Pub Date : 2024-09-01Epub Date: 2024-06-20DOI: 10.1177/0734242X241257084
Markus Firsching, Moritz Ottenweller, Johannes Leisner, Steffen Rüger
The growing amount of electronic waste is a global challenge: on one hand, it poses a threat to the environment as it may contain toxic or hazardous substances, on the other hand it is a valuable 'urban mine' containing metals like gold and copper. Thus, recycling of electronic waste is not only a measure to reduce environmental pollution but also economically reasonable as prices for raw materials are rising. Within electronic waste, printed circuit boards (PCBs) occupy a prominent position, as they contain most of the valuable material. One important step in the overall recycling process is the evaluation and the value estimation for further treatment of the waste PCBs (WPCBs). In this article, we introduce a method for value estimation of entire WPCBs based on component detection. The value of the WPCB is then predicted by the value of the detected components. This approach allows a flexible application to different situations. In the first step, we created a dataset and labelled the components of 104 WPCBs using different component classes. The component detection is performed on dual energy X-ray images by the deep neural object detection network 'YOLO v5'. The dataset is split into a training, validation and test subset and standard performance measures as precision, recall and F1-score of the component detection are evaluated. Representative samples from all component classes were selected and analysed for the valuable materials to provide the ground truth of the value estimation in the subsequent step.
日益增多的电子垃圾是一项全球性挑战:一方面,电子垃圾可能含有有毒或有害物质,对环境构成威胁;另一方面,电子垃圾又是一座宝贵的 "城市矿山",含有金、铜等金属。因此,回收电子垃圾不仅是减少环境污染的措施,而且在原材料价格不断上涨的情况下也具有经济合理性。在电子废弃物中,印刷电路板(PCB)占有重要地位,因为它们含有大部分有价值的材料。整个回收过程中的一个重要步骤是对废弃印刷电路板(WPCB)进行评估和价值估算,以便进一步处理。在本文中,我们将介绍一种基于元件检测的方法,用于估算整个 WPCB 的价值。然后根据检测到的组件的价值来预测 WPCB 的价值。这种方法可灵活应用于不同情况。第一步,我们创建了一个数据集,并使用不同的组件类别对 104 个 WPCB 的组件进行了标注。组件检测由深度神经物体检测网络 "YOLO v5 "在双能量 X 射线图像上进行。数据集分为训练子集、验证子集和测试子集,并对元件检测的精确度、召回率和 F1 分数等标准性能指标进行评估。从所有组件类别中选取有代表性的样本,对其进行有价值的材料分析,为后续步骤中的价值估算提供基本事实。
{"title":"X-ray transmission imaging of waste printed circuit boards for value estimation in recycling using machine learning.","authors":"Markus Firsching, Moritz Ottenweller, Johannes Leisner, Steffen Rüger","doi":"10.1177/0734242X241257084","DOIUrl":"10.1177/0734242X241257084","url":null,"abstract":"<p><p>The growing amount of electronic waste is a global challenge: on one hand, it poses a threat to the environment as it may contain toxic or hazardous substances, on the other hand it is a valuable 'urban mine' containing metals like gold and copper. Thus, recycling of electronic waste is not only a measure to reduce environmental pollution but also economically reasonable as prices for raw materials are rising. Within electronic waste, printed circuit boards (PCBs) occupy a prominent position, as they contain most of the valuable material. One important step in the overall recycling process is the evaluation and the value estimation for further treatment of the waste PCBs (WPCBs). In this article, we introduce a method for value estimation of entire WPCBs based on component detection. The value of the WPCB is then predicted by the value of the detected components. This approach allows a flexible application to different situations. In the first step, we created a dataset and labelled the components of 104 WPCBs using different component classes. The component detection is performed on dual energy X-ray images by the deep neural object detection network 'YOLO v5'. The dataset is split into a training, validation and test subset and standard performance measures as precision, recall and F<sub>1</sub>-score of the component detection are evaluated. Representative samples from all component classes were selected and analysed for the valuable materials to provide the ground truth of the value estimation in the subsequent step.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"759-766"},"PeriodicalIF":3.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-02-22DOI: 10.1177/0734242X241231410
Felix Kronenwett, Georg Maier, Norbert Leiss, Robin Gruna, Volker Thome, Thomas Längle
Sensor-based monitoring of construction and demolition waste (CDW) streams plays an important role in recycling (RC). Extracted knowledge about the composition of a material stream helps identifying RC paths, optimizing processing plants and form the basis for sorting. To enable economical use, it is necessary to ensure robust detection of individual objects even with high material throughput. Conventional algorithms struggle with resulting high occupancy densities and object overlap, making deep learning object detection methods more promising. In this study, different deep learning architectures for object detection (Region-based CNN/Region-based Convolutional Neural Network (Faster R-CNN), You only look once (YOLOv3), Single Shot MultiBox Detector (SSD)) are investigated with respect to their suitability for CDW characterization. A mixture of brick and sand-lime brick is considered as an exemplary waste stream. Particular attention is paid to detection performance with increasing occupancy density and particle overlap. A method for the generation of synthetic training images is presented, which avoids time-consuming manual labelling. By testing the models trained on synthetic data on real images, the success of the method is demonstrated. Requirements for synthetic training data composition, potential improvements and simplifications of different architecture approaches are discussed based on the characteristic of the detection task. In addition, the required inference time of the presented models is investigated to ensure their suitability for use under real-time conditions.
{"title":"Sensor-based characterization of construction and demolition waste at high occupancy densities using synthetic training data and deep learning.","authors":"Felix Kronenwett, Georg Maier, Norbert Leiss, Robin Gruna, Volker Thome, Thomas Längle","doi":"10.1177/0734242X241231410","DOIUrl":"10.1177/0734242X241231410","url":null,"abstract":"<p><p>Sensor-based monitoring of construction and demolition waste (CDW) streams plays an important role in recycling (RC). Extracted knowledge about the composition of a material stream helps identifying RC paths, optimizing processing plants and form the basis for sorting. To enable economical use, it is necessary to ensure robust detection of individual objects even with high material throughput. Conventional algorithms struggle with resulting high occupancy densities and object overlap, making deep learning object detection methods more promising. In this study, different deep learning architectures for object detection (Region-based CNN/Region-based Convolutional Neural Network (Faster R-CNN), You only look once (YOLOv3), Single Shot MultiBox Detector (SSD)) are investigated with respect to their suitability for CDW characterization. A mixture of brick and sand-lime brick is considered as an exemplary waste stream. Particular attention is paid to detection performance with increasing occupancy density and particle overlap. A method for the generation of synthetic training images is presented, which avoids time-consuming manual labelling. By testing the models trained on synthetic data on real images, the success of the method is demonstrated. Requirements for synthetic training data composition, potential improvements and simplifications of different architecture approaches are discussed based on the characteristic of the detection task. In addition, the required inference time of the presented models is investigated to ensure their suitability for use under real-time conditions.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"788-796"},"PeriodicalIF":3.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367798/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139933124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-05-09DOI: 10.1177/0734242X241251398
Daniel Vollprecht, Theresa Sattler, Julia Kern, Iris Berrer, Roland Pomberger
Thermal soil treatment is a well-established remediation method to remove organic contaminants from soils in waste management. The co-contamination with heavy metals raises the question if thermal soil treatment affects heavy metal mobility in soils. In this study, four contaminated soils and a reference sample were subjected to thermal treatment at 105°C, 300°C and 500°C for 7 day. Thermogravimetry and differential scanning calorimetry were used to understand the reactions, and resulting gases were identified by Fourier-transformed infrared spectroscopy. Treated and untreated samples were characterised by X-ray diffraction (XRD) and electron microprobe analysis and subjected to pH-dependent leaching tests, untreated samples additionally by X-ray-fluorescence (XRF) and inductively coupled plasma mass spectroscopy (ICP-MS). Leachates were analysed using ICP-MS and ion chromatography. Maximum available concentrations were used for hydrogeochemical modelling using LeachXS/Orchestra to predict leaching control mechanisms. Leaching experiments show that thermal treatment tends to decrease the mobility at alkaline pH of Pb, Zn, Cd, As and Cu, but to increase the mobility of Cr. In the acidic to neutral pH range, no clear trend is visible. Hydrogeochemical modelling suggests that adsorption processes play a key role in controlling leaching. It is suggested that the formation of minerals with a more negatively charged surface during thermal treatment are one reason why cations such as Pb2+, Zn2+, Cd2+ and Cu2+ are less mobile after treatment. Future research should focus on a more comprehensive mineralogical investigation of a larger number of samples, using higher resolution techniques such as nanoscale secondary ion mass spectrometry to identify surface phases formed during thermal treatment and/or leaching.
{"title":"Impact of thermal soil treatment on heavy metal mobility in the context of waste management.","authors":"Daniel Vollprecht, Theresa Sattler, Julia Kern, Iris Berrer, Roland Pomberger","doi":"10.1177/0734242X241251398","DOIUrl":"10.1177/0734242X241251398","url":null,"abstract":"<p><p>Thermal soil treatment is a well-established remediation method to remove organic contaminants from soils in waste management. The co-contamination with heavy metals raises the question if thermal soil treatment affects heavy metal mobility in soils. In this study, four contaminated soils and a reference sample were subjected to thermal treatment at 105°C, 300°C and 500°C for 7 day. Thermogravimetry and differential scanning calorimetry were used to understand the reactions, and resulting gases were identified by Fourier-transformed infrared spectroscopy. Treated and untreated samples were characterised by X-ray diffraction (XRD) and electron microprobe analysis and subjected to pH-dependent leaching tests, untreated samples additionally by X-ray-fluorescence (XRF) and inductively coupled plasma mass spectroscopy (ICP-MS). Leachates were analysed using ICP-MS and ion chromatography. Maximum available concentrations were used for hydrogeochemical modelling using LeachXS/Orchestra to predict leaching control mechanisms. Leaching experiments show that thermal treatment tends to decrease the mobility at alkaline pH of Pb, Zn, Cd, As and Cu, but to increase the mobility of Cr. In the acidic to neutral pH range, no clear trend is visible. Hydrogeochemical modelling suggests that adsorption processes play a key role in controlling leaching. It is suggested that the formation of minerals with a more negatively charged surface during thermal treatment are one reason why cations such as Pb<sup>2+</sup>, Zn<sup>2+</sup>, Cd<sup>2+</sup> and Cu<sup>2+</sup> are less mobile after treatment. Future research should focus on a more comprehensive mineralogical investigation of a larger number of samples, using higher resolution techniques such as nanoscale secondary ion mass spectrometry to identify surface phases formed during thermal treatment and/or leaching.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"832-841"},"PeriodicalIF":3.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373148/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140898726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-03-06DOI: 10.1177/0734242X241231408
Namrata Mhaddolkar, Alexia Tischberger-Aldrian, Thomas Fruergaard Astrup, Daniel Vollprecht
Biodegradable plastics, either fossil- or biobased, are often promoted due to their biodegradability and acclaimed environmental friendliness. However, as demonstrated by previous literature, considerable confusion exists about the appropriate source separation and waste management of these plastics. Present study investigated this confusion based on manual sorting analyses of waste sampled from packaging waste (P), biowaste (B) and residual waste (R) in an urban area of Austria. The results were evaluated relative to near-infrared sensor-based sorting trials conducted in a German urban area. Although existing literature has focused on waste composition analyses (mostly in stand-alone studies) of the three waste streams, the present study focused on identifying the specific types of biodegradable plastic items found in each of these streams. Supermarket carrier bags (P = 90, B = 14, R = 33) and dustbin bags (P = 2, B = 46, R = 6) were found in all three waste streams in the Austrian urban area. Similarly, in the German urban area dustbin bags (P = 1, B = 106, R = 3) were the common items. The results indicate that certain bioplastic items were present in more than one bin; thus, hinting that consumers are not necessarily aware of how-to source-separate the biodegradable plastics. This suggests that neither consumers nor current waste management systems are fully 'adapted' to bioplastics, and the management of these plastics' waste is currently not optimal.
{"title":"Consumers confused 'Where to dispose biodegradable plastics?': A study of three waste streams.","authors":"Namrata Mhaddolkar, Alexia Tischberger-Aldrian, Thomas Fruergaard Astrup, Daniel Vollprecht","doi":"10.1177/0734242X241231408","DOIUrl":"10.1177/0734242X241231408","url":null,"abstract":"<p><p>Biodegradable plastics, either fossil- or biobased, are often promoted due to their biodegradability and acclaimed environmental friendliness. However, as demonstrated by previous literature, considerable confusion exists about the appropriate source separation and waste management of these plastics. Present study investigated this confusion based on manual sorting analyses of waste sampled from packaging waste (<i>P</i>), biowaste (<i>B</i>) and residual waste (<i>R</i>) in an urban area of Austria. The results were evaluated relative to near-infrared sensor-based sorting trials conducted in a German urban area. Although existing literature has focused on waste composition analyses (mostly in stand-alone studies) of the three waste streams, the present study focused on identifying the specific types of biodegradable plastic items found in each of these streams. Supermarket carrier bags (<i>P</i> = 90, <i>B</i> = 14, <i>R</i> = 33) and dustbin bags (<i>P</i> = 2, <i>B</i> = 46, <i>R</i> = 6) were found in all three waste streams in the Austrian urban area. Similarly, in the German urban area dustbin bags (<i>P</i> = 1, <i>B</i> = 106, <i>R</i> = 3) were the common items. The results indicate that certain bioplastic items were present in more than one bin; thus, hinting that consumers are not necessarily aware of how-to source-separate the biodegradable plastics. This suggests that neither consumers nor current waste management systems are fully 'adapted' to bioplastics, and the management of these plastics' waste is currently not optimal.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"776-787"},"PeriodicalIF":3.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140050412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01Epub Date: 2024-03-19DOI: 10.1177/0734242X241237195
József Faitli, Zainab Nassr Abdulfattah, Daniel Kioko, Sándor Nagy
The EU's circular economy concept necessitates increasing the recycling ratio of municipal solid wastes. There are many existing mechanical-biological processing plants in Hungary for the preparation of residual municipal solid wastes (RMSWs). The two most important products of these plants are the bio-fraction and the refuse derived fuel (RDF). Currently, there are problems with both of these material streams in Hungary, since most of the bio-fraction is still landfilled, and the local thermal utilisation of the RDF has not been implemented yet. The high moisture content of the produced bio-fraction and RDF causes difficulties for the downstream operations; therefore, there is recent engineering interest in drying and agglomeration of these materials. The authors have carried out systematic and parallel drying and briquetting experimental series to study the effect of the material, material composition, mass (volume or surface) of the material, particle size distribution and pre-treatment with a cutting mill on drying intensity in a 1 m3 oven and their effect on briquettability by a laboratory briquette press. The initial slope of the relative moisture loss as function of time was determined. Process engineering design methods of convective hot air-drying can be further developed taking into account the research results. Results can be used for the design of the feed of a pyrolysis reactor once reactor experiments have provided the optimal feed requirements.
{"title":"Fundamental drying and agglomeration experiments with bio-fraction and refuse derived fuel for the development of pyrolysis reactor feed.","authors":"József Faitli, Zainab Nassr Abdulfattah, Daniel Kioko, Sándor Nagy","doi":"10.1177/0734242X241237195","DOIUrl":"10.1177/0734242X241237195","url":null,"abstract":"<p><p>The EU's circular economy concept necessitates increasing the recycling ratio of municipal solid wastes. There are many existing mechanical-biological processing plants in Hungary for the preparation of residual municipal solid wastes (RMSWs). The two most important products of these plants are the bio-fraction and the refuse derived fuel (RDF). Currently, there are problems with both of these material streams in Hungary, since most of the bio-fraction is still landfilled, and the local thermal utilisation of the RDF has not been implemented yet. The high moisture content of the produced bio-fraction and RDF causes difficulties for the downstream operations; therefore, there is recent engineering interest in drying and agglomeration of these materials. The authors have carried out systematic and parallel drying and briquetting experimental series to study the effect of the material, material composition, mass (volume or surface) of the material, particle size distribution and pre-treatment with a cutting mill on drying intensity in a 1 m<sup>3</sup> oven and their effect on briquettability by a laboratory briquette press. The initial slope of the relative moisture loss as function of time was determined. Process engineering design methods of convective hot air-drying can be further developed taking into account the research results. Results can be used for the design of the feed of a pyrolysis reactor once reactor experiments have provided the optimal feed requirements.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"715-725"},"PeriodicalIF":3.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373162/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1177/0734242X241270938
Wameed Alghazali, Simran Kaur, Paul J Van Geel, Shawn Kenny
A 12-year field study on municipal solid waste (MSW) stabilization in Northern climates was conducted at Ste. Sophie landfill in Québec, Canada. Temperature and settlement data were collected from 12 instrument bundles placed at varying depths in two vertical columns within the waste during the filling and post-closure phases. The data demonstrated a 12-18 month delay in temperature rise during the filling stages due to frozen or partially frozen MSW and highlighted ambient temperature effects at shallow depths. A thermal-mechanical-biological (TMB) model was developed and calibrated to simulate the impact of temperatures on MSW stabilization, particularly emphasizing landfills without leachate recirculation in Northern climates. The biological model related anaerobic heat generation from MSW with temperature and expended energy from biodegradation. The resultant heat was integrated into the thermal model, allowing for the simulation of heat transfer through conduction. The thermal parameters were expressed as a function of density, which was updated in the mechanical model that combined a Generalized Kelvin-Voigt model with a biodegradation-induced strain term. This term was represented as the ratio of expended energy over time to total potential expended energy of the waste. The TMB model effectively predicted MSW behaviour, considering temperature rise delays in cold and sharp rises in warm conditions. This is essential for optimizing landfill operations by promoting waste stabilization before applying the final cover.
{"title":"A comprehensive study of temperature data during the filling and post-closure phases at a landfill in Québec, Canada: Application of a thermal-mechanical-biological model.","authors":"Wameed Alghazali, Simran Kaur, Paul J Van Geel, Shawn Kenny","doi":"10.1177/0734242X241270938","DOIUrl":"https://doi.org/10.1177/0734242X241270938","url":null,"abstract":"<p><p>A 12-year field study on municipal solid waste (MSW) stabilization in Northern climates was conducted at Ste. Sophie landfill in Québec, Canada. Temperature and settlement data were collected from 12 instrument bundles placed at varying depths in two vertical columns within the waste during the filling and post-closure phases. The data demonstrated a 12-18 month delay in temperature rise during the filling stages due to frozen or partially frozen MSW and highlighted ambient temperature effects at shallow depths. A thermal-mechanical-biological (TMB) model was developed and calibrated to simulate the impact of temperatures on MSW stabilization, particularly emphasizing landfills without leachate recirculation in Northern climates. The biological model related anaerobic heat generation from MSW with temperature and expended energy from biodegradation. The resultant heat was integrated into the thermal model, allowing for the simulation of heat transfer through conduction. The thermal parameters were expressed as a function of density, which was updated in the mechanical model that combined a Generalized Kelvin-Voigt model with a biodegradation-induced strain term. This term was represented as the ratio of expended energy over time to total potential expended energy of the waste. The TMB model effectively predicted MSW behaviour, considering temperature rise delays in cold and sharp rises in warm conditions. This is essential for optimizing landfill operations by promoting waste stabilization before applying the final cover.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"734242X241270938"},"PeriodicalIF":3.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study constitutes a comprehensive investigation centred on comprehending the behaviour and characteristics of recycled polyvinyl chloride (PVC) powders. The overarching objective is to successfully conclude the initial research phase, during which PVC-coated fabric offcuts undergo a transformation into PVC powder while achieving complete separation from polyethylene terephthalate fibres. The study entails a qualitative description of the morphology of PVC powder particles, employing an optical microscope to distinguish the diverse shapes exhibited by these particles. The optical microscope observations of PVC powder reveal a distinct array of non-spherical particles characterized by flat, elongated shapes. These high-magnification images unveil the intricate morphological features of the particles, highlighting their irregular shapes. Subsequently, a quantitative analysis of PVC particle size distribution is performed, comparing results from optical microscopy with those obtained through mechanical sieving. The qualitative and quantitative findings obtained provide robust evidence supporting the correlation and confirm that most particles are smaller than 600 µm (93.6%) using an optical microscope and the sieving process (96.39%). The greatest fraction (83.44%) is in the size range between 200 and 600 µm. Assessing flowability, another significant aspect in the evaluation of powders, provides insights into its behaviour and interparticle interactions. The flowability results indicate a Compressibility Index of approximately 26.84%, which suggests poor flowability. This means that the powder is likely to encounter difficulties in flowing freely. This finding is in line with the Hausner ratio, which measures 1.37. This investigation of recycled PVC powder will offer insights into the potential applications and processing considerations of this powder. More concretely, the use of recycled PVC powder shows promise as a viable alternative to conventional PVC resin in plastisol formulations, offering the potential to maintain the properties of the final PVC product without adverse effects.
{"title":"Comprehensive investigation of recycled PVC powder.","authors":"Walid Chaouch, Slah Msahli, Mejdi Jeguirim, Iliana Papamichael, Antonis A Zorpas","doi":"10.1177/0734242X241231395","DOIUrl":"10.1177/0734242X241231395","url":null,"abstract":"<p><p>This study constitutes a comprehensive investigation centred on comprehending the behaviour and characteristics of recycled polyvinyl chloride (PVC) powders. The overarching objective is to successfully conclude the initial research phase, during which PVC-coated fabric offcuts undergo a transformation into PVC powder while achieving complete separation from polyethylene terephthalate fibres. The study entails a qualitative description of the morphology of PVC powder particles, employing an optical microscope to distinguish the diverse shapes exhibited by these particles. The optical microscope observations of PVC powder reveal a distinct array of non-spherical particles characterized by flat, elongated shapes. These high-magnification images unveil the intricate morphological features of the particles, highlighting their irregular shapes. Subsequently, a quantitative analysis of PVC particle size distribution is performed, comparing results from optical microscopy with those obtained through mechanical sieving. The qualitative and quantitative findings obtained provide robust evidence supporting the correlation and confirm that most particles are smaller than 600 µm (93.6%) using an optical microscope and the sieving process (96.39%). The greatest fraction (83.44%) is in the size range between 200 and 600 µm. Assessing flowability, another significant aspect in the evaluation of powders, provides insights into its behaviour and interparticle interactions. The flowability results indicate a Compressibility Index of approximately 26.84%, which suggests poor flowability. This means that the powder is likely to encounter difficulties in flowing freely. This finding is in line with the Hausner ratio, which measures 1.37. This investigation of recycled PVC powder will offer insights into the potential applications and processing considerations of this powder. More concretely, the use of recycled PVC powder shows promise as a viable alternative to conventional PVC resin in plastisol formulations, offering the potential to maintain the properties of the final PVC product without adverse effects.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"618-633"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140319393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The European Union (EU) is moving towards sustainable development, and a key role is played by circular economy (CE) models geared towards reducing pressure on natural resources, generating jobs and fostering economic opportunities. Indicators are able to aggregate a variety of information and their use, through the use of multi-criteria decision analysis (MCDA), allows the performance of alternatives to be monitored. This work aims to calculate the performance of the EU27 in the years 2019 and 2020 according to 15 CE indicators available on Eurostat. The results of the Analytic Hierarchy process show that the greatest impact on circularity is determined by the category 'competitiveness and innovation', which together with the category 'global sustainability and resilience' accounts for two thirds of the overall weight. The MCDA results show that Belgium prevails in both the baseline and alternative scenarios, ahead of Italy and the Netherlands respectively. In general, circular policies see western European countries excel, while the performance of eastern European countries is weaker. The implications of this work highlight the three main barriers to the development of CE models: (i) illegal waste management; (ii) lack of knowledge and low level of investment in circular technologies and (iii) low distribution of value among stakeholders. In this way, resource management based on circularity will enable Europe to meet the challenges of sustainability with less dependence on imported raw materials.
{"title":"Towards circular economy indicators: Evidence from the European Union.","authors":"Idiano D'Adamo, Daniele Favari, Massimo Gastaldi, Julian Kirchherr","doi":"10.1177/0734242X241237171","DOIUrl":"10.1177/0734242X241237171","url":null,"abstract":"<p><p>The European Union (EU) is moving towards sustainable development, and a key role is played by circular economy (CE) models geared towards reducing pressure on natural resources, generating jobs and fostering economic opportunities. Indicators are able to aggregate a variety of information and their use, through the use of multi-criteria decision analysis (MCDA), allows the performance of alternatives to be monitored. This work aims to calculate the performance of the EU27 in the years 2019 and 2020 according to 15 CE indicators available on Eurostat. The results of the Analytic Hierarchy process show that the greatest impact on circularity is determined by the category 'competitiveness and innovation', which together with the category 'global sustainability and resilience' accounts for two thirds of the overall weight. The MCDA results show that Belgium prevails in both the baseline and alternative scenarios, ahead of Italy and the Netherlands respectively. In general, circular policies see western European countries excel, while the performance of eastern European countries is weaker. The implications of this work highlight the three main barriers to the development of CE models: (i) illegal waste management; (ii) lack of knowledge and low level of investment in circular technologies and (iii) low distribution of value among stakeholders. In this way, resource management based on circularity will enable Europe to meet the challenges of sustainability with less dependence on imported raw materials.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"670-680"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295419/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-03-22DOI: 10.1177/0734242X241234234
Vasiliki Liava, Evangelia E Golia
The extensive use of plastic materials and their improper disposal results in high amounts of plastic waste in the environment. Aging of plastics leads to their breakdown into smaller particles, such as microplastics (MPs) and nanoplastics. This research investigates plastics used in agricultural practices as they contribute to MP pollution in agricultural soils. The distribution and characteristics of MPs in agricultural soils were evaluated. In addition, the effect of MPs on soil properties, the relationship between MPs and metals in soil, the effect of MPs on the fate of pesticides in agricultural soils and the influence of MPs on plant growth were analysed, discussing legume, cereal and vegetable crops. Finally, a brief description of the main methods of chemical analysis and identification of MPs is presented. This study will contribute to a better understanding of MPs in agricultural soils and their effect on the soil-plant system. The changes induced by MPs in soil parameters can lead to potential benefits as it is possible to increase the availability of micronutrients and reduce plant uptake of toxic elements. Furthermore, although plastic pollution remains an emerging threat to soil ecosystems, their presence may result in benefits to agricultural soils, highlighting the principles of the circular economy.
{"title":"Effect of microplastics used in agronomic practices on agricultural soil properties and plant functions: Potential contribution to the circular economy of rural areas.","authors":"Vasiliki Liava, Evangelia E Golia","doi":"10.1177/0734242X241234234","DOIUrl":"10.1177/0734242X241234234","url":null,"abstract":"<p><p>The extensive use of plastic materials and their improper disposal results in high amounts of plastic waste in the environment. Aging of plastics leads to their breakdown into smaller particles, such as microplastics (MPs) and nanoplastics. This research investigates plastics used in agricultural practices as they contribute to MP pollution in agricultural soils. The distribution and characteristics of MPs in agricultural soils were evaluated. In addition, the effect of MPs on soil properties, the relationship between MPs and metals in soil, the effect of MPs on the fate of pesticides in agricultural soils and the influence of MPs on plant growth were analysed, discussing legume, cereal and vegetable crops. Finally, a brief description of the main methods of chemical analysis and identification of MPs is presented. This study will contribute to a better understanding of MPs in agricultural soils and their effect on the soil-plant system. The changes induced by MPs in soil parameters can lead to potential benefits as it is possible to increase the availability of micronutrients and reduce plant uptake of toxic elements. Furthermore, although plastic pollution remains an emerging threat to soil ecosystems, their presence may result in benefits to agricultural soils, highlighting the principles of the circular economy.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"634-650"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140194693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-02-17DOI: 10.1177/0734242X231223914
Rohit Goyat, Joginder Singh, Ahmad Umar, Yajvinder Saharan, Ahmed A Ibrahim, Sheikh Akbar, Sotirios Baskoutas
This study introduces an innovative approach for enhancing oil-water emulsion separation using a polyethersulfone (PES) membrane embedded with a nanocomposite of graphene oxide (GO) and silver oxide (AgO). The composite membrane, incorporating PES and polyvinyl chloride (PVC), demonstrates improved hydrophilicity, structural integrity and resistance to fouling. Physicochemical characterization confirms successful integration of GO and AgO, leading to increased tensile strength, porosity and hydrophilicity. Filtration tests reveal substantial improvements in separating various oils from contaminated wastewater, with the composite membrane exhibiting superior efficiency and reusability compared to pristine PES membranes. This research contributes to the development of environmentally friendly oil-water separation methods with broad industrial applications.
本研究介绍了一种利用嵌入氧化石墨烯(GO)和氧化银(AgO)纳米复合材料的聚醚砜(PES)膜提高油水乳液分离效果的创新方法。这种包含聚醚砜(PES)和聚氯乙烯(PVC)的复合膜具有更好的亲水性、结构完整性和抗污能力。理化特性分析证实,GO 和 AgO 的成功结合提高了拉伸强度、孔隙率和亲水性。过滤测试表明,复合膜在分离受污染废水中的各种油类方面有很大改进,与原始聚醚砜膜相比,复合膜具有更高的效率和可重复使用性。这项研究有助于开发具有广泛工业应用前景的环保型油水分离方法。
{"title":"Enhancing oil-water emulsion separation via synergistic filtration using graphene oxide-silver oxide nanocomposite-embedded polyethersulfone membrane.","authors":"Rohit Goyat, Joginder Singh, Ahmad Umar, Yajvinder Saharan, Ahmed A Ibrahim, Sheikh Akbar, Sotirios Baskoutas","doi":"10.1177/0734242X231223914","DOIUrl":"10.1177/0734242X231223914","url":null,"abstract":"<p><p>This study introduces an innovative approach for enhancing oil-water emulsion separation using a polyethersulfone (PES) membrane embedded with a nanocomposite of graphene oxide (GO) and silver oxide (AgO). The composite membrane, incorporating PES and polyvinyl chloride (PVC), demonstrates improved hydrophilicity, structural integrity and resistance to fouling. Physicochemical characterization confirms successful integration of GO and AgO, leading to increased tensile strength, porosity and hydrophilicity. Filtration tests reveal substantial improvements in separating various oils from contaminated wastewater, with the composite membrane exhibiting superior efficiency and reusability compared to pristine PES membranes. This research contributes to the development of environmentally friendly oil-water separation methods with broad industrial applications.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"595-607"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295397/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139747479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}