the performance of the prodrug under simulated physiological conditions.Results: Pancreatin was essential for the prodrug activation in SIM to make the ester bonds in prodrug vulnerable to hydrolysis by esterase. This evidence was confirmed by drug release studies, HPLC analysis, ELISA assay and SEM investigation where the ester conjugated prodrug showed marked stability in physiological media only to get activated in the presence of amylose degrading enzyme.Conclusion: Ester linked amylose-mefenamic acid conjugate showed both enzyme responsive activation and release in SIM.
{"title":"Synthesis and release studies on amylose-based ester prodrugs of fenamic acid NSAIDs.","authors":"Shraddha Chugh, Mousmee Sharma, Garima Chandrasen, Harish Mudila, Parteek Prasher","doi":"10.1080/20415990.2024.2400041","DOIUrl":"10.1080/20415990.2024.2400041","url":null,"abstract":"<p><p><b>Aim:</b> To achieve colon-targeted release of mefenamic acid from its ester-linked amylose prodrugs.<b>Materials & methods:</b> The prodrug was characterized by 1H NMR and IR spectroscopy. Drug activation and release profile was studied in enzyme enriched simulated physiological media via UV-vis spectroscopy and was validated with HPLC analysis. ELISA assay was employed for evaluating the % inhibition of COX-1 and COX-2 inhibition at different concentrations of the prodrug preincubated with ester and/ or amylose hydrolyzing enzymes. SEM studies further validated the performance of the prodrug under simulated physiological conditions.<b>Results:</b> Pancreatin was essential for the prodrug activation in SIM to make the ester bonds in prodrug vulnerable to hydrolysis by esterase. This evidence was confirmed by drug release studies, HPLC analysis, ELISA assay and SEM investigation where the ester conjugated prodrug showed marked stability in physiological media only to get activated in the presence of amylose degrading enzyme.<b>Conclusion:</b> Ester linked amylose-mefenamic acid conjugate showed both enzyme responsive activation and release in SIM.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457603/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142296098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aim: Design of moxifloxacin and ornidazole co-loaded polycaprolactone and gelatin nanofiber dressing for diabetic wounds. Materials & methods: The composite nanofibers were prepared using electrospinning technique and characterized for in vitro drug release, antibacterial activity, laser doppler and in vivo wound healing. Results: The optimized nanofiber demonstrated an interconnected bead free nanofiber with average diameter <200 nm. The in vitro drug release & antimicrobial studies revealed that optimized nanofiber provided drug release for >120 h, thereby inhibiting growth of Escherichia coli and Stapyhlococcus aureus. An in vivo wound closure study on diabetic rats found that optimized nanofiber group had a significantly higher wound closure rate than marketed formulation. Conclusion: The nanofiber provided prolonged drug release and accelerated wound healing, making it a promising candidate for diabetic wound care.
{"title":"Fabrication of dual drug-loaded polycaprolactone-gelatin composite nanofibers for full thickness diabetic wound healing.","authors":"Manjit Manjit, Manish Kumar, Krishan Kumar, Madhukiran R Dhondale, Abhishek Jha, Kanchan Bharti, Zinnu Rain, Pradyot Prakash, Brahmeshwar Mishra","doi":"10.4155/tde-2023-0083","DOIUrl":"https://doi.org/10.4155/tde-2023-0083","url":null,"abstract":"<p><p><b>Aim:</b> Design of moxifloxacin and ornidazole co-loaded polycaprolactone and gelatin nanofiber dressing for diabetic wounds. <b>Materials & methods:</b> The composite nanofibers were prepared using electrospinning technique and characterized for <i>in vitro</i> drug release, antibacterial activity, laser doppler and <i>in vivo</i> wound healing. <b>Results:</b> The optimized nanofiber demonstrated an interconnected bead free nanofiber with average diameter <200 nm. The <i>in vitro</i> drug release & antimicrobial studies revealed that optimized nanofiber provided drug release for >120 h, thereby inhibiting growth of <i>Escherichia coli</i> and <i>Stapyhlococcus aureus</i>. An <i>in vivo</i> wound closure study on diabetic rats found that optimized nanofiber group had a significantly higher wound closure rate than marketed formulation. <b>Conclusion:</b> The nanofiber provided prolonged drug release and accelerated wound healing, making it a promising candidate for diabetic wound care.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138831622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Delivering Volume 15: welcome to another year of <i>Therapeutic Delivery</i>!","authors":"Rebecca Turner","doi":"10.4155/tde-2023-0126","DOIUrl":"https://doi.org/10.4155/tde-2023-0126","url":null,"abstract":"","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138795609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naringenin belongs to the flavanones and is mainly found in fruits (grapefruit and oranges) and vegetables. Naringenin exhibits lipid-lowering and insulin-like characteristics and is used to treat osteoporosis, cancer and cardiovascular disorders. Their incorporation into drug formulations offers several advantages, including enhanced solubility, improved bioavailability and targeted delivery. Naringin-based formulations are beneficial in cancer, for example controlling breast and prostate cancer by inhibition of CYP19. Naringin suppresses the PI3K/AKT signalling pathway, it triggers autophagy, which effectively halts the proliferation of gastric cancer cells. Naringin and naringenin co-administration or pre-administration has enhanced the target drug's potency and produced a synergistic effect. This published study demonstrates the potential applications of Naringin and Naringenin as recognized bio-enhancers.
{"title":"A narrative review on Naringin and Naringenin as a possible bioenhancer in various drug-delivery formulations.","authors":"Pradeepti Ganesh, Vanishree Suresh, Manoj Kumar Narasimhan, Sarvesh Sabarathinam","doi":"10.4155/tde-2023-0086","DOIUrl":"10.4155/tde-2023-0086","url":null,"abstract":"<p><p>Naringenin belongs to the flavanones and is mainly found in fruits (grapefruit and oranges) and vegetables. Naringenin exhibits lipid-lowering and insulin-like characteristics and is used to treat osteoporosis, cancer and cardiovascular disorders. Their incorporation into drug formulations offers several advantages, including enhanced solubility, improved bioavailability and targeted delivery. Naringin-based formulations are beneficial in cancer, for example controlling breast and prostate cancer by inhibition of CYP19. Naringin suppresses the PI3K/AKT signalling pathway, it triggers autophagy, which effectively halts the proliferation of gastric cancer cells. Naringin and naringenin co-administration or pre-administration has enhanced the target drug's potency and produced a synergistic effect. This published study demonstrates the potential applications of Naringin and Naringenin as recognized bio-enhancers.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138795703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-12-19DOI: 10.4155/tde-2023-0048
Sara Salatin, Soheila Montazersaheb, Afsaneh Farjami, Samin Hamidi
Biopharmaceutical products are currently well-established in nearly all branches of medicine and are believed to have great potential for the treatment of a broad spectrum of diseases. Peptide/protein drugs exhibit a predominant class of new biopharmaceuticals coming on the market in recent years. Oral delivery of peptides/proteins as a non-invasive therapeutic technique has become an appealing alternative to the parenteral route. However, the efficient oral delivery of peptides/proteins is limited because of their high molecular weight, poor stability and low biodistribution. Nanoparticles (NPs) have shown excellent results in peptide/protein delivery research. In this paper, the use of NPs as delivery systems for peptides/proteins and their ability to be efficiently delivered via the oral route have been described.
{"title":"Nanoparticle-based delivery platforms for the enhanced oral delivery of peptides/proteins.","authors":"Sara Salatin, Soheila Montazersaheb, Afsaneh Farjami, Samin Hamidi","doi":"10.4155/tde-2023-0048","DOIUrl":"10.4155/tde-2023-0048","url":null,"abstract":"<p><p>Biopharmaceutical products are currently well-established in nearly all branches of medicine and are believed to have great potential for the treatment of a broad spectrum of diseases. Peptide/protein drugs exhibit a predominant class of new biopharmaceuticals coming on the market in recent years. Oral delivery of peptides/proteins as a non-invasive therapeutic technique has become an appealing alternative to the parenteral route. However, the efficient oral delivery of peptides/proteins is limited because of their high molecular weight, poor stability and low biodistribution. Nanoparticles (NPs) have shown excellent results in peptide/protein delivery research. In this paper, the use of NPs as delivery systems for peptides/proteins and their ability to be efficiently delivered via the oral route have been described.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138796606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-11-29DOI: 10.4155/tde-2023-0075
Lopamudra Mishra, Shuvadip Bhowmik, Rajveer Singh, Preeti Patel, Ghanshyam Das Gupta, Balak Das Kurmi
Aim: Gefitinib-loaded D-α-tocopherol polyethylene glycol 1000 succinate (TPGS)-coated cationic liposomes (GEF-TPGS-LIPO+) were developed and optimized by the quality by design (QbD) approach for its potential anticancer effect. Methods/materials: Box-Behnken design (BBD) a systematic design of experiments was added to screen and optimize the formulation variables. Results: GEF-TPGS-LIPO+ shows vesicle size (210 ± 4.82 nm), polydispersity index (0.271 ± 0.002), zeta potential (22.2 ± 0.84 mV) and entrapment efficiency (82.3 ± 1.95). MTT result shows the enhanced cytotoxicity and higher intracellular drug uptake with highest and lowest levels of the reactive oxygen species and NF-κB expressions on A549 lung cancer cells, determined by fluorescence-activated cell sorting flow cytometry. Conclusion: Potential anticancer effect on A549 cells might be found due to cationic liposomal interaction with cancer cells.
{"title":"Quality by design-assisted development of D-α-tocopherol polyethylene glycol 1000 succinate-incorporated gefitinib-loaded cationic liposome(s).","authors":"Lopamudra Mishra, Shuvadip Bhowmik, Rajveer Singh, Preeti Patel, Ghanshyam Das Gupta, Balak Das Kurmi","doi":"10.4155/tde-2023-0075","DOIUrl":"10.4155/tde-2023-0075","url":null,"abstract":"<p><p><b>Aim:</b> Gefitinib-loaded D-α-tocopherol polyethylene glycol 1000 succinate (TPGS)-coated cationic liposomes (GEF-TPGS-LIPO<sup>+</sup>) were developed and optimized by the quality by design (QbD) approach for its potential anticancer effect. <b>Methods/materials:</b> Box-Behnken design (BBD) a systematic design of experiments was added to screen and optimize the formulation variables. <b>Results:</b> GEF-TPGS-LIPO<sup>+</sup> shows vesicle size (210 ± 4.82 nm), polydispersity index (0.271 ± 0.002), zeta potential (22.2 ± 0.84 mV) and entrapment efficiency (82.3 ± 1.95). MTT result shows the enhanced cytotoxicity and higher intracellular drug uptake with highest and lowest levels of the reactive oxygen species and NF-κB expressions on A549 lung cancer cells, determined by fluorescence-activated cell sorting flow cytometry. <b>Conclusion:</b> Potential anticancer effect on A549 cells might be found due to cationic liposomal interaction with cancer cells.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138452623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
During the past few decades, researchers have attempted to discover an effective treatment for cancer. Exosomes are natural nanovesicles released by various cells and play a role in communication between cells. While natural exosomes have high clinical potential, their inherent limitations have prompted researchers to design exosomes with improved therapeutic properties. To achieve this purpose, researchers have undertaken exosome engineering to modify the surface properties or internal composition of exosomes. After these modifications, engineered exosomes can be used as carriers for delivery of chemotherapeutic agents, targeted drug delivery or development of cancer vaccines. The present study provides an overview of exosomes, including their biogenesis, biological functions, isolation techniques, engineering methods, and potential applications in cancer therapy.
{"title":"Engineered exosomes: a promising vehicle in cancer therapy.","authors":"Farkhondeh Pooresmaeil, Sahar Andi, Behnam Hasannejad-Asl, Shahla Takamoli, Azam Bolhassani","doi":"10.4155/tde-2023-0131","DOIUrl":"10.4155/tde-2023-0131","url":null,"abstract":"<p><p>During the past few decades, researchers have attempted to discover an effective treatment for cancer. Exosomes are natural nanovesicles released by various cells and play a role in communication between cells. While natural exosomes have high clinical potential, their inherent limitations have prompted researchers to design exosomes with improved therapeutic properties. To achieve this purpose, researchers have undertaken exosome engineering to modify the surface properties or internal composition of exosomes. After these modifications, engineered exosomes can be used as carriers for delivery of chemotherapeutic agents, targeted drug delivery or development of cancer vaccines. The present study provides an overview of exosomes, including their biogenesis, biological functions, isolation techniques, engineering methods, and potential applications in cancer therapy.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138796050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-12-13DOI: 10.4155/tde-2023-0117
Qin Yu, Wei Wu
{"title":"On the role of nanocarriers in oral drug delivery.","authors":"Qin Yu, Wei Wu","doi":"10.4155/tde-2023-0117","DOIUrl":"10.4155/tde-2023-0117","url":null,"abstract":"","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138797509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-11-29DOI: 10.4155/tde-2023-0018
Laura Montaldo, Alicia Gallo, Gabriela Rocha, Cecilia Csernoch, Mauricio De Marzi, Liliana N Guerra
Aim: Obesity is a chronic pathology of epidemic proportions. Mature adipocytes from a 3T3-L1 cell line were used as in vitro obesity model to test different bioactive compounds. We aim to evaluate cassis (Ribes nigrum) extract antioxidant activity and its antiadipogenic effect on mature adipocytes. Results: We produced an extract by using enzyme that combines cellulase and pectinase; we obtained high yield of the bioactive compound anthocyanin. Extract showed high antioxidant capacity. We conducted in vitro assays by adding the extract to adipocytes culture medium. Extract reduced intracellular levels of triglyceride by 62% and cholesterol by 32%. Conclusion: Enzymatic extract's high antioxidant activity was likely attributable to its high concentration of anthocyanin. This extract inhibits lipid accumulation in adipocytes.
{"title":"Anthocyanin-enriched extract from <i>Ribes nigrum</i> inhibits triglyceride and cholesterol accumulation in adipocytes.","authors":"Laura Montaldo, Alicia Gallo, Gabriela Rocha, Cecilia Csernoch, Mauricio De Marzi, Liliana N Guerra","doi":"10.4155/tde-2023-0018","DOIUrl":"10.4155/tde-2023-0018","url":null,"abstract":"<p><p><b>Aim:</b> Obesity is a chronic pathology of epidemic proportions. Mature adipocytes from a 3T3-L1 cell line were used as <i>in vitro</i> obesity model to test different bioactive compounds. We aim to evaluate cassis (<i>Ribes nigrum</i>) extract antioxidant activity and its antiadipogenic effect on mature adipocytes. <b>Results:</b> We produced an extract by using enzyme that combines cellulase and pectinase; we obtained high yield of the bioactive compound anthocyanin. Extract showed high antioxidant capacity. We conducted <i>in vitro</i> assays by adding the extract to adipocytes culture medium. Extract reduced intracellular levels of triglyceride by 62% and cholesterol by 32%. <b>Conclusion:</b> Enzymatic extract's high antioxidant activity was likely attributable to its high concentration of anthocyanin. This extract inhibits lipid accumulation in adipocytes.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138452622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}