Pub Date : 2024-11-26DOI: 10.1016/j.ultras.2024.107530
Voon-Kean Wong , Xiaotian Li , Yasmin Mohamed Yousry , Marilyne Philibert , Chao Jiang , David Boon Kiang Lim , Percis Teena Christopher Subhodayam , Zheng Fan , Kui Yao
This work offers an ultrasonic structural health monitoring (SHM) approach for assessing the defects located on the same surface and at one side of piezoelectric ultrasonic transducer array. It is based on the analysis of ultrasonic bulk wave travelling in the thickness direction obtained from an enhanced full-skip configuration of the time-of-flight diffraction (TOFD) technique. In contrast to existing TOFD setup only considering the direct paths between the ultrasonic transducer and defect, our ultrasound monitoring configuration involves twice reflected ultrasonic bulk wave (TRBW). The TRBW travels following the propagation route from an ultrasonic transmitter located at the same side of the defect initiated, the backwall, the defect tip, the backwall again and finally to the same or another ultrasonic transducer. Both theoretical analyses and experimental validations have been conducted in our study. A simplified algorithm for efficient detection and mapping the growth of a surface defect in an aluminum alloy block has been demonstrated with an incremental surface defect growth starting from 2.80 mm in depth, in which conformable direct-write ultrasonic transducers (DWT) made of in-situ piezoelectric coating are implemented. Our approach provides an ultrasonic method for effective monitoring the near surface defects with the ultrasonic transducers conveniently implemented on the same surface and at the same side of the defects.
{"title":"Twice reflected ultrasonic bulk wave for surface defect monitoring","authors":"Voon-Kean Wong , Xiaotian Li , Yasmin Mohamed Yousry , Marilyne Philibert , Chao Jiang , David Boon Kiang Lim , Percis Teena Christopher Subhodayam , Zheng Fan , Kui Yao","doi":"10.1016/j.ultras.2024.107530","DOIUrl":"10.1016/j.ultras.2024.107530","url":null,"abstract":"<div><div>This work offers an ultrasonic structural health monitoring (SHM) approach for assessing the defects located on the same surface and at one side of piezoelectric ultrasonic transducer array. It is based on the analysis of ultrasonic bulk wave travelling in the thickness direction obtained from an enhanced full-skip configuration of the time-of-flight diffraction (TOFD) technique. In contrast to existing TOFD setup only considering the direct paths between the ultrasonic transducer and defect, our ultrasound monitoring configuration involves twice reflected ultrasonic bulk wave (TRBW). The TRBW travels following the propagation route from an ultrasonic transmitter located at the same side of the defect initiated, the backwall, the defect tip, the backwall again and finally to the same or another ultrasonic transducer. Both theoretical analyses and experimental validations have been conducted in our study. A simplified algorithm for efficient detection and mapping the growth of a surface defect in an aluminum alloy block has been demonstrated with an incremental surface defect growth starting from 2.80 mm in depth, in which conformable direct-write ultrasonic transducers (DWT) made of in-situ piezoelectric coating are implemented. Our approach provides an ultrasonic method for effective monitoring the near surface defects with the ultrasonic transducers conveniently implemented on the same surface and at the same side of the defects.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"147 ","pages":"Article 107530"},"PeriodicalIF":3.8,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-24DOI: 10.1016/j.ultras.2024.107518
Hossein Kamalinia, Merlin Bonnevay, Andrea Barbarulo, Elsa Vennat, Bing Tie
The main focus of this work is the echogenicity of a 3D-printed synthetic composite material that mimics the acoustic properties of cardiac biological tissues to provide ultrasound images similar to those obtained during interventional cardiology procedures. The 3D-printed material studied is a polymer-based composite with a matrix–inclusion microstructure, which plays a critical role in ultrasound response due to ultrasound-microstructure interaction at the involved medical echography wavelengths. Both numerical simulations and experimental observations are carried out to quantitatively establish the relationship between the 3D-printed microstructure and its ultrasonic echogenicity, considering different microstructure characteristics, namely area fraction and size of the inclusion, and its actual printed shape. A numerical evaluation based on finite element modeling is carried out to characterize the acoustic properties of the 3D-printed synthetic tissue: phase velocity, attenuation coefficient, and B-mode ultrasound images. Moreover, a morphological experimental study of the shape of the real 3D-printed inclusions is carried out. It shows a significant deviation of the final printed inclusions compared to the input spherical shape delivered to the 3D printer. By simulating and comparing numerically generated microstructures and 3D-printed real microstructures, it is shown that the actual shape of the inclusion is significant in the scattering of the ultrasonic wave and the echogenicity of the printed material.
{"title":"Numerical and experimental study of echogenicity in 3D-printed tissue-mimicking materials","authors":"Hossein Kamalinia, Merlin Bonnevay, Andrea Barbarulo, Elsa Vennat, Bing Tie","doi":"10.1016/j.ultras.2024.107518","DOIUrl":"10.1016/j.ultras.2024.107518","url":null,"abstract":"<div><div>The main focus of this work is the echogenicity of a 3D-printed synthetic composite material that mimics the acoustic properties of cardiac biological tissues to provide ultrasound images similar to those obtained during interventional cardiology procedures. The 3D-printed material studied is a polymer-based composite with a matrix–inclusion microstructure, which plays a critical role in ultrasound response due to ultrasound-microstructure interaction at the involved medical echography wavelengths. Both numerical simulations and experimental observations are carried out to quantitatively establish the relationship between the 3D-printed microstructure and its ultrasonic echogenicity, considering different microstructure characteristics, namely area fraction and size of the inclusion, and its actual printed shape. A numerical evaluation based on finite element modeling is carried out to characterize the acoustic properties of the 3D-printed synthetic tissue: phase velocity, attenuation coefficient, and B-mode ultrasound images. Moreover, a morphological experimental study of the shape of the real 3D-printed inclusions is carried out. It shows a significant deviation of the final printed inclusions compared to the input spherical shape delivered to the 3D printer. By simulating and comparing numerically generated microstructures and 3D-printed real microstructures, it is shown that the actual shape of the inclusion is significant in the scattering of the ultrasonic wave and the echogenicity of the printed material.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"148 ","pages":"Article 107518"},"PeriodicalIF":3.8,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142792370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A novel Signal Processing algorithm based on the combination of a Wavelet Transform Analysis and Image Processing techniques is designed for assessing the delamination detectability of Lamb Waves generated with an innovative fully non-contact system in CFRP plates. Several Damage Indexes are extracted from the wavefields in spatial-time–frequency domain and plotted as surface cartographies to visualise their ability to size and localise artificial delaminations. Results show that the algorithm is efficient for characterising the waves propagation and that sophisticated Image comparison indexes show better ability to detect the artificial defects and to recognise healthy zones despite signal measurement and calculation uncertainties.
{"title":"Development of signal processing algorithms for delamination detection in composite laminates using non-contact excited Lamb waves","authors":"Lea A.C. Lecointre , Ryo Higuchi , Tomohiro Yokozeki , Naoki Hosoya , Shin-ichi Takeda","doi":"10.1016/j.ultras.2024.107524","DOIUrl":"10.1016/j.ultras.2024.107524","url":null,"abstract":"<div><div>A novel Signal Processing algorithm based on the combination of a Wavelet Transform Analysis and Image Processing techniques is designed for assessing the delamination detectability of Lamb Waves generated with an innovative fully non-contact system in CFRP plates. Several Damage Indexes are extracted from the wavefields in spatial-time–frequency domain and plotted as surface cartographies to visualise their ability to size and localise artificial delaminations. Results show that the algorithm is efficient for characterising the waves propagation and that sophisticated Image comparison indexes show better ability to detect the artificial defects and to recognise healthy zones despite signal measurement and calculation uncertainties.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"147 ","pages":"Article 107524"},"PeriodicalIF":3.8,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-23DOI: 10.1016/j.ultras.2024.107517
Vincent Dorval , Nicolas Leymarie , Alexandre Imperiale , Edouard Demaldent , Pierre-Emile Lhuillier
Finite element computations offer ways to study the behavior of ultrasonic waves in polycrystals. In particular, the simulation of plane waves propagation through small representative elementary volumes of a microstructure allows estimating velocities and scattering-induced attenuation for an effective homogeneous material. Existing works on this topic have focused mainly on longitudinal waves. The approach presented here relies on generating periodic samples of microstructures in order to accommodate both longitudinal and shear waves. After some discussion on the parametrization of the simulations and the numerical errors, results are shown for several materials. These results are compared to an established theoretical attenuation model that has been adapted to use a fully analytical expression of the two-point correlation function for the polycrystals of interest, and to use velocities corresponding to different reference media. Promising comparisons are obtained for both longitudinal and shear waves when using more representative media, obtained through Hill averaging or a self-consistent approach. This illustrates how the numerical method can assist in developing and validating analytical models for elastic wave propagation in heterogeneous media.
{"title":"Numerical estimation of ultrasonic phase velocity and attenuation for longitudinal and shear waves in polycrystalline materials","authors":"Vincent Dorval , Nicolas Leymarie , Alexandre Imperiale , Edouard Demaldent , Pierre-Emile Lhuillier","doi":"10.1016/j.ultras.2024.107517","DOIUrl":"10.1016/j.ultras.2024.107517","url":null,"abstract":"<div><div>Finite element computations offer ways to study the behavior of ultrasonic waves in polycrystals. In particular, the simulation of plane waves propagation through small representative elementary volumes of a microstructure allows estimating velocities and scattering-induced attenuation for an effective homogeneous material. Existing works on this topic have focused mainly on longitudinal waves. The approach presented here relies on generating periodic samples of microstructures in order to accommodate both longitudinal and shear waves. After some discussion on the parametrization of the simulations and the numerical errors, results are shown for several materials. These results are compared to an established theoretical attenuation model that has been adapted to use a fully analytical expression of the two-point correlation function for the polycrystals of interest, and to use velocities corresponding to different reference media. Promising comparisons are obtained for both longitudinal and shear waves when using more representative media, obtained through Hill averaging or a self-consistent approach. This illustrates how the numerical method can assist in developing and validating analytical models for elastic wave propagation in heterogeneous media.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"148 ","pages":"Article 107517"},"PeriodicalIF":3.8,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142772659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1016/j.ultras.2024.107529
Eunjong Ahn , Homin Song , Myoungsu Shin , John S. Popovics
This study aimed to investigate the effects of internal moisture migration and subsequent drying-shrinkage-induced micro-cracking in concrete on diffuse ultrasound, through a series of experiments that comprised multiple drying and rewetting cycles carried out over the long-term. Cyclic drying and wetting phenomena in concrete were physically established following a predefined protocol and were traced measuring the mass change of specimens. Diffuse-wave tests were conducted using a pair of PZT patches bonded to cylindrical specimens, which acted as the ultrasonic transmitter and receiver in the range of 250–550 kHz. The results present that measured diffuse-wave parameters, diffusivity and dissipation, showed distinct varying and cyclic behaviors to drying and wetting processes, but they did not recover their original values in the saturated condition, revealing possible micro-cracking damage caused by the drying process, which should be understood to improve the reliability of diffuse ultrasound measurements in concrete subjected to environmental changes.
{"title":"Influence of moisture on the diffusion of ultrasound in concrete","authors":"Eunjong Ahn , Homin Song , Myoungsu Shin , John S. Popovics","doi":"10.1016/j.ultras.2024.107529","DOIUrl":"10.1016/j.ultras.2024.107529","url":null,"abstract":"<div><div>This study aimed to investigate the effects of internal moisture migration and subsequent drying-shrinkage-induced micro-cracking in concrete on diffuse ultrasound, through a series of experiments that comprised multiple drying and rewetting cycles carried out over the long-term. Cyclic drying and wetting phenomena in concrete were physically established following a predefined protocol and were traced measuring the mass change of specimens. Diffuse-wave tests were conducted using a pair of PZT patches bonded to cylindrical specimens, which acted as the ultrasonic transmitter and receiver in the range of 250–550 kHz. The results present that measured diffuse-wave parameters, diffusivity and dissipation, showed distinct varying and cyclic behaviors to drying and wetting processes, but they did not recover their original values in the saturated condition, revealing possible micro-cracking damage caused by the drying process, which should be understood to improve the reliability of diffuse ultrasound measurements in concrete subjected to environmental changes.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"147 ","pages":"Article 107529"},"PeriodicalIF":3.8,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1016/j.ultras.2024.107528
Minsu Jeon , Minseok Choi , Wonjae Choi , Jong Moon Ha , Hyunseok Oh
Recently, significant research efforts have been made to enhance ultrasonic testing (UT) by employing artificial intelligence (AI). However, collecting an extensive amount of labeled data across various testing environments to train the AI model poses significant challenges. Moreover, conventional UT typically focuses on detecting deep-depth defects, which limits the effectiveness of such methods in detecting near-surface defects. To this end, this paper proposes a novel near-surface defect detection method for ultrasonic testing that can be employed without collecting labeled data. We propose a self-supervised anomaly detection model that incorporates domain knowledge. First, synthetic faulty samples are generated by fusing the measured UT signals with the back-wall UT reflection signals, to simulate real faulty features. Unlike the CutPaste method used for computer vision applications, this synthesis method adds the back-wall echo signal to random locations by incorporating the physical principles of the superposition of ultrasonic signals. Next, a de-anomaly network is devised to isolate subtle defect features within the measured UT signals. The presence of defects was determined using the three-sigma rule of the mean absolute value of the residual output. The defect depth is determined by a time-of-flight calculation from the residual output. The effectiveness of the proposed method was evaluated through the UT of aluminum blocks with near-surface defects of varying depths under different surface conditions. Both qualitative and quantitative comparison studies demonstrated that the proposed method outperformed existing methods in detecting the presence and depth of near-surface defects.
最近,通过采用人工智能(AI)来增强超声波测试(UT)的研究取得了重大进展。然而,在各种测试环境中收集大量标记数据来训练人工智能模型是一项重大挑战。此外,传统的 UT 通常侧重于检测深层缺陷,这限制了此类方法在检测近表面缺陷方面的有效性。为此,本文提出了一种新颖的超声波检测近表面缺陷检测方法,该方法无需收集标记数据即可使用。我们提出了一种结合领域知识的自监督异常检测模型。首先,通过将测量到的 UT 信号与后墙 UT 反射信号融合,生成合成故障样本,以模拟真实的故障特征。与计算机视觉应用中使用的剪贴法不同,这种合成方法通过结合超声波信号叠加的物理原理,在随机位置添加后墙回波信号。接下来,设计了一个去异常网络,以隔离测量到的 UT 信号中细微的缺陷特征。利用残差输出平均绝对值的三西格玛法则确定是否存在缺陷。缺陷深度通过残差输出的飞行时间计算来确定。通过在不同表面条件下对存在不同深度近表面缺陷的铝块进行 UT,评估了所建议方法的有效性。定性和定量对比研究表明,在检测近表面缺陷的存在和深度方面,所提出的方法优于现有方法。
{"title":"Near-surface defect detection in ultrasonic testing using domain-knowledge-informed self-supervised learning","authors":"Minsu Jeon , Minseok Choi , Wonjae Choi , Jong Moon Ha , Hyunseok Oh","doi":"10.1016/j.ultras.2024.107528","DOIUrl":"10.1016/j.ultras.2024.107528","url":null,"abstract":"<div><div>Recently, significant research efforts have been made to enhance ultrasonic testing (UT) by employing artificial intelligence (AI). However, collecting an extensive amount of labeled data across various testing environments to train the AI model poses significant challenges. Moreover, conventional UT typically focuses on detecting deep-depth defects, which limits the effectiveness of such methods in detecting near-surface defects. To this end, this paper proposes a novel near-surface defect detection method for ultrasonic testing that can be employed without collecting labeled data. We propose a self-supervised anomaly detection model that incorporates domain knowledge. First, synthetic faulty samples are generated by fusing the measured UT signals with the back-wall UT reflection signals, to simulate real faulty features. Unlike the CutPaste method used for computer vision applications, this synthesis method adds the back-wall echo signal to random locations by incorporating the physical principles of the superposition of ultrasonic signals. Next, a de-anomaly network is devised to isolate subtle defect features within the measured UT signals. The presence of defects was determined using the three-sigma rule of the mean absolute value of the residual output. The defect depth is determined by a time-of-flight calculation from the residual output. The effectiveness of the proposed method was evaluated through the UT of aluminum blocks with near-surface defects of varying depths under different surface conditions. Both qualitative and quantitative comparison studies demonstrated that the proposed method outperformed existing methods in detecting the presence and depth of near-surface defects.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"147 ","pages":"Article 107528"},"PeriodicalIF":3.8,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/j.ultras.2024.107519
Tao Zhou, Chaolong Xue, Xunjie Lv, Bing Li
This paper presents a novel approach utilizing nonlinear ultrasonic guided waves for the detection and evaluation of high-cycle fatigue damage in aluminum alloy plates. Through high-cycle fatigue testing, specimens with varying degrees of fatigue damage were created and evaluated using ultrasonic-guided wave measurement technology. The integration of time–frequency analyses effectively reduced the impact of wave dispersion and resonance effects, establishing a reliable operational frequency bandwidth. The results identified a positive correlation between the amplitude of odd harmonic components caused by hysteresis nonlinearity and fatigue crack length, while an inverse correlation was observed with specimen resonance frequency. The results confirm the high sensitivity and accuracy of this approach for early fatigue damage detection, offering a significant advancement in the non-destructive evaluation of engineering structures and a foundation for structural failure prevention.
{"title":"High-cycle fatigue damage evaluation based on hysteresis nonlinearity using ultrasonic guided waves","authors":"Tao Zhou, Chaolong Xue, Xunjie Lv, Bing Li","doi":"10.1016/j.ultras.2024.107519","DOIUrl":"10.1016/j.ultras.2024.107519","url":null,"abstract":"<div><div>This paper presents a novel approach utilizing nonlinear ultrasonic guided waves for the detection and evaluation of high-cycle fatigue damage in aluminum alloy plates. Through high-cycle fatigue testing, specimens with varying degrees of fatigue damage were created and evaluated using ultrasonic-guided wave measurement technology. The integration of time–frequency analyses effectively reduced the impact of wave dispersion and resonance effects, establishing a reliable operational frequency bandwidth. The results identified a positive correlation between the amplitude of odd harmonic components caused by hysteresis nonlinearity and fatigue crack length, while an inverse correlation was observed with specimen resonance frequency. The results confirm the high sensitivity and accuracy of this approach for early fatigue damage detection, offering a significant advancement in the non-destructive evaluation of engineering structures and a foundation for structural failure prevention.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"147 ","pages":"Article 107519"},"PeriodicalIF":3.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1016/j.ultras.2024.107525
Ngoc Thang Bui , Lauren A. Dalvin , Shannon L. Howard , Jason P. Hall , Arthur J. Sit , Xiaoming Zhang
Objective
This research aims to develop a noninvasive ultrasound vibro-elastography technique for assessing ocular lesions including intraocular melanoma and nevus lesions.
Method
Wave speed (WS) was noninvasively measured in the lesions at three different frequencies (i.e., 100 Hz, 150 Hz, and 200 Hz). The nearby normal tissue of choroid and sclera was also analyzed as controls. Viscoelasticity of these tissues was analyzed using the wave speed dispersion curve and the Voigt model.
Results
In this pilot study of 10 cases (5 melanomas vs. 5 nevus) with ages (mean ± SD) of (53.2 ± 6.82) vs. (72.2 ± 7.71) yo, the WS (m/s), elasticity (kPa) and viscosity (Pa.s) of lesion (melanoma vs. nevus) locations of the eye (i.e., WS @100 Hz: 3.63 vs. 3.09 (m/s), @150 Hz: 4.10 vs. 3.66 (m/s), @200 Hz: 4.78 vs. 4.07 (m/s); elasticity: 9.59 vs. 6.89 (kPa); viscosity: 12.46 vs. 9.26(Pa.s)) were analyzed. There were significant differences of WS ratio (WS close to the surface and WS inside the tumor) between the nevus and melanoma of all three frequencies (i.e., nevus vs. melanoma; @100 Hz: 1.59 vs. 2.95, p = 0.0285; @150 Hz: 1.58 vs. 3.53, p = 0.0054; @200 Hz: 1.70 vs. 3.31, p = 0.0124). The melanoma lesions are stiffer than the nevus lesions. It also shows that the lesion tissues are stiffer than the control tissues. However, there were no significant differences in WS, elasticity, viscosity among melanoma lesions, nevus lesions, and control tissues.
Conclusions
We demonstrate for the first time that noninvasive ultrasound vibro-elastography can be used for assessing ocular lesions. The results show that lesion tissues are stiffer than control tissues. They also show that melanoma lesions are stiffer than the nevus lesions. We plan to study more ocular lesion patients and improve the specificity and sensitivity of wave speed or viscoelasticity between lesions and controls.
Significance
Ultrasound vibro-elastography is an innovative and noninvasive technique for assessing ocular lesions.
研究目的本研究旨在开发一种无创超声振动弹性成像技术,用于评估眼部病变,包括眼内黑色素瘤和痣病变:方法:以三种不同频率(即 100 Hz、150 Hz 和 200 Hz)无创测量病变部位的波速(WS)。同时还分析了附近的脉络膜和巩膜正常组织作为对照。利用波速频散曲线和 Voigt 模型分析了这些组织的粘弹性:在这项对年龄(平均 ± SD)为(53.2 ± 6.82)岁和(72.2 ± 7.71)岁的 10 个病例(5 个黑色素瘤与 5 个痣对比)进行的试点研究中,眼部病变(黑色素瘤与痣对比)位置的波速(m/s)、弹性(kPa)和粘度(Pa.s)(即波速 @100 Hz:3.63 vs. 3.09 (m/s), @150 Hz:4.10 vs. 3.66 (m/s), @200 Hz:4.78 vs. 4.07(m/s);弹性:9.59 vs. 6.89(kPa);粘度:12.46 vs. 9.26(Pa.s))进行了分析。在三种频率下,痣和黑色素瘤的 WS 比值(靠近瘤体表面的 WS 和瘤体内的 WS)均有明显差异(即痣 vs. 黑色素瘤;@100 Hz:1.59 vs. 2.95, p = 0.0285; @150 Hz:1.58 vs. 3.53, p = 0.0054; @200 Hz:1.70 vs. 3.31,p = 0.0124)。黑色素瘤病变比痣病变更硬。这也表明病变组织比对照组组织更硬。然而,黑色素瘤病变组织、痣病变组织和对照组织的 WS、弹性和粘度没有明显差异:我们首次证明了无创超声振动弹性成像技术可用于评估眼部病变。结果显示,病变组织比对照组织更硬。结果还显示,黑色素瘤病变组织比痣病变组织更硬。我们计划研究更多的眼部病变患者,并提高病变组织与对照组织之间波速或粘弹性的特异性和敏感性:超声振动弹性成像技术是评估眼部病变的一种创新性无创技术。
{"title":"A noninvasive ultrasound vibro-elastography technique for assessing ocular lesions","authors":"Ngoc Thang Bui , Lauren A. Dalvin , Shannon L. Howard , Jason P. Hall , Arthur J. Sit , Xiaoming Zhang","doi":"10.1016/j.ultras.2024.107525","DOIUrl":"10.1016/j.ultras.2024.107525","url":null,"abstract":"<div><h3>Objective</h3><div>This research aims to develop a noninvasive ultrasound vibro-elastography technique for assessing ocular lesions including intraocular melanoma and nevus lesions.</div></div><div><h3>Method</h3><div>Wave speed (WS) was noninvasively measured in the lesions at three different frequencies (i.e., 100 Hz, 150 Hz, and 200 Hz). The nearby normal tissue of choroid and sclera was also analyzed as controls. Viscoelasticity of these tissues was analyzed using the wave speed dispersion curve and the Voigt model.</div></div><div><h3>Results</h3><div>In this pilot study of 10 cases (5 melanomas vs. 5 nevus) with ages (mean ± SD) of (53.2 ± 6.82) vs. (72.2 ± 7.71) yo, the WS (m/s), elasticity (kPa) and viscosity (Pa.s) of lesion (melanoma vs. nevus) locations of the eye (i.e., WS @100 Hz: 3.63 vs. 3.09 (m/s), @150 Hz: 4.10 vs. 3.66 (m/s), @200 Hz: 4.78 vs. 4.07 (m/s); elasticity: 9.59 vs. 6.89 (kPa); viscosity: 12.46 vs. 9.26(Pa.s)) were analyzed. There were significant differences of WS ratio (WS close to the surface and WS inside the tumor) between the nevus and melanoma of all three frequencies (i.e., nevus vs. melanoma; @100 Hz: 1.59 vs. 2.95, p = 0.0285; @150 Hz: 1.58 vs. 3.53, p = 0.0054; @200 Hz: 1.70 vs. 3.31, p = 0.0124). The melanoma lesions are stiffer than the nevus lesions. It also shows that the lesion tissues are stiffer than the control tissues. However, there were no significant differences in WS, elasticity, viscosity among melanoma lesions, nevus lesions, and control tissues.</div></div><div><h3>Conclusions</h3><div>We demonstrate for the first time that noninvasive ultrasound vibro-elastography can be used for assessing ocular lesions. The results show that lesion tissues are stiffer than control tissues. They also show that melanoma lesions are stiffer than the nevus lesions. We plan to study more ocular lesion patients and improve the specificity and sensitivity of wave speed or viscoelasticity between lesions and controls.</div></div><div><h3>Significance</h3><div>Ultrasound vibro-elastography is an innovative and noninvasive technique for assessing ocular lesions.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"147 ","pages":"Article 107525"},"PeriodicalIF":3.8,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142689101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1016/j.ultras.2024.107526
N. Sivashankar , R. Thanigaivelan , L. Selvarajan , K. Venkataramanan
This study investigates the application of Electrochemical Micromachining (ECMM) on magnesium alloy AZ31 using a hollow tool electrode. Magnesium alloys, particularly AZ31, are valued for their lightweight properties and strength-to-weight ratio but pose challenges in precision machining due to their high reactivity and susceptibility to corrosion. Utilizing a hollow tool electrode in ECMM offers potential advantages in precision and control, crucial for micro-scale manufacturing applications. This research focuses on studying the effect of process parameters such as electrolyte composition, voltage, and duty cycle to achieve high-quality micro holes. Experimental results demonstrate the effects of these parameters on machining speed and overcut. Findings indicate that the use of a hollow tool electrode significantly improves the hole geometry and surface integrity of the machined features, making ECMM a viable technique for the micromachining of magnesium alloys. The experimental outcome shows that the maximum MS of 0.439 μm/s was noted with 156 OC. The machining was enhanced by 12 % when compared to traditional submerged machining with a solid tool.
{"title":"Investigation of electrochemical micromachining on magnesium alloy using hollow tool electrode","authors":"N. Sivashankar , R. Thanigaivelan , L. Selvarajan , K. Venkataramanan","doi":"10.1016/j.ultras.2024.107526","DOIUrl":"10.1016/j.ultras.2024.107526","url":null,"abstract":"<div><div>This study investigates the application of Electrochemical Micromachining (ECMM) on magnesium alloy AZ31 using a hollow tool electrode. Magnesium alloys, particularly AZ31, are valued for their lightweight properties and strength-to-weight ratio but pose challenges in precision machining due to their high reactivity and susceptibility to corrosion. Utilizing a hollow tool electrode in ECMM offers potential advantages in precision and control, crucial for micro-scale manufacturing applications. This research focuses on studying the effect of process parameters such as electrolyte composition, voltage, and duty cycle to achieve high-quality micro holes. Experimental results demonstrate the effects of these parameters on machining speed and overcut. Findings indicate that the use of a hollow tool electrode significantly improves the hole geometry and surface integrity of the machined features, making ECMM a viable technique for the micromachining of magnesium alloys. The experimental outcome shows that the maximum MS of 0.439 μm/s was noted with 156 OC. The machining was enhanced by 12 % when compared to traditional submerged machining with a solid tool.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"147 ","pages":"Article 107526"},"PeriodicalIF":3.8,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142711061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.ultras.2024.107522
P. Graczyk , B. Rana , A. Trzaskowska , B.K. Mahato , J.W. Kłos , M. Krawczyk , A. Barman
Surface acoustic waves have emerged as one of the potential candidates for the development of next-generation wave-based information and computing technologies. For practical devices, it is essential to develop the excitation techniques for different types of surface acoustic waves, especially at higher microwave frequencies, and to tailor their frequency versus wave vector characteristics. We show that this can be done by using ultrashort laser pulses incident on the surface of a multilayer decorated with a periodic array of metallic nanodots. Specifically, we study surface acoustic waves in the dielectric substrate Si/SiO2 decorated with a square lattice of thin Ni80Fe20 (Py) dots. Using a femtosecond laser-based optical pump–probe measurement, we detect a number of high-frequency phononic modes. By performing finite element simulations, we identify them as Sezawa modes from the second and third Brillouin zone in addition to the modes confined within the Py dots. The frequency of the Sezawa modes strongly depends on the period of the Py dots and varies in the range between 5 to 15 GHz. Both types of waves cover the same frequency range for Py dots with period less than 400 nm, providing a promising system for magnetoelastic studies.
{"title":"Optical excitation and detection of high-frequency Sezawa modes in Si/SiO2 system decorated with Ni80Fe20 nanodot arrays","authors":"P. Graczyk , B. Rana , A. Trzaskowska , B.K. Mahato , J.W. Kłos , M. Krawczyk , A. Barman","doi":"10.1016/j.ultras.2024.107522","DOIUrl":"10.1016/j.ultras.2024.107522","url":null,"abstract":"<div><div>Surface acoustic waves have emerged as one of the potential candidates for the development of next-generation wave-based information and computing technologies. For practical devices, it is essential to develop the excitation techniques for different types of surface acoustic waves, especially at higher microwave frequencies, and to tailor their frequency versus wave vector characteristics. We show that this can be done by using ultrashort laser pulses incident on the surface of a multilayer decorated with a periodic array of metallic nanodots. Specifically, we study surface acoustic waves in the dielectric substrate Si/SiO<sub>2</sub> decorated with a square lattice of thin Ni<sub>80</sub>Fe<sub>20</sub> (Py) dots. Using a femtosecond laser-based optical pump–probe measurement, we detect a number of high-frequency phononic modes. By performing finite element simulations, we identify them as Sezawa modes from the second and third Brillouin zone in addition to the modes confined within the Py dots. The frequency of the Sezawa modes strongly depends on the period of the Py dots and varies in the range between 5 to 15 GHz. Both types of waves cover the same frequency range for Py dots with period less than 400 nm, providing a promising system for magnetoelastic studies.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"148 ","pages":"Article 107522"},"PeriodicalIF":3.8,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142786359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}