Pub Date : 2024-11-07DOI: 10.1016/j.triboint.2024.110377
Kaicheng Zhang , Zenan Su , Shiyao Xu , Lintao Wu , Xin Zhang , Zehua Zhou , Guangyu Wang
This study developed a rapid structure control technique for AlCoCrFeNi/AT13 (Al₂O₃–13 % TiO₂) composite coatings using plasma spraying and dual powder feeding. Four coatings were fabricated: pure HEA, HEA-D (dispersed), HEA-S1 (multilayer with outer HEA), and HEA-S2 (multilayer with outer AT13). The introduction of AT13 altered the internal stress distribution and enhanced corrosion resistance by lowering the electrochemical reaction rate. In layered coatings (HEA-S1, HEA-S2), the AT13 interlayer barrier reduced corrosion tendency. Additionally, pure HEA coatings exhibited adhesive wear. While HEA-D coatings experienced abrasive wear as AT13 particles improved plastic deformation and interface shearing. HEA-S1 reduced strain and wear via an internal AT13 layer. HEA-S2 achieved superior abrasion resistance through an outer AT13 layer, exhibiting typical abrasive wear mechanisms.
{"title":"Effect of efficient structural tuning on the microstructure, corrosion resistance, and wear performance of AlCoCrFeNi/AT13 composite coatings","authors":"Kaicheng Zhang , Zenan Su , Shiyao Xu , Lintao Wu , Xin Zhang , Zehua Zhou , Guangyu Wang","doi":"10.1016/j.triboint.2024.110377","DOIUrl":"10.1016/j.triboint.2024.110377","url":null,"abstract":"<div><div>This study developed a rapid structure control technique for AlCoCrFeNi/AT13 (Al₂O₃–13 % TiO₂) composite coatings using plasma spraying and dual powder feeding. Four coatings were fabricated: pure HEA, HEA-D (dispersed), HEA-S1 (multilayer with outer HEA), and HEA-S2 (multilayer with outer AT13). The introduction of AT13 altered the internal stress distribution and enhanced corrosion resistance by lowering the electrochemical reaction rate. In layered coatings (HEA-S1, HEA-S2), the AT13 interlayer barrier reduced corrosion tendency. Additionally, pure HEA coatings exhibited adhesive wear. While HEA-D coatings experienced abrasive wear as AT13 particles improved plastic deformation and interface shearing. HEA-S1 reduced strain and wear via an internal AT13 layer. HEA-S2 achieved superior abrasion resistance through an outer AT13 layer, exhibiting typical abrasive wear mechanisms.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"202 ","pages":"Article 110377"},"PeriodicalIF":6.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.triboint.2024.110378
Yuxuan Xu , Donglin Liu , Qi Chen , Peiyu Zhou , Ziyi Liu , Xing Wang , Minwen Deng , Haibin Zhou , Yong Han , Pingping Yao
By substituting 10 wt% of conventional graphite particles, pitch coke particles with fine mosaics demonstrate superior performance in enhancing the braking properties of copper metal matrix composites (CMMCs) operating at various conditions. When mated with C/C-SiC, the coefficient of friction increases by 18.6 % at low speeds and 38.8 % at high braking speeds, along with a significant enhancement in wear resistance across various counterparts. This improvement is attributed to the incorporation of pitch coke with fine mosaics and superior mechanical properties, which not only imparts high thermal capacity and mechanical strength to the CMMCs but also fosters a synergistic interaction between pitch coke and the iron oxide layer, stabilizing the friction layer.
{"title":"Enhanced braking performance of copper metal matrix composites incorporating fine mosaic pitch coke when mated with 30CrMnVA and C/C-SiC","authors":"Yuxuan Xu , Donglin Liu , Qi Chen , Peiyu Zhou , Ziyi Liu , Xing Wang , Minwen Deng , Haibin Zhou , Yong Han , Pingping Yao","doi":"10.1016/j.triboint.2024.110378","DOIUrl":"10.1016/j.triboint.2024.110378","url":null,"abstract":"<div><div>By substituting 10 wt% of conventional graphite particles, pitch coke particles with fine mosaics demonstrate superior performance in enhancing the braking properties of copper metal matrix composites (CMMCs) operating at various conditions. When mated with C/C-SiC, the coefficient of friction increases by 18.6 % at low speeds and 38.8 % at high braking speeds, along with a significant enhancement in wear resistance across various counterparts. This improvement is attributed to the incorporation of pitch coke with fine mosaics and superior mechanical properties, which not only imparts high thermal capacity and mechanical strength to the CMMCs but also fosters a synergistic interaction between pitch coke and the iron oxide layer, stabilizing the friction layer.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"202 ","pages":"Article 110378"},"PeriodicalIF":6.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.triboint.2024.110374
Chenggang He , Gang Zou , Xinji Wang , Haiqiao Liu , Peng Li , Jihua Liu , Siuming Lo
Laser cladding technology is used to repair damaged wheels and plays an important role in prolonging their service life. Additionally, the temperature and humidity of the environment have important effects on the operation of the repaired wheels. In this study, widely used 316 L and 420 stainless steel alloy powders were selected as cladding materials, and three environmental conditions (25℃-RH60 %, 50℃-RH60 %, and 50℃-RH90 %) were set according to changes in temperature and humidity in different areas of China. Friction and wear tests were performed under different temperature and humidity conditions on a damaged wheel after local repair by laser cladding. The results clearly show that there are demarcated equiaxed and directional columnar grain regions in the 316 L cladding, whereas there are uniform plate and strip martensite structures in the 420 cladding, which are well formed by the metallurgical bonding of the wheel substrate. From 25℃-RH60 % to 50℃-RH90 %, the friction coefficient, plastic deformation thickness, and wear rate of the wheel–rail tended to decrease. However, the wear rates of the 420-coated wheels increased as the environmental conditions increased from 25 °C-RH60 % and 50 °C-RH60 %, and the wear rates of the corresponding rail samples remained high. The main forms of surface damage are fatigue cracks and material spalling. With increasing temperature and humidity, the damage to the bonding zone between the cladding and substrate surface decreases. The damage to the cladding profile is caused mainly by cracks at different angles and spalling pits. In the 25 °C-RH60 % environment, cracks initiate in the profile of the bonding zone and propagate along the plastic rheological line to the interior of the material. In comparison, the locally repaired wheel with 316 L stainless steel alloy powder as the laser cladding material has better tribological properties and is more suitable for repairing damaged wheels.
{"title":"Effects of various laser cladding materials on the tribological properties of damaged wheel treads under various temperatures and humidities","authors":"Chenggang He , Gang Zou , Xinji Wang , Haiqiao Liu , Peng Li , Jihua Liu , Siuming Lo","doi":"10.1016/j.triboint.2024.110374","DOIUrl":"10.1016/j.triboint.2024.110374","url":null,"abstract":"<div><div>Laser cladding technology is used to repair damaged wheels and plays an important role in prolonging their service life. Additionally, the temperature and humidity of the environment have important effects on the operation of the repaired wheels. In this study, widely used 316 L and 420 stainless steel alloy powders were selected as cladding materials, and three environmental conditions (25℃-RH60 %, 50℃-RH60 %, and 50℃-RH90 %) were set according to changes in temperature and humidity in different areas of China. Friction and wear tests were performed under different temperature and humidity conditions on a damaged wheel after local repair by laser cladding. The results clearly show that there are demarcated equiaxed and directional columnar grain regions in the 316 L cladding, whereas there are uniform plate and strip martensite structures in the 420 cladding, which are well formed by the metallurgical bonding of the wheel substrate. From 25℃-RH60 % to 50℃-RH90 %, the friction coefficient, plastic deformation thickness, and wear rate of the wheel–rail tended to decrease. However, the wear rates of the 420-coated wheels increased as the environmental conditions increased from 25 °C-RH60 % and 50 °C-RH60 %, and the wear rates of the corresponding rail samples remained high. The main forms of surface damage are fatigue cracks and material spalling. With increasing temperature and humidity, the damage to the bonding zone between the cladding and substrate surface decreases. The damage to the cladding profile is caused mainly by cracks at different angles and spalling pits. In the 25 °C-RH60 % environment, cracks initiate in the profile of the bonding zone and propagate along the plastic rheological line to the interior of the material. In comparison, the locally repaired wheel with 316 L stainless steel alloy powder as the laser cladding material has better tribological properties and is more suitable for repairing damaged wheels.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"202 ","pages":"Article 110374"},"PeriodicalIF":6.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.triboint.2024.110376
Baokai Zhang , Xianqiang Pei , Yanming Wang , Shanhong Wan , Gai Zhao , Qihua Wang , Tingmei Wang
Novel organic coatings were developed by incorporating solvent-free covalent carbon quantum dots nanofluids (CQDs NFs) into a polyimide (PI) matrix. The tribological properties of CQDs NFs/PI composite coatings were tested using a ball-on-disk tribometer, revealing that even a low loading of CQDs NFs significantly improved tribological performance of PI. Molecular dynamics (MD) simulations and nanoindentation tests showed that CQDs NFs restricted PI molecular chain movement, enhancing mechanical properties. Additionally, CQDs NFs promoted the formation of stable transfer films on steel surfaces, improving wear resistance. This study confirms CQDs NFs' effectiveness in modifying PI composite coatings' friction and wear properties.
通过在聚酰亚胺(PI)基体中加入无溶剂共价碳量子点纳米流体(CQDs NFs),开发出了新型有机涂层。使用球盘摩擦磨损仪测试了 CQDs NFs/PI 复合涂层的摩擦学性能,结果表明即使 CQDs NFs 的负载量很低,也能显著改善 PI 的摩擦学性能。分子动力学(MD)模拟和纳米压痕测试表明,CQDs NFs 限制了 PI 分子链的运动,从而提高了机械性能。此外,CQDs NFs 还能促进钢表面形成稳定的转移膜,从而提高耐磨性。这项研究证实了 CQDs NFs 在改变 PI 复合涂层的摩擦和磨损性能方面的有效性。
{"title":"Tribological properties of polyimide coating filled with solvent-free covalent carbon quantum dots nanofluids","authors":"Baokai Zhang , Xianqiang Pei , Yanming Wang , Shanhong Wan , Gai Zhao , Qihua Wang , Tingmei Wang","doi":"10.1016/j.triboint.2024.110376","DOIUrl":"10.1016/j.triboint.2024.110376","url":null,"abstract":"<div><div>Novel organic coatings were developed by incorporating solvent-free covalent carbon quantum dots nanofluids (CQDs NFs) into a polyimide (PI) matrix. The tribological properties of CQDs NFs/PI composite coatings were tested using a ball-on-disk tribometer, revealing that even a low loading of CQDs NFs significantly improved tribological performance of PI. Molecular dynamics (MD) simulations and nanoindentation tests showed that CQDs NFs restricted PI molecular chain movement, enhancing mechanical properties. Additionally, CQDs NFs promoted the formation of stable transfer films on steel surfaces, improving wear resistance. This study confirms CQDs NFs' effectiveness in modifying PI composite coatings' friction and wear properties.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"202 ","pages":"Article 110376"},"PeriodicalIF":6.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.triboint.2024.110379
Zhiwei Wang , Yongcun Li , Hang Dong , Yong Wang
In this study, (CoCrNiMn)78Ti22−xNbx eutectic high-entropy alloys were successfully synthesised via an arc melting process under vacuum, and the phase structure, microstructure, mechanical properties and dry sliding tribological behaviour of the alloys were systematically investigated. The XRD results for the (CoCrNiMn)78Ti22−xNbx eutectic high-entropy alloys are almost in agreement with the JMatPro phase diagram simulations, and the volume fraction of the Laves phase increased with increasing Nb content. OM and SEM images revealed that the microstructure was composed of dendrites (BCC A2) and interdendrites (BCC B2 +Laves) and changed from a hypoeutectic to a eutectic to a BCC B2 +Laves dual-phase structure, with the average grain size decreasing from 6.715 µm to 6.391 µm. Ti promoted the growth of the layered Laves phase and provided the alloy with base hardness and wear resistance. The hardness of the alloy combination of 21 % Ti and 1 % Nb reached the maximum value of 707.04 HV, whereas the average coefficient of friction (COF) and wear rate reached the lowest values of 0.49 and 1.668 × 10−4 mm3/N·m, respectively. With increasing load, the wear mechanism was mixed fatigue, delamination wear, and abrasive wear accompanied by oxidation, and the possibility of three-body wear paths between compacted tribolayers cannot be excluded. The debris was mostly in the form of microclusters, and the particle size range was concentrated between 1 −2 µm; meanwhile, the shape of the debris tended to develop from lamellar to spherical with increasing hardness.
{"title":"Achieving considerable wear resistance in new Ti-based high-entropy alloys through microstructural hardening by adding Nb","authors":"Zhiwei Wang , Yongcun Li , Hang Dong , Yong Wang","doi":"10.1016/j.triboint.2024.110379","DOIUrl":"10.1016/j.triboint.2024.110379","url":null,"abstract":"<div><div>In this study, (CoCrNiMn)<sub>78</sub>Ti<sub>22−x</sub>Nb<sub>x</sub> eutectic high-entropy alloys were successfully synthesised via an arc melting process under vacuum, and the phase structure, microstructure, mechanical properties and dry sliding tribological behaviour of the alloys were systematically investigated. The XRD results for the (CoCrNiMn)<sub>78</sub>Ti<sub>22−x</sub>Nb<sub>x</sub> eutectic high-entropy alloys are almost in agreement with the JMatPro phase diagram simulations, and the volume fraction of the Laves phase increased with increasing Nb content. OM and SEM images revealed that the microstructure was composed of dendrites (BCC A2) and interdendrites (BCC B2 +Laves) and changed from a hypoeutectic to a eutectic to a BCC B2 +Laves dual-phase structure, with the average grain size decreasing from 6.715 µm to 6.391 µm. Ti promoted the growth of the layered Laves phase and provided the alloy with base hardness and wear resistance. The hardness of the alloy combination of 21 % Ti and 1 % Nb reached the maximum value of 707.04 HV, whereas the average coefficient of friction (COF) and wear rate reached the lowest values of 0.49 and 1.668 × 10<sup>−4</sup> mm<sup>3</sup>/N<strong>·</strong>m, respectively. With increasing load, the wear mechanism was mixed fatigue, delamination wear, and abrasive wear accompanied by oxidation, and the possibility of three-body wear paths between compacted tribolayers cannot be excluded. The debris was mostly in the form of microclusters, and the particle size range was concentrated between 1 −2 µm; meanwhile, the shape of the debris tended to develop from lamellar to spherical with increasing hardness.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"202 ","pages":"Article 110379"},"PeriodicalIF":6.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.triboint.2024.110366
Yanqiu Xia, Hanbin Zhao, Xin Feng
In this paper, to address the issue of compounding three additives in PTFE grease, we propose a machine learning model based on SSA-GDA-LSSVM to predict both the tribological performance and the optimal ratio of additives in PTFE grease. Gaussian data augmentation expanded the experimental data, and the Sparrow Algorithm optimized hyperparameters of the Least Squares Support Vector Machine. SHAP analysis clarified model predictions, and a Non-Dominated Sorting Genetic Algorithm identified optimal additive ratios, which were experimentally validated. The results showed that the model predicted friction coefficients and wear scar widths with R² values exceeding 0.97, and the experimental error for optimal ratios was less than 1 %.
{"title":"Prediction of grease performance and optimal additive ratio based on the SSA-GDA-LSSVM model","authors":"Yanqiu Xia, Hanbin Zhao, Xin Feng","doi":"10.1016/j.triboint.2024.110366","DOIUrl":"10.1016/j.triboint.2024.110366","url":null,"abstract":"<div><div>In this paper, to address the issue of compounding three additives in PTFE grease, we propose a machine learning model based on SSA-GDA-LSSVM to predict both the tribological performance and the optimal ratio of additives in PTFE grease. Gaussian data augmentation expanded the experimental data, and the Sparrow Algorithm optimized hyperparameters of the Least Squares Support Vector Machine. SHAP analysis clarified model predictions, and a Non-Dominated Sorting Genetic Algorithm identified optimal additive ratios, which were experimentally validated. The results showed that the model predicted friction coefficients and wear scar widths with R² values exceeding 0.97, and the experimental error for optimal ratios was less than 1 %.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"202 ","pages":"Article 110366"},"PeriodicalIF":6.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.triboint.2024.110364
Xiaofei Yan , Hua Yan , Peilei Zhang , Qinghua Lu , Haichuan Shi
Due to its low elastic modulus, low density, non-magnetic and good lubricity, 60NiTi alloy is considered a novel fourth-generation aerospace bearing material. In this paper, 60NiTi biomimetic surface textured self-lubricating composites were fabricated by selective laser melting (SLM) and high-temperature fusion infiltration (HTFI). The effects of different slit widths (NTD), edge lengths (NTA), and soft metal Sn-Pb-Ag (SPA) infiltration on its tribological properties were studied. The results show that the NTA-SPA structural samples with medium texture density (ρ = 16 %) promoted the diffusion of the lubricant phase to the friction surface, resulting in a complete lubricant film. The COF stabilized at 0.2, and the wear rate decreased to 0.56 × 10−3 mm3/Nm, providing a more stable self-lubrication effect compared to the NTD-SPA sample.
{"title":"Fabrication and tribological properties of bionic surface texture self-lubricating 60NiTi alloy via selective laser melting and infiltration","authors":"Xiaofei Yan , Hua Yan , Peilei Zhang , Qinghua Lu , Haichuan Shi","doi":"10.1016/j.triboint.2024.110364","DOIUrl":"10.1016/j.triboint.2024.110364","url":null,"abstract":"<div><div>Due to its low elastic modulus, low density, non-magnetic and good lubricity, 60NiTi alloy is considered a novel fourth-generation aerospace bearing material. In this paper, 60NiTi biomimetic surface textured self-lubricating composites were fabricated by selective laser melting (SLM) and high-temperature fusion infiltration (HTFI). The effects of different slit widths (NTD), edge lengths (NTA), and soft metal Sn-Pb-Ag (SPA) infiltration on its tribological properties were studied. The results show that the NTA-SPA structural samples with medium texture density (ρ = 16 %) promoted the diffusion of the lubricant phase to the friction surface, resulting in a complete lubricant film. The COF stabilized at 0.2, and the wear rate decreased to 0.56 × 10<sup>−3</sup> mm<sup>3</sup>/Nm, providing a more stable self-lubrication effect compared to the NTD-SPA sample.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"202 ","pages":"Article 110364"},"PeriodicalIF":6.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.triboint.2024.110365
Ulf Olofsson , Erik Holmström , Yezhe Lyu
The use of studded tires can cause significant wear of road surfaces then also affect the air quality in urban areas. The studs of today’s studded tires are manufactured from hard metal containing cobalt. In this study, we investigated using alternative cobalt-free hard metal studs to reduce particulate emissions in the future. The tire-to-road interface is subjected to both impact wear and sliding abrasive wear. The alternative hard metal studs were evaluated in parallel with standard studs using two different laboratory test rigs specially designed for wear and particulate emission testing. Stone materials commonly used in the road tarmacadam were utilized as counter material. The results showed that the cobalt-free studs generated lower particle concentrations and less road wear.
{"title":"A study on the particle emission from cobalt-free studded tires against road materials","authors":"Ulf Olofsson , Erik Holmström , Yezhe Lyu","doi":"10.1016/j.triboint.2024.110365","DOIUrl":"10.1016/j.triboint.2024.110365","url":null,"abstract":"<div><div>The use of studded tires can cause significant wear of road surfaces then also affect the air quality in urban areas. The studs of today’s studded tires are manufactured from hard metal containing cobalt. In this study, we investigated using alternative cobalt-free hard metal studs to reduce particulate emissions in the future. The tire-to-road interface is subjected to both impact wear and sliding abrasive wear. The alternative hard metal studs were evaluated in parallel with standard studs using two different laboratory test rigs specially designed for wear and particulate emission testing. Stone materials commonly used in the road tarmacadam were utilized as counter material. The results showed that the cobalt-free studs generated lower particle concentrations and less road wear.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"202 ","pages":"Article 110365"},"PeriodicalIF":6.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.triboint.2024.110363
Jiaxi Jin , Xueliang Li , Shujun Yang , Haidi Yi , Haodong Sun , Wenqi Hao
The fluid dynamics equations of groove cavity and non-grooved gap are established and combined to obtain fluid load bearing model. Considering the chain effect among local deformation, the deformation equation of friction surface under fluid-solid coupling load is developed to characterize reconstructed friction gap. The internal pressure and external load are used to iteratively solve the distribution of film thickness and contact area. An improved sliding torque calculation model is established by the microscopic state of fluid motion and solid deformation instead of fitting friction coefficient by multiple conditions. The accuracy of torque model is proved by sliding test. The influence of applied pressure, relative speed and lubricant flow on torque is weakened in turn according to fluid-solid state analysis.
{"title":"Calculation and analysis of wet clutch sliding torque based on fluid-solid coupling dynamic behavior","authors":"Jiaxi Jin , Xueliang Li , Shujun Yang , Haidi Yi , Haodong Sun , Wenqi Hao","doi":"10.1016/j.triboint.2024.110363","DOIUrl":"10.1016/j.triboint.2024.110363","url":null,"abstract":"<div><div>The fluid dynamics equations of groove cavity and non-grooved gap are established and combined to obtain fluid load bearing model. Considering the chain effect among local deformation, the deformation equation of friction surface under fluid-solid coupling load is developed to characterize reconstructed friction gap. The internal pressure and external load are used to iteratively solve the distribution of film thickness and contact area. An improved sliding torque calculation model is established by the microscopic state of fluid motion and solid deformation instead of fitting friction coefficient by multiple conditions. The accuracy of torque model is proved by sliding test. The influence of applied pressure, relative speed and lubricant flow on torque is weakened in turn according to fluid-solid state analysis.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"202 ","pages":"Article 110363"},"PeriodicalIF":6.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.triboint.2024.110361
Hamed Aghajani Derazkola , Dieter Fauconnier , Ádám Kalácska , Eduardo Garcia , Alberto Murillo-Marrodán , Patrick De Baets
This study evaluates the tribological properties of DIN 1.2740 hot tool steel against Super Cr13 martensitic stainless steel at 700 °C. The results show that the coefficient of friction (COF) ranged from 0.15 to 0.63, indicating moderate frictional interaction. The wear rate of DIN 1.2740 was observed to be low, suggesting good resistance to wear at high temperatures. The complex surface oxide layer that formed on the pin’s top surface, significantly reducing the COF and acting as a solid lubricant at elevated temperatures. The oxide layer was also fragile and unable to withstand the high sliding velocities and high loads. The steel exhibited a high surface roughness when subjected to increasing normal loads and increasing sliding velocities.
本研究评估了 DIN 1.2740 热工具钢与超级 Cr13 马氏体不锈钢在 700 °C 下的摩擦学特性。结果表明,摩擦系数(COF)在 0.15 至 0.63 之间,表明摩擦作用适中。DIN 1.2740 的磨损率较低,表明在高温下具有良好的耐磨性。销顶表面形成了复杂的表面氧化层,大大降低了 COF 值,并在高温下起到了固体润滑剂的作用。氧化层也很脆弱,无法承受高滑动速度和高负载。在承受越来越大的法向载荷和越来越高的滑动速度时,钢的表面粗糙度很高。
{"title":"Tribological behaviour of DIN 1.2740 hot working tool steel during mandrel mill stretching process","authors":"Hamed Aghajani Derazkola , Dieter Fauconnier , Ádám Kalácska , Eduardo Garcia , Alberto Murillo-Marrodán , Patrick De Baets","doi":"10.1016/j.triboint.2024.110361","DOIUrl":"10.1016/j.triboint.2024.110361","url":null,"abstract":"<div><div>This study evaluates the tribological properties of DIN 1.2740 hot tool steel against Super Cr13 martensitic stainless steel at 700 °C. The results show that the coefficient of friction (COF) ranged from 0.15 to 0.63, indicating moderate frictional interaction. The wear rate of DIN 1.2740 was observed to be low, suggesting good resistance to wear at high temperatures. The complex surface oxide layer that formed on the pin’s top surface, significantly reducing the COF and acting as a solid lubricant at elevated temperatures. The oxide layer was also fragile and unable to withstand the high sliding velocities and high loads. The steel exhibited a high surface roughness when subjected to increasing normal loads and increasing sliding velocities.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"202 ","pages":"Article 110361"},"PeriodicalIF":6.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142660424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}