Pub Date : 2025-02-01Epub Date: 2024-03-21DOI: 10.1177/0734242X241240042
Maksim Kamarou, Dmitry Moskovskikh, Kirill Kuskov, Sergey Yudin, Abayomi Adewale Akinwande, Andrey Smorokov, Yasin Onuralp Özkılıç, Mohanad Yaseen Abdulwahid, Abhijit Bhowmik, Elena Romanovskaia, Natalia Korob, Andrei Paspelau, Valentin Romanovski
The article presents the possibility of increasing the water resistance of gypsum binders (GBs) obtained based on synthetic gypsum by introducing additives derived from industrial wastes. Regularities were obtained for the influence of the type and amount of additives on the water/gypsum ratio (W/G), strength indicators and water resistance of high-strength GB. The introduction of a single-component additive to improve water resistance does not have a significant effect. Complex additives based on Portland cement, granulated blast-furnace slag, electric steel-smelting slag, expanded clay dust and granite screenings of various fractions have been developed that make the maximum contribution to improving the water resistance of a high-strength GB based on synthetic calcium sulphate dihydrate, which made it possible to increase the water-resistance coefficient from 0.39 to 0.82.
{"title":"High-strength gypsum binder with improved water-resistance coefficient derived from industrial wastes.","authors":"Maksim Kamarou, Dmitry Moskovskikh, Kirill Kuskov, Sergey Yudin, Abayomi Adewale Akinwande, Andrey Smorokov, Yasin Onuralp Özkılıç, Mohanad Yaseen Abdulwahid, Abhijit Bhowmik, Elena Romanovskaia, Natalia Korob, Andrei Paspelau, Valentin Romanovski","doi":"10.1177/0734242X241240042","DOIUrl":"10.1177/0734242X241240042","url":null,"abstract":"<p><p>The article presents the possibility of increasing the water resistance of gypsum binders (GBs) obtained based on synthetic gypsum by introducing additives derived from industrial wastes. Regularities were obtained for the influence of the type and amount of additives on the water/gypsum ratio (W/G), strength indicators and water resistance of high-strength GB. The introduction of a single-component additive to improve water resistance does not have a significant effect. Complex additives based on Portland cement, granulated blast-furnace slag, electric steel-smelting slag, expanded clay dust and granite screenings of various fractions have been developed that make the maximum contribution to improving the water resistance of a high-strength GB based on synthetic calcium sulphate dihydrate, which made it possible to increase the water-resistance coefficient from 0.39 to 0.82.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"213-224"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140185670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Landfills are the destination of most of the refuse generated whereas composting, material recycling, and Waste-to-Energy (WtE) technologies are not commonly employed in developing countries. However, the destination for energy purposes could be supplied with this refuse, improving the viability of energy use. Thus, this article raises some questions to identify aspects that could encourage its use as refuse-derived fuel (RDF) in these countries. Among them, does environmental education affect the municipal solid waste (MSW) source separation with emphasis on a destination? Can selective collection and extended producer responsibility (EPR) affect the MSW for energy recovery? Is there competition between the recycling market and the energy market for RDF? A systematic review of the literature was conducted to gather data and provide answers to such questions. This enabled to observe that EPR, selective collect expansion and source separation influence the quantity and quality of waste sent for energy use. Both internal and external factors impact on source separation. Additionally, there is evidence to support that despite several studies showing their technical, economic, environmental and social viability, the methods of energy usage of the refuse still need to improve their deployment in developing countries. In addition to identifying the main research gaps to be filled in future studies, the article also identified the instruments of MSW management that are to be applied in developing countries to divert recyclable and organic waste from landfill.
{"title":"Municipal solid waste management instruments that influence the use of the refuse as fuel in developing countries: A critical review.","authors":"Tânia Galavote, Gisele de Lorena Diniz Chaves, Luciana Harue Yamane, Renato Ribeiro Siman","doi":"10.1177/0734242X241231402","DOIUrl":"10.1177/0734242X241231402","url":null,"abstract":"<p><p>Landfills are the destination of most of the refuse generated whereas composting, material recycling, and Waste-to-Energy (WtE) technologies are not commonly employed in developing countries. However, the destination for energy purposes could be supplied with this refuse, improving the viability of energy use. Thus, this article raises some questions to identify aspects that could encourage its use as refuse-derived fuel (RDF) in these countries. Among them, does environmental education affect the municipal solid waste (MSW) source separation with emphasis on a destination? Can selective collection and extended producer responsibility (EPR) affect the MSW for energy recovery? Is there competition between the recycling market and the energy market for RDF? A systematic review of the literature was conducted to gather data and provide answers to such questions. This enabled to observe that EPR, selective collect expansion and source separation influence the quantity and quality of waste sent for energy use. Both internal and external factors impact on source separation. Additionally, there is evidence to support that despite several studies showing their technical, economic, environmental and social viability, the methods of energy usage of the refuse still need to improve their deployment in developing countries. In addition to identifying the main research gaps to be filled in future studies, the article also identified the instruments of MSW management that are to be applied in developing countries to divert recyclable and organic waste from landfill.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"160-180"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139933079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-03-19DOI: 10.1177/0734242X241240041
María Del Mar Fernandez-Alvarez, Marcelino Cuesta, Judit Cachero-Rodriguez, Benjamin Gardner, Alberto Lana, Ruben Martin-Payo
The growing tendency towards 'urbanization' is promoting an increase in resource consumption and waste generation, which requires proper waste separation management with active participation of the population. To this end, it is essential to know the personal modifiable factors that predict recycling. The primary aim of the present study is to develop and evaluate the psychometric properties of a Spanish language questionnaire designed to measure determinants of household waste separation for recycling purposes (ReDom Questionnaire). A cross-cultural adaptation, translation and psychometric evaluation was undertaken of an extant questionnaire originally developed in Swedish, and the resultant Spanish questionnaire was then subjected to reliability and validity testing. The questionnaire was developed using survey data from 759 respondents and 33 participants performed the retest to assess reliability. The resultant 'ReDom Questionnaire' is composed of three factors that draw on relevant elements of the COM-B framework: motivation (seven items), physical opportunity (three items) and social opportunity (three items). The accuracy of the scores is adequate both in terms of internal consistency (factorial weights >0.60; comparative fit index = 0.994; root mean square error of approximation = 0.049; root mean square residual (RMSR) = 0.053) and reliability (Pearson correlation >0.65; Cronbach's alpha >0.75). In conclusion, the Spanish ReDom Questionnaire showed adequate psychometric properties and appears useful for assessing the determinants of household waste separation.
{"title":"Development and validation of a questionnaire for assessing the determinants that predict household recycling (ReDom Questionnaire).","authors":"María Del Mar Fernandez-Alvarez, Marcelino Cuesta, Judit Cachero-Rodriguez, Benjamin Gardner, Alberto Lana, Ruben Martin-Payo","doi":"10.1177/0734242X241240041","DOIUrl":"10.1177/0734242X241240041","url":null,"abstract":"<p><p>The growing tendency towards 'urbanization' is promoting an increase in resource consumption and waste generation, which requires proper waste separation management with active participation of the population. To this end, it is essential to know the personal modifiable factors that predict recycling. The primary aim of the present study is to develop and evaluate the psychometric properties of a Spanish language questionnaire designed to measure determinants of household waste separation for recycling purposes (ReDom Questionnaire). A cross-cultural adaptation, translation and psychometric evaluation was undertaken of an extant questionnaire originally developed in Swedish, and the resultant Spanish questionnaire was then subjected to reliability and validity testing. The questionnaire was developed using survey data from 759 respondents and 33 participants performed the retest to assess reliability. The resultant 'ReDom Questionnaire' is composed of three factors that draw on relevant elements of the COM-B framework: motivation (seven items), physical opportunity (three items) and social opportunity (three items). The accuracy of the scores is adequate both in terms of internal consistency (factorial weights >0.60; comparative fit index = 0.994; root mean square error of approximation = 0.049; root mean square residual (RMSR) = 0.053) and reliability (Pearson correlation >0.65; Cronbach's alpha >0.75). In conclusion, the Spanish ReDom Questionnaire showed adequate psychometric properties and appears useful for assessing the determinants of household waste separation.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"225-231"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-02-26DOI: 10.1177/0734242X241231414
Laurie Fontaine, Robert Legros, Jean-Marc Frayret
This article proposes a framework for developing predictive models of end-of-life product flows, highlighting the importance of conducting thorough analyses before developing waste management and end-of-life product flow strategies. The framework emphasizes the importance of recognizing the nature and quality of the available data and finding a balance between model development time and detail requirements. It is designed to adapt to source material heterogeneity and address varying data availability scenarios, such as the presence or absence of radio frequency identification chips. A case study for the city of Gatineau is presented, showcasing the framework's application through agent-based simulation models in a geographic information systems environment. The study focuses on creating models of municipal solid waste generation based on socioeconomic and demographic factors and collection data to accurately predict the quantity and quality of waste streams, enabling municipalities to assess the environmental impact of their waste management strategies.
{"title":"Solid waste generation prediction model framework using socioeconomic and demographic factors with real-time MSW collection data.","authors":"Laurie Fontaine, Robert Legros, Jean-Marc Frayret","doi":"10.1177/0734242X241231414","DOIUrl":"10.1177/0734242X241231414","url":null,"abstract":"<p><p>This article proposes a framework for developing predictive models of end-of-life product flows, highlighting the importance of conducting thorough analyses before developing waste management and end-of-life product flow strategies. The framework emphasizes the importance of recognizing the nature and quality of the available data and finding a balance between model development time and detail requirements. It is designed to adapt to source material heterogeneity and address varying data availability scenarios, such as the presence or absence of radio frequency identification chips. A case study for the city of Gatineau is presented, showcasing the framework's application through agent-based simulation models in a geographic information systems environment. The study focuses on creating models of municipal solid waste generation based on socioeconomic and demographic factors and collection data to accurately predict the quantity and quality of waste streams, enabling municipalities to assess the environmental impact of their waste management strategies.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"267-281"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786527/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139973705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-04-02DOI: 10.1177/0734242X241241602
Yanlei Li, Yiheng Tuo, Debao Zhang, Xiaoman Lu, Huili Han, Lindong Liu
The development of the solar market has been fast in the past decades, and the number of photovoltaic module installations is large. The photovoltaic modules have a lifetime of about 25 years and need recovery after that. The aluminium-back surface field (Al-BSF) module is the first kind of large-scale installed module and will come to its end of life in the next few years. The recycling of silicon material in the Al-BSF module is investigated in this work. The components of the module are separated, and the silicon material in the module is collected and then purified by (aluminium-silicon) Al-Si solvent refining for reuse. It is found that Al-Si solvent refining removed key impurity elements, namely boron and phosphorus, in the collected silicon. Kinetics has a great effect on boron and phosphorus removal, and boron and phosphorus contents in purified silicon decrease with decreasing cooling rate. The boron and phosphorus contents in silicon are lowered to 0.28 and 0.03 ppmw, respectively, after two times of Al-Si solvent refining with the cooling rate of 5.55 * 10-4 K second-1, and it meets the requirement of solar-grade silicon.
{"title":"Recycling solar-grade silicon from end-of-life photovoltaic modules by Al-Si solvent refining.","authors":"Yanlei Li, Yiheng Tuo, Debao Zhang, Xiaoman Lu, Huili Han, Lindong Liu","doi":"10.1177/0734242X241241602","DOIUrl":"10.1177/0734242X241241602","url":null,"abstract":"<p><p>The development of the solar market has been fast in the past decades, and the number of photovoltaic module installations is large. The photovoltaic modules have a lifetime of about 25 years and need recovery after that. The aluminium-back surface field (Al-BSF) module is the first kind of large-scale installed module and will come to its end of life in the next few years. The recycling of silicon material in the Al-BSF module is investigated in this work. The components of the module are separated, and the silicon material in the module is collected and then purified by (aluminium-silicon) Al-Si solvent refining for reuse. It is found that Al-Si solvent refining removed key impurity elements, namely boron and phosphorus, in the collected silicon. Kinetics has a great effect on boron and phosphorus removal, and boron and phosphorus contents in purified silicon decrease with decreasing cooling rate. The boron and phosphorus contents in silicon are lowered to 0.28 and 0.03 ppmw, respectively, after two times of Al-Si solvent refining with the cooling rate of 5.55 * 10<sup>-4</sup> K second<sup>-1</sup>, and it meets the requirement of solar-grade silicon.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"207-212"},"PeriodicalIF":3.7,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140337009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-18DOI: 10.1177/0734242X241310658
Xiaoli Jiang, Buhe Bateer
In this systematic review, advancements in plastic recycling technologies, including mechanical, thermolysis, chemical and biological methods, are examined. Comparisons among recycling technologies have identified current research trends, including a focus on pretreatment technologies for waste materials and the development of new organic chemistry or biological techniques that enable recycling with minimal energy consumption. Existing environmental and economic studies are also compared. The findings highlight differences in the environmental characteristics of various recycling methods, including their ability to recover plastic resins, carbon footprint, electricity consumption and gas emissions. The comparisons also reveal the challenges associated with these methods: mechanical recycling often encounters economic barriers due to contamination and inefficiencies in sorting and cleaning processes; thermolysis is constrained by high energy demands and operational costs, whereas chemical and biological recycling faces limitations related to scalability and material costs. Additionally, current challenges, emerging research areas and future directions in plastic recycling are discussed. For example, the role of innovative techniques, such as artificial intelligence, in refining recycling processes is emphasized. The importance of incorporating circular economy principles in the integrated sustainable analysis of recycling processes is also highlighted. The innovative contribution of this review is to address both technological developments and their environmental and economic implications. The focus is placed on literature from the past 10 years to ensure coverage of the most recent advancements. Overall, the insights of this review article aim to guide researchers, policymakers and industry stakeholders in improving sustainable management practices for plastic waste.
{"title":"A systematic review of plastic recycling: technology, environmental impact and economic evaluation.","authors":"Xiaoli Jiang, Buhe Bateer","doi":"10.1177/0734242X241310658","DOIUrl":"https://doi.org/10.1177/0734242X241310658","url":null,"abstract":"<p><p>In this systematic review, advancements in plastic recycling technologies, including mechanical, thermolysis, chemical and biological methods, are examined. Comparisons among recycling technologies have identified current research trends, including a focus on pretreatment technologies for waste materials and the development of new organic chemistry or biological techniques that enable recycling with minimal energy consumption. Existing environmental and economic studies are also compared. The findings highlight differences in the environmental characteristics of various recycling methods, including their ability to recover plastic resins, carbon footprint, electricity consumption and gas emissions. The comparisons also reveal the challenges associated with these methods: mechanical recycling often encounters economic barriers due to contamination and inefficiencies in sorting and cleaning processes; thermolysis is constrained by high energy demands and operational costs, whereas chemical and biological recycling faces limitations related to scalability and material costs. Additionally, current challenges, emerging research areas and future directions in plastic recycling are discussed. For example, the role of innovative techniques, such as artificial intelligence, in refining recycling processes is emphasized. The importance of incorporating circular economy principles in the integrated sustainable analysis of recycling processes is also highlighted. The innovative contribution of this review is to address both technological developments and their environmental and economic implications. The focus is placed on literature from the past 10 years to ensure coverage of the most recent advancements. Overall, the insights of this review article aim to guide researchers, policymakers and industry stakeholders in improving sustainable management practices for plastic waste.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"734242X241310658"},"PeriodicalIF":3.7,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plastics are integral to modern life but present significant environmental and economic challenges due to ineffective waste management systems. This article provides a comprehensive review of global plastic waste management (PWM) strategies, focusing on advancements in processing technologies, policy frameworks and their practical applications. It highlights the role of the World Intellectual Property Organization (WIPO) and regulatory bodies across the United States, Canada, Europe, Britain, India, Japan, Australia and China in fostering sustainable PWM practices. The study evaluates key processing techniques, including pyrolysis, gasification, supercritical water conversion, plasma-assisted processes, mechanical reprocessing and landfilling, emphasizing their technological advancements, limitations and scalability. Supercritical water conversion (operating at >374°C and 22.1 MPa) and plasma-assisted processing (using ionized gas at >3000°C) are identified as advanced methods capable of converting plastics into simpler molecules or valuable by-products. However, these technologies face challenges such as high energy requirements, operational costs and limited scalability. Persistent issues, including microplastic pollution, environmental impacts and the chemical-intensive nature of certain processes, are critically analysed. Drawing on extensive reviews of patents, case studies and real-world implementations, the study also examines the reuse potential of plastic by-products in diverse industries and evaluates state-level PWM initiatives in India. This review provides actionable insights for policymakers, researchers and industry stakeholders, highlighting critical gaps and opportunities to enhance the sustainability and scalability of PWM systems. By addressing persistent challenges, it contributes to advancing a circular economy for plastics and sustainable waste management practices globally.
{"title":"A comprehensive review of recycling and reusing methods for plastic waste focusing Indian scenario.","authors":"Kishor Kalauni, Ajitanshu Vedrtnam, Sahendra P Sharma, Abhishek Sharma, Shashikant Chaturvedi","doi":"10.1177/0734242X241308499","DOIUrl":"https://doi.org/10.1177/0734242X241308499","url":null,"abstract":"<p><p>Plastics are integral to modern life but present significant environmental and economic challenges due to ineffective waste management systems. This article provides a comprehensive review of global plastic waste management (PWM) strategies, focusing on advancements in processing technologies, policy frameworks and their practical applications. It highlights the role of the World Intellectual Property Organization (WIPO) and regulatory bodies across the United States, Canada, Europe, Britain, India, Japan, Australia and China in fostering sustainable PWM practices. The study evaluates key processing techniques, including pyrolysis, gasification, supercritical water conversion, plasma-assisted processes, mechanical reprocessing and landfilling, emphasizing their technological advancements, limitations and scalability. Supercritical water conversion (operating at >374°C and 22.1 MPa) and plasma-assisted processing (using ionized gas at >3000°C) are identified as advanced methods capable of converting plastics into simpler molecules or valuable by-products. However, these technologies face challenges such as high energy requirements, operational costs and limited scalability. Persistent issues, including microplastic pollution, environmental impacts and the chemical-intensive nature of certain processes, are critically analysed. Drawing on extensive reviews of patents, case studies and real-world implementations, the study also examines the reuse potential of plastic by-products in diverse industries and evaluates state-level PWM initiatives in India. This review provides actionable insights for policymakers, researchers and industry stakeholders, highlighting critical gaps and opportunities to enhance the sustainability and scalability of PWM systems. By addressing persistent challenges, it contributes to advancing a circular economy for plastics and sustainable waste management practices globally.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"734242X241308499"},"PeriodicalIF":3.7,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142955905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-02-21DOI: 10.1177/0734242X241227370
Valdir M Pereira, Raphael Baldusco, Patricia B Silva, Valdecir A Quarcioni, Rosângela S Motta, Seiiti Suzuki, Sergio C Angulo
Construction and demolition waste (CDW) worldwide generation accounts 10 billion tonnes yearly. The major fraction is landfilled requiring innovative recycling methods to reduce the associated environmental impacts and to increase its circularity. Our study demonstrated the feasibility of using different CDW fines to develop recycled cements and optimized the content of CDW recycled cements with well-graded crushed stone (WGCS) for use as pavement base layer. We scaled up the study obtaining CDW cement and aggregates from a local recycling plant, as well as pilot pavement sections designed, constructed and field deflections measured. As results, the CDW cement pastes exhibited accumulated heat values of up to 111 J g-1 and achieved a compressive strength of approximately 16 MPa. The unconfined compressive strength and resilient modulus (RM) achieved using CDW cement and WGCS were 2-3 and >3000 MPa, respectively. The sections constructed using CDW cement exhibited intermediate behaviour compared to those obtained using reference materials (6% Portland cement-WGCS and a conventional granular base made using WGCS). The deflection decreased over time owing to the pozzolanic reaction.
{"title":"Thermoactivated cement from construction and demolition waste for pavement base stabilization: A case study in Brazil.","authors":"Valdir M Pereira, Raphael Baldusco, Patricia B Silva, Valdecir A Quarcioni, Rosângela S Motta, Seiiti Suzuki, Sergio C Angulo","doi":"10.1177/0734242X241227370","DOIUrl":"10.1177/0734242X241227370","url":null,"abstract":"<p><p>Construction and demolition waste (CDW) worldwide generation accounts 10 billion tonnes yearly. The major fraction is landfilled requiring innovative recycling methods to reduce the associated environmental impacts and to increase its circularity. Our study demonstrated the feasibility of using different CDW fines to develop recycled cements and optimized the content of CDW recycled cements with well-graded crushed stone (WGCS) for use as pavement base layer. We scaled up the study obtaining CDW cement and aggregates from a local recycling plant, as well as pilot pavement sections designed, constructed and field deflections measured. As results, the CDW cement pastes exhibited accumulated heat values of up to 111 J g<sup>-1</sup> and achieved a compressive strength of approximately 16 MPa. The unconfined compressive strength and resilient modulus (RM) achieved using CDW cement and WGCS were 2-3 and >3000 MPa, respectively. The sections constructed using CDW cement exhibited intermediate behaviour compared to those obtained using reference materials (6% Portland cement-WGCS and a conventional granular base made using WGCS). The deflection decreased over time owing to the pozzolanic reaction.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"121-132"},"PeriodicalIF":3.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11689967/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139913580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-01-29DOI: 10.1177/0734242X241227376
Paul H Brunner, Leo S Morf
This mini-review aims at proving that waste-to-energy (WtE) is an essential cornerstone for circular economy (CE). Based on literature, the history of thermal waste treatment over the last 150 years is investigated, from open burning to WtE with resource recovery and final sink function. The results show that in the past incineration solved the issues it was designed for but often created new and sometimes even worse problems: The introduction of incineration in the 19th century improved urban sanitation, decreased waste volume and prolonged operational life of landfills. But it also polluted the environment, triggering an unprecedented scientific and engineering effort of all stakeholders. Today, WtE is one of the best investigated and optimized technologies in waste management. It enables the recovery of energy as heat and electric power and facilitates the 'cleaning' of cycles by the destruction of hazardous organic substances. Recent developments in resource recovery from WtE residues allow to recycle metals and, in the case of sewage sludge, even phosphorus by thermal recycling. Combined with carbon capture and storage technology, WtE stands for a quantifiable contribution to greenhouse gas reduction. Today, WtE is indispensable to reach the goals of CE, namely recycling of energy and materials, supplying safe final sinks for persistent organic substances and minimizing the need for sinks for hazardous inorganic substances.
{"title":"Waste to energy, indispensable cornerstone for circular economy: A mini-review.","authors":"Paul H Brunner, Leo S Morf","doi":"10.1177/0734242X241227376","DOIUrl":"10.1177/0734242X241227376","url":null,"abstract":"<p><p>This mini-review aims at proving that waste-to-energy (WtE) is an essential cornerstone for circular economy (CE). Based on literature, the history of thermal waste treatment over the last 150 years is investigated, from open burning to WtE with resource recovery and final sink function. The results show that in the past incineration solved the issues it was designed for but often created new and sometimes even worse problems: The introduction of incineration in the 19th century improved urban sanitation, decreased waste volume and prolonged operational life of landfills. But it also polluted the environment, triggering an unprecedented scientific and engineering effort of all stakeholders. Today, WtE is one of the best investigated and optimized technologies in waste management. It enables the recovery of energy as heat and electric power and facilitates the 'cleaning' of cycles by the destruction of hazardous organic substances. Recent developments in resource recovery from WtE residues allow to recycle metals and, in the case of sewage sludge, even phosphorus by thermal recycling. Combined with carbon capture and storage technology, WtE stands for a quantifiable contribution to greenhouse gas reduction. Today, WtE is indispensable to reach the goals of CE, namely recycling of energy and materials, supplying safe final sinks for persistent organic substances and minimizing the need for sinks for hazardous inorganic substances.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"26-38"},"PeriodicalIF":3.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11690026/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139571470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}