The receptive field (RF) is the fundamental processing unit of human vision; both masking and crowding depend on its size. The RF has a psychophysical corresponding term, the perceptive field (PF); whereas the RF is measured physiologically, the PF is measured psychophysically (a perceptual response). We investigated how spatial (lateral interactions), temporal (the stimulus presentation time), and the procedure affect the PF size for both monocular and binocular viewing. The stimuli consisted of a central vertically oriented Gabor target and high-contrast Gabor flankers positioned in two configurations (orthogonal or collinear) with target-flanker separations of either 2 or 3 wavelengths (λ). We used two main methods to control the monocular and binocular vision: mono-optic glasses vs. stereo glasses. The presentation order was either mixed or non-mixed for the presentation time and the eye condition. We estimated the PF size for both monocular and binocular viewing at 4 different presentation times (40, 80,120, and 200 ms) with different orders of presentation in each experiment (mono-optic glasses vs. stereo glasses, utilizing the lateral masking paradigm). In each experiment we explored one variable: how changing one parameter would affect the PF size in both monocular and binocular viewing (the temporal duration, the testing order of conditions, and the spatial distance) while keeping the others constant. We found that both the monocular and binocular PF size were dynamic and were significantly affected by the presentation order, leading to reduced lateral suppression under the collinear 2λ condition. Hence, both the monocular and binocular PF size depended on the sequence of the stimulus presentation time and the testing order of the conditions. Furthermore, we found that the binocular PF size was significantly larger than the monocular PF size.
A quintessential sentinel of cell health, the membrane potential in nonexcitable cells integrates biochemical and biomechanical inputs, determines the driving force for ionic currents activated by input signals and plays critical functions in cellular differentiation, signaling, and pathology. The identity and properties of ion channels that subserve the resting potential in trabecular meshwork (TM) cells is poorly understood, which impairs our understanding of intraocular pressure regulation in healthy and diseased eyes. Here, we identified a powerful cationic conductance that subserves the TM resting potential. It disappears following Na+ removal or substitution with choline or NMDG+, is insensitive to TTX, verapamil, phenamil methanesulfonate, amiloride and GsMTx4, is substituted by Li+ and Cs+, and inhibited by Gd3+ and Ruthenium Red. Constitutive cation influx is thus not mediated by voltage-operated Na+, Ca2+, epithelial Na+ (ENaC) channels, Piezo channels or Na+/H+ exchange but may involve TRP-like channels. Transcriptional analysis detected expression of many TRP genes, with the transcriptome pool dominated by TRPC1 followed by expression of TRPV1, TRPC3, TRPV4 and TRPC5. Pyr3 and Pico1,4,5 did not affect the standing current whereas SKF96365 promoted rather than suppressed, Na+ influx. SEA-0400 induced a modest hyperpolarization, indicating residual contribution from Na+/Ca2+ exchange. The resting membrane potential in human TM cells is thus maintained by a constitutive monovalent cation leak current with properties not unlike those of TRP channels. This conductance is likely to influence conventional outflow by setting the homeostatic steady-state and by regulating the magnitude of pressure-induced currents in normotensive and hypertensive eyes.
Contrast demodulation and phase distortions are exaggerated in retinal images blurred by the higher-order wavefront aberrations of keratoconic eyes. While the performance loss from the former parameter is well understood, little is known about the impact of the latter on visual functions in this disease condition. The present study investigated the impact of phase distortions on the monocular logMAR visual acuity, letter discriminability and random-dot stereoacuity of seventeen visually healthy adults (ten for visual acuity and letter discriminability; ten for stereoacuity and three common to both experiments) using images that were computationally blurred by four different higher-order wavefront aberration profiles of keratoconic eyes that showed significant distortions in the phase spectrum. Participants viewed these images through 2 mm artificial pupils to negate their native ocular wavefront aberrations. The results showed progressive losses in visual acuity and stereoacuity with increasing blur, a third of which could be recovered following phase nullification. Letter discriminability also improved following phase nullification, more so for smaller than larger optotypes. Stereoacuity loss and, consequently, its recovery following phase nullification was more prominent for profiles simulating unilateral asymmetric keratoconus than for profiles simulating bilateral symmetric keratoconus. These results agree with previous reports obtained from blur induced with lower-order aberrations and indicate that a similar trend may be observed for more complex patterns of blur like keratoconus. Overall, both contrast demodulation and misalignment of the local features of the blurred image may contribute to losses of spatial and depth vision in keratoconus. Phase nullification may partially mitigate these losses, thereby allowing the processing of finer spatial details and veridical disparity estimations for improved depth perception.
Previous studies identified two visual stimuli that can shorten the human eye by thickening the choroid after short-term visual stimulation, potentially inhibiting myopia: (1) watching digitally filtered movies where the red plane has full spatial resolution while green and blue are low-pass filtered according to the human longitudinal chromatic aberration (LCA) function (the “red in focus” filter), and (2) reading text with inverted contrast. This study aimed to determine whether combining these two stimuli would have an additive effect on axial length. Twenty-two emmetropic subjects were recruited to read text (standard and inverted contrast) for 30 min from a large screen, 2 m away, either unfiltered or filtered with the “red in focus” filter. Axial length was measured before and after each reading episode using low-coherence interferometry (Lenstar LS 900, Haag Streit). Reading text with conventional contrast polarity (dark letters on a bright background) resulted in no significant axial length change. Adding the “red in focus” filter did not alter the outcome. Consistent with previous findings, reading inverted contrast text made emmetropic eyes shorter. Surprisingly, when the text was combined with the “red in focus” filter, eyes became longer rather than shorter. A possible explanation for this contradictory result is that, for the text stimulus, the “red in focus” filter removes spatial information in the blue channel needed by the retina to use LCA analysis to thicken the choroid.
Many of the objects we encounter in our everyday environments would be hard to recognize without any expectations about these objects. For example, a distant silhouette may be perceived as a car because we expect objects of that size, positioned on a road, to be cars. Reflecting the influence of such expectations on visual processing, neuroimaging studies have shown that when objects are poorly visible, expectations derived from scene context facilitate the representations of these objects in visual cortex from around 300 ms after scene onset. The current magnetoencephalography (MEG) study tested whether this facilitation occurs independently of attention and task relevance. Participants viewed degraded objects alone or within scene context while they either attended the scenes (attended condition) or the fixation cross (unattended condition), also temporally directing attention away from the scenes. Results showed that at 300 ms after stimulus onset, multivariate classifiers trained to distinguish clearly visible animate vs inanimate objects generalized to distinguish degraded objects in scenes better than degraded objects alone, despite the added clutter of the scene background. Attention also modulated object representations at this latency, with better category decoding in the attended than the unattended condition. The modulatory effects of context and attention were independent of each other. Finally, data from the current study and a previous study were combined (N = 51) to provide a more detailed temporal characterization of contextual facilitation. These results extend previous work by showing that facilitatory scene-object interactions are independent of the specific task performed on the visual input.
Glaucoma is a leading cause of blindness worldwide and glaucoma patients exhibit an early diffuse loss of retinal sensitivity followed by focal loss of RGCs. Combining some previous published results and some new data, this paper provides our current view on how high IOP (H-IOP) affects the light response sensitivity of a subset of RGCs, the alpha-ganglion cells (αGCs), as well as their presynaptic bipolar cells (DBCs and HBCs) and A2 amacrine cells (AIIACs) in dark-adapted mouse retinas. Our data demonstrate that H-IOP in experimental glaucoma mice significantly decreases light-evoked spike response sensitivity of sONαGCs and sOFFαGCs (i.e., raises thresholds by 1.5–2.5 log units), but not that of the tONαGCs and tOFFαGCs. The sensitivity loss in sONαGCs and sOFFαGCs is mediated by a H-IOP induced suppression of AIIAC response which is caused by a decrease of transmission efficacy of the DBCR→AIIAC synapse. We also provide evidence supporting the hypothesis that BK channels in the A17AC→DBCR feedback synapse are the H-IOP sensor that regulates the DBCR→AIIAC synaptic efficacy, as BK channel blocker IBTX mimics the action of H-IOP. Our results provide useful information for designing strategies for early detection and possible treatments of glaucoma as physiological changes occur before irreversible structural damage.