首页 > 最新文献

Wiley Interdisciplinary Reviews: Computational Molecular Science最新文献

英文 中文
Advancements in Large Language Models (LLMs): Empowering Drug Discovery 大型语言模型(LLMs)的进展:增强药物发现能力
IF 27 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-11-09 DOI: 10.1002/wcms.70054
Bosheng Song, Xiaowen Li, Xiuxiu Chao, Li Wang, Yiping Liu, Zhen Xia, Dongsheng Cao, Xiangzheng Fu

In recent years, the emergence of foundation models such as GPT and BERT has driven rapid advancements in large-scale artificial intelligence, with large language models (LLMs) becoming especially transformative. These models have shown tremendous potential in accelerating drug discovery and development, offering new tools to enhance human health and medicine. This paper provides a focused review of the application of LLMs in five key areas of drug discovery: disease-target prediction, lead compound design and optimization, drug-target interaction prediction, molecular property prediction, and drug–drug interaction prediction. Additionally, we examine the current limitations of LLMs in these domains and discuss potential strategies to address them. Finally, we summarize the progress to date and outline promising directions for future research and development in this rapidly evolving field.

This article is categorized under:

  • Data Science > Computer Algorithms and Programming
  • Data Science > Artificial Intelligence/Machine Learning
  • Molecular and Statistical Mechanics > Molecular Interactions
近年来,GPT和BERT等基础模型的出现推动了大规模人工智能的快速发展,其中大型语言模型(llm)尤其具有变革性。这些模型在加速药物发现和开发方面显示出巨大的潜力,为加强人类健康和医学提供了新工具。本文重点综述了llm在药物发现的五个关键领域的应用:疾病靶点预测、先导化合物设计与优化、药物-靶点相互作用预测、分子性质预测和药物-药物相互作用预测。此外,我们研究了法学硕士在这些领域的局限性,并讨论了解决这些问题的潜在策略。最后,我们总结了迄今为止的进展,并概述了在这个快速发展的领域未来研究和发展的有希望的方向。本文分类如下:数据科学;计算机算法与编程;数据科学;人工智能/机器学习;分子与统计力学;分子相互作用
{"title":"Advancements in Large Language Models (LLMs): Empowering Drug Discovery","authors":"Bosheng Song,&nbsp;Xiaowen Li,&nbsp;Xiuxiu Chao,&nbsp;Li Wang,&nbsp;Yiping Liu,&nbsp;Zhen Xia,&nbsp;Dongsheng Cao,&nbsp;Xiangzheng Fu","doi":"10.1002/wcms.70054","DOIUrl":"https://doi.org/10.1002/wcms.70054","url":null,"abstract":"<div>\u0000 \u0000 <p>In recent years, the emergence of foundation models such as GPT and BERT has driven rapid advancements in large-scale artificial intelligence, with large language models (LLMs) becoming especially transformative. These models have shown tremendous potential in accelerating drug discovery and development, offering new tools to enhance human health and medicine. This paper provides a focused review of the application of LLMs in five key areas of drug discovery: disease-target prediction, lead compound design and optimization, drug-target interaction prediction, molecular property prediction, and drug–drug interaction prediction. Additionally, we examine the current limitations of LLMs in these domains and discuss potential strategies to address them. Finally, we summarize the progress to date and outline promising directions for future research and development in this rapidly evolving field.</p>\u0000 <p>This article is categorized under:\u0000\u0000 </p><ul>\u0000 \u0000 <li>Data Science &gt; Computer Algorithms and Programming</li>\u0000 \u0000 <li>Data Science &gt; Artificial Intelligence/Machine Learning</li>\u0000 \u0000 <li>Molecular and Statistical Mechanics &gt; Molecular Interactions</li>\u0000 </ul>\u0000 </div>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 6","pages":""},"PeriodicalIF":27.0,"publicationDate":"2025-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145476429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “ByteQC: GPU-Accelerated Quantum Chemistry Package for Large-Scale Systems” 修正“ByteQC:大规模系统的gpu加速量子化学包”
IF 27 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-10-23 DOI: 10.1002/wcms.70052

Z. Guo, Z. Huang, Q. Chen, et al. “ByteQC: GPU-Accelerated Quantum Chemistry Package for Large-Scale Systems,” Wiley Interdisciplinary Reviews: Computational Molecular Science 15 (2025): e70034, https://doi.org/10.1002/wcms.70034

In the originally published article, the affiliations of the sixth and ninth authors were incorrectly listed, and one of the affiliations of the ninth author was missing from the affiliation list.

The correct affiliations of the authors are as follows:

Hung Q. Pham3

3ByteDance Seed, San Jose, California, USA

Ji Chen4,5,6

4School of Physics, Peking University, Beijing, China

5Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China

6Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing, China

We apologize for this error.

郭忠,黄忠,陈强,等。“ByteQC: GPU-Accelerated Quantum Chemistry Package for large - Systems,”Wiley Interdisciplinary Reviews: Computational Molecular Science 15 (2025): e70034, https://doi.org/10.1002/wcms.70034In原发表文章,第6和第9作者的所属单位被错误列出,第9作者的一个所属单位在所属单位列表中缺失。正确的作者单位是:Hung Q. Pham33ByteDance Seed, San Jose, California, usa; ji chen 4,5,64中国北京北京大学物理学院;中国北京大学光量子材料跨学科研究所与光先进材料研究中心;中国北京北京大学纳米光电子前沿科学中心;我们为这个错误道歉。
{"title":"Correction to “ByteQC: GPU-Accelerated Quantum Chemistry Package for Large-Scale Systems”","authors":"","doi":"10.1002/wcms.70052","DOIUrl":"https://doi.org/10.1002/wcms.70052","url":null,"abstract":"<p>Z. Guo, Z. Huang, Q. Chen, et al. “ByteQC: GPU-Accelerated Quantum Chemistry Package for Large-Scale Systems,” <i>Wiley Interdisciplinary Reviews: Computational Molecular Science</i> 15 (2025): e70034, https://doi.org/10.1002/wcms.70034</p><p>In the originally published article, the affiliations of the sixth and ninth authors were incorrectly listed, and one of the affiliations of the ninth author was missing from the affiliation list.</p><p>The correct affiliations of the authors are as follows:</p><p>Hung Q. Pham<sup>3</sup></p><p><sup>3</sup>ByteDance Seed, San Jose, California, USA</p><p>Ji Chen<sup>4,5,6</sup></p><p><sup>4</sup>School of Physics, Peking University, Beijing, China</p><p><sup>5</sup>Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China</p><p><sup>6</sup>Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing, China</p><p>We apologize for this error.</p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 5","pages":""},"PeriodicalIF":27.0,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://wires.onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.70052","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145366796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aptamers Meet Structural Bioinformatics, Computational Chemistry, and Artificial Intelligence 适体满足结构生物信息学,计算化学和人工智能
IF 27 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-10-16 DOI: 10.1002/wcms.70050
Gabriela da Rosa, Mauro de Castro, Víctor Miguel García Velásquez, Santiago Pintos, Jimena Benedetto, Leandro Grille, Sofia Valla, Luis Marat Alvarez Salas, Victoria Calzada, Pablo D. Dans

Aptamers—short single-stranded DNA or RNA—are the latest biomolecules to fall within reach of powerful structure-prediction pipelines that blend bioinformatics, computational chemistry, and artificial intelligence. These tools now enable high-throughput exploration of aptamer conformational landscapes, a prerequisite for rational design and optimization of their exceptional target affinity and specificity. Next-generation sequencing has democratized library analysis, allowing any laboratory to handle millions of variants. Hybrid workflows currently offer the most reliable secondary and tertiary structure models, and explicit treatment of conformational flexibility is proving indispensable for mapping binding-competent states. Yet every predictive tier—from classic free-energy minimization to deep learning—still underrepresents chemically modified nucleotides, the very substitutions that grant therapeutic aptamers nuclease resistance and pharmacokinetic longevity. Capturing the structural and dynamical consequences of these modifications remains the key unsolved problem. Progress, therefore, hinges on two fronts: richer parameterization and training data that encompass modified bases, and tighter coupling of in silico screens with biophysical and structural validation. Bridging these gaps will convert the current wave of computational advances into clinically relevant aptamer-based drugs ready to be delivered to the patients.

This article is categorized under:

  • Structure and Mechanism > Molecular Structures
  • Data Science > Computer Algorithms and Programming
  • Data Science > Artificial Intelligence/Machine Learning
适配体是一种短单链DNA或rna,是融合了生物信息学、计算化学和人工智能的强大结构预测管道所能及的最新生物分子。这些工具现在可以实现对适体构象景观的高通量探索,这是合理设计和优化其特殊目标亲和力和特异性的先决条件。下一代测序使文库分析大众化,允许任何实验室处理数以百万计的变异。混合工作流程目前提供了最可靠的二级和三级结构模型,并且对构象灵活性的明确处理对于映射绑定胜任状态是必不可少的。然而,每一个预测层——从经典的自由能最小化到深度学习——仍然不足以代表化学修饰的核苷酸,而正是这种替代赋予了治疗性适体核酸酶抗性和药代动力学寿命。捕获这些变化的结构和动态后果仍然是关键的未解决的问题。因此,进展取决于两个方面:更丰富的参数化和包含修改碱基的训练数据,以及硅屏幕与生物物理和结构验证的更紧密耦合。弥合这些差距将使当前的计算进步浪潮转化为临床相关的基于适配体的药物,准备交付给患者。本文分类如下:结构与机制;分子结构数据科学;计算机算法与编程;数据科学;人工智能/机器学习
{"title":"Aptamers Meet Structural Bioinformatics, Computational Chemistry, and Artificial Intelligence","authors":"Gabriela da Rosa,&nbsp;Mauro de Castro,&nbsp;Víctor Miguel García Velásquez,&nbsp;Santiago Pintos,&nbsp;Jimena Benedetto,&nbsp;Leandro Grille,&nbsp;Sofia Valla,&nbsp;Luis Marat Alvarez Salas,&nbsp;Victoria Calzada,&nbsp;Pablo D. Dans","doi":"10.1002/wcms.70050","DOIUrl":"https://doi.org/10.1002/wcms.70050","url":null,"abstract":"<div>\u0000 \u0000 <p>Aptamers—short single-stranded DNA or RNA—are the latest biomolecules to fall within reach of powerful structure-prediction pipelines that blend bioinformatics, computational chemistry, and artificial intelligence. These tools now enable high-throughput exploration of aptamer conformational landscapes, a prerequisite for rational design and optimization of their exceptional target affinity and specificity. Next-generation sequencing has democratized library analysis, allowing any laboratory to handle millions of variants. Hybrid workflows currently offer the most reliable secondary and tertiary structure models, and explicit treatment of conformational flexibility is proving indispensable for mapping binding-competent states. Yet every predictive tier—from classic free-energy minimization to deep learning—still underrepresents chemically modified nucleotides, the very substitutions that grant therapeutic aptamers nuclease resistance and pharmacokinetic longevity. Capturing the structural and dynamical consequences of these modifications remains the key unsolved problem. Progress, therefore, hinges on two fronts: richer parameterization and training data that encompass modified bases, and tighter coupling of <i>in silico</i> screens with biophysical and structural validation. Bridging these gaps will convert the current wave of computational advances into clinically relevant aptamer-based drugs ready to be delivered to the patients.</p>\u0000 <p>This article is categorized under:\u0000\u0000 </p><ul>\u0000 \u0000 <li>Structure and Mechanism &gt; Molecular Structures</li>\u0000 \u0000 <li>Data Science &gt; Computer Algorithms and Programming</li>\u0000 \u0000 <li>Data Science &gt; Artificial Intelligence/Machine Learning</li>\u0000 </ul>\u0000 </div>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 5","pages":""},"PeriodicalIF":27.0,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145317202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 15, Issue 5 封面图片,第15卷,第5期
IF 27 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-10-06 DOI: 10.1002/wcms.70051
Francesca Peccati, Cristina M. Segovia, Reyes Núñez-Franco, Gonzalo Jiménez-Osés

The cover image is based on the article Computation of Protein Thermostability and Epistasis by Gonzalo Jimenez-Oses et al., https://doi.org/10.1002/wcms.70045.

封面图像基于Gonzalo Jimenez-Oses等人的文章《计算蛋白质热稳定性和上位性》,https://doi.org/10.1002/wcms.70045。
{"title":"Cover Image, Volume 15, Issue 5","authors":"Francesca Peccati,&nbsp;Cristina M. Segovia,&nbsp;Reyes Núñez-Franco,&nbsp;Gonzalo Jiménez-Osés","doi":"10.1002/wcms.70051","DOIUrl":"https://doi.org/10.1002/wcms.70051","url":null,"abstract":"<p>The cover image is based on the article <i>Computation of Protein Thermostability and Epistasis</i> by Gonzalo Jimenez-Oses et al., https://doi.org/10.1002/wcms.70045.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 5","pages":""},"PeriodicalIF":27.0,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://wires.onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.70051","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145271792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explainable Artificial Intelligence in Drug Discovery: Bridging Predictive Power and Mechanistic Insight 药物发现中的可解释人工智能:连接预测能力和机制洞察力
IF 27 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-09-27 DOI: 10.1002/wcms.70049
Antonio Lavecchia

Explainable artificial intelligence (XAI) is increasingly essential in drug discovery, where interpretability and trust must accompany predictive accuracy. As deep learning models, particularly, deep neural networks (DNNs) and graph neural networks (GNNs), enhance molecular property prediction, de novo design, and toxicity estimation, transparent, mechanistically meaningful insights become critical. This article classifies major XAI strategies in computational molecular science, including gradient-based attribution, perturbation analysis, surrogate modeling, counterfactual reasoning, and self-explaining architectures. Molecular representations, such as fingerprints, SMILES, molecular graphs, and latent embeddings, are evaluated for their impact on explanation fidelity. An evaluation framework is outlined using metrics like fidelity, stability, completeness, sparsity, and usability, with emphasis on integration into drug discovery workflows. The discussion also highlights emerging directions, including neuro-symbolic systems and physics-informed networks that embed mechanistic constraints into statistical models. By aligning algorithmic transparency with pharmacological reasoning, XAI not only demystifies black-box models but also supports scientific insight, regulatory compliance, and ethical AI deployment in pharmaceutical research.

This article is categorized under:

可解释的人工智能(XAI)在药物发现中越来越重要,其中可解释性和信任必须伴随着预测准确性。随着深度学习模型,特别是深度神经网络(dnn)和图神经网络(gnn),增强了分子性质预测、从头设计和毒性估计,透明的、有机械意义的见解变得至关重要。本文对计算分子科学中的主要XAI策略进行了分类,包括基于梯度的归因、微扰分析、代理建模、反事实推理和自我解释架构。分子表征,如指纹、smile、分子图和潜在嵌入,评估了它们对解释保真度的影响。评估框架使用保真度、稳定性、完整性、稀疏性和可用性等指标进行概述,重点是与药物发现工作流程的集成。讨论还强调了新兴方向,包括神经符号系统和物理信息网络,这些网络将机械约束嵌入到统计模型中。通过将算法透明度与药理学推理结合起来,XAI不仅揭开了黑箱模型的神秘面纱,还支持在药物研究中进行科学洞察、监管合规和道德人工智能部署。本文分类如下:
{"title":"Explainable Artificial Intelligence in Drug Discovery: Bridging Predictive Power and Mechanistic Insight","authors":"Antonio Lavecchia","doi":"10.1002/wcms.70049","DOIUrl":"https://doi.org/10.1002/wcms.70049","url":null,"abstract":"<p>Explainable artificial intelligence (XAI) is increasingly essential in drug discovery, where interpretability and trust must accompany predictive accuracy. As deep learning models, particularly, deep neural networks (DNNs) and graph neural networks (GNNs), enhance molecular property prediction, de novo design, and toxicity estimation, transparent, mechanistically meaningful insights become critical. This article classifies major XAI strategies in computational molecular science, including gradient-based attribution, perturbation analysis, surrogate modeling, counterfactual reasoning, and self-explaining architectures. Molecular representations, such as fingerprints, SMILES, molecular graphs, and latent embeddings, are evaluated for their impact on explanation fidelity. An evaluation framework is outlined using metrics like fidelity, stability, completeness, sparsity, and usability, with emphasis on integration into drug discovery workflows. The discussion also highlights emerging directions, including neuro-symbolic systems and physics-informed networks that embed mechanistic constraints into statistical models. By aligning algorithmic transparency with pharmacological reasoning, XAI not only demystifies black-box models but also supports scientific insight, regulatory compliance, and ethical AI deployment in pharmaceutical research.</p><p>This article is categorized under:\u0000\u0000 </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 5","pages":""},"PeriodicalIF":27.0,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://wires.onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.70049","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145146849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictive Approaches for 3D-Printing: Methods and Approaches for Polymeric Materials 3d打印的预测方法:聚合物材料的方法和途径
IF 27 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-09-25 DOI: 10.1002/wcms.70048
Isabel Cooley, Weiling Wang, Vladimir Kozyrev, Ricky D. Wildman, Blair F. Johnston, Anna K. Croft

By bridging molecular-level insights with macroscopic performance metrics, computational strategies are poised to transform how we design next-generation 3D-printable materials with enhanced precision, functionality, and sustainability. We present a critical overview examining the role of computational methods in advancing the design and application of 3D-printable polymers. We cover key considerations—including solvation behavior, viscosity, gel point, mechanical properties, and polymer structure—as well as the design of new polymer functionalities. We highlight how a spectrum of physics-based methods, ranging from quantum chemical to coarse-grained simulations, can be leveraged to interrogate relevant polymer properties at multiple scales. In particular, we illustrate the growing impact of machine learning in accelerating polymer discovery and optimization. Such methods, whether applied independently or integrated into multi-scale modeling frameworks, offer powerful tools for pre-screening and selecting optimal formulations tailored to diverse 3D printing technologies and applications. Although challenges remain to integrate different approaches into workable prediction pipelines, the rate of advance and improvements in methods, data interoperability, and data quality, offer great promise of a ‘concept to print’ pipeline in the future.

This article is categorized under:

通过将分子水平的见解与宏观性能指标相结合,计算策略将改变我们设计下一代3d打印材料的方式,提高其精度、功能和可持续性。我们提出了一个关键的概述检查在推进3d打印聚合物的设计和应用计算方法的作用。我们涵盖了关键考虑因素-包括溶剂化行为,粘度,凝胶点,机械性能和聚合物结构-以及新聚合物功能的设计。我们强调了如何利用一系列基于物理的方法,从量子化学到粗粒度模拟,来在多个尺度上询问相关的聚合物性质。特别是,我们说明了机器学习在加速聚合物发现和优化方面日益增长的影响。这些方法,无论是独立应用还是集成到多尺度建模框架中,都为预筛选和选择适合不同3D打印技术和应用的最佳配方提供了强大的工具。尽管将不同的方法整合到可行的预测管道中仍然存在挑战,但方法、数据互操作性和数据质量的进步和改进速度,为未来“从概念到打印”的管道提供了巨大的希望。本文分类如下:
{"title":"Predictive Approaches for 3D-Printing: Methods and Approaches for Polymeric Materials","authors":"Isabel Cooley,&nbsp;Weiling Wang,&nbsp;Vladimir Kozyrev,&nbsp;Ricky D. Wildman,&nbsp;Blair F. Johnston,&nbsp;Anna K. Croft","doi":"10.1002/wcms.70048","DOIUrl":"https://doi.org/10.1002/wcms.70048","url":null,"abstract":"<p>By bridging molecular-level insights with macroscopic performance metrics, computational strategies are poised to transform how we design next-generation 3D-printable materials with enhanced precision, functionality, and sustainability. We present a critical overview examining the role of computational methods in advancing the design and application of 3D-printable polymers. We cover key considerations—including solvation behavior, viscosity, gel point, mechanical properties, and polymer structure—as well as the design of new polymer functionalities. We highlight how a spectrum of physics-based methods, ranging from quantum chemical to coarse-grained simulations, can be leveraged to interrogate relevant polymer properties at multiple scales. In particular, we illustrate the growing impact of machine learning in accelerating polymer discovery and optimization. Such methods, whether applied independently or integrated into multi-scale modeling frameworks, offer powerful tools for pre-screening and selecting optimal formulations tailored to diverse 3D printing technologies and applications. Although challenges remain to integrate different approaches into workable prediction pipelines, the rate of advance and improvements in methods, data interoperability, and data quality, offer great promise of a ‘concept to print’ pipeline in the future.</p><p>This article is categorized under:\u0000\u0000 </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 5","pages":""},"PeriodicalIF":27.0,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://wires.onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.70048","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145146345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large Language Models for Heterogeneous Catalysis 多相催化的大型语言模型
IF 27 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-09-18 DOI: 10.1002/wcms.70046
Yiwen Yao, Jinbo Zhu, Yan Liu, Guanpeng Ren, Xiao-Yan Li, Pengfei Ou

Heterogeneous catalysis has a wide range of applications in chemical manufacturing and sustainable technologies. It uses solid catalysis to enable efficient chemical transformations. Traditional research on active sites and reaction mechanisms relies heavily on experiments and computational methods, such as density functional theory calculations. However, the volume of scientific literature and data is growing fast. This rapid growth has made it increasingly difficult to capture, process, and act on emerging insights systematically. Recently, large language models (LLMs) have emerged as powerful tools to support various stages in catalysis research. Their ability to understand and generate natural language helps them extract useful information from vast amounts of text, assist in catalyst design, aid in planning experiments, and clarify complex descriptors. In this advanced review, we first analyze recent progress in applying LLMs to heterogeneous catalysis, focusing on four key areas: literature mining and knowledge extraction, catalyst design and screening, experiment automation and workflow optimization, and the interpretation of high-dimensional descriptors. We then highlight the challenges in this field despite these advances, most notably the need for domain-specific fine-tuning and the improvement of molecular representation. We conclude by discussing future opportunities for integrating LLMs with complementary machine learning approaches and expert-in-the-loop systems, toward accelerating the rational discovery of next-generation catalysts.

This article is categorized under:

多相催化在化工制造和可持续技术中有着广泛的应用。它使用固体催化来实现有效的化学转化。传统的活性位点和反应机理研究很大程度上依赖于实验和计算方法,如密度泛函理论计算。然而,科学文献和数据的数量正在快速增长。这种快速的增长使得系统地捕捉、处理和对新兴见解采取行动变得越来越困难。近年来,大型语言模型(llm)已成为支持催化研究各个阶段的强大工具。他们理解和生成自然语言的能力帮助他们从大量的文本中提取有用的信息,协助催化剂设计,帮助规划实验,并澄清复杂的描述符。在这篇高级综述中,我们首先分析了法学硕士在多相催化领域的最新进展,重点关注四个关键领域:文献挖掘和知识提取,催化剂设计和筛选,实验自动化和工作流程优化,以及高维描述符的解释。然后,我们强调了该领域的挑战,尽管取得了这些进步,最值得注意的是需要特定领域的微调和分子表征的改进。最后,我们讨论了将llm与互补的机器学习方法和专家在环系统相结合的未来机会,以加速下一代催化剂的合理发现。本文分类如下:
{"title":"Large Language Models for Heterogeneous Catalysis","authors":"Yiwen Yao,&nbsp;Jinbo Zhu,&nbsp;Yan Liu,&nbsp;Guanpeng Ren,&nbsp;Xiao-Yan Li,&nbsp;Pengfei Ou","doi":"10.1002/wcms.70046","DOIUrl":"10.1002/wcms.70046","url":null,"abstract":"<p>Heterogeneous catalysis has a wide range of applications in chemical manufacturing and sustainable technologies. It uses solid catalysis to enable efficient chemical transformations. Traditional research on active sites and reaction mechanisms relies heavily on experiments and computational methods, such as density functional theory calculations. However, the volume of scientific literature and data is growing fast. This rapid growth has made it increasingly difficult to capture, process, and act on emerging insights systematically. Recently, large language models (LLMs) have emerged as powerful tools to support various stages in catalysis research. Their ability to understand and generate natural language helps them extract useful information from vast amounts of text, assist in catalyst design, aid in planning experiments, and clarify complex descriptors. In this advanced review, we first analyze recent progress in applying LLMs to heterogeneous catalysis, focusing on four key areas: literature mining and knowledge extraction, catalyst design and screening, experiment automation and workflow optimization, and the interpretation of high-dimensional descriptors. We then highlight the challenges in this field despite these advances, most notably the need for domain-specific fine-tuning and the improvement of molecular representation. We conclude by discussing future opportunities for integrating LLMs with complementary machine learning approaches and expert-in-the-loop systems, toward accelerating the rational discovery of next-generation catalysts.</p><p>This article is categorized under:\u0000\u0000 </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 5","pages":""},"PeriodicalIF":27.0,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://wires.onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.70046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145101562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automating Data Extraction From Scientific Literature and General PDF Files Using Large Language Models and KNIME: An Application in Toxicology 使用大型语言模型和KNIME从科学文献和一般PDF文件中自动提取数据:在毒理学中的应用
IF 27 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-09-18 DOI: 10.1002/wcms.70047
José Teófilo Moreira-Filho, Dhruv Ranganath, Ricardo S. Tieghi, Robert Patton, Vicki Sutherland, Charles Schmitt, Andrew A. Rooney, Jennifer Fostel, Vickie R. Walker, Trey Saddler, David Reif, Kamel Mansouri, Nicole Kleinstreuer

The large and steadily increasing volume of scientific publications presents a challenge in accessing and utilizing data due to their unstructured nature. Toxicology, in particular, depends on structured data from diverse study types for study evaluation, weight-of-evidence chemical assessments, and validation of new approach methodologies (NAMs). Manual data extraction is time and labor-intensive. This work presents an automated data extraction workflow using large language models (LLMs) within the KNIME platform. The workflow integrates document parsing tools with LLMs to extract variables from scientific publications and general PDF files. Two execution modes are available: text mode and image mode. Text mode applies tools for extracting text and tables, while image mode uses multimodal LLMs to process non-linear layouts and graphical content. The workflow achieves 81.14% accuracy in text mode for scientific publications and up to 98.54% in image mode for general PDF files. The KNIME platform ensures accessibility through a user-friendly interface, allowing non-experts to use advanced data extraction methods. This automated approach facilitates toxicological research by improving the retrieval of structured data. By democratizing access to LLM-powered workflows, this approach paves the way for significant advancements in knowledge synthesis to support biomedical research.

This article is categorized under:

由于科学出版物的非结构化性质,大量且稳步增长的科学出版物在访问和利用数据方面提出了挑战。特别是毒理学,依赖于来自不同研究类型的结构化数据进行研究评估、证据权重化学评估和新方法方法(NAMs)的验证。手动数据提取是费时费力的。这项工作提出了一个使用KNIME平台内的大型语言模型(llm)的自动数据提取工作流。该工作流将文档解析工具与llm集成在一起,从科学出版物和一般PDF文件中提取变量。有两种执行模式:文本模式和图像模式。文本模式使用提取文本和表格的工具,而图像模式使用多模态llm来处理非线性布局和图形内容。该工作流在科学出版物的文本模式下达到81.14%的准确率,在一般PDF文件的图像模式下达到98.54%。KNIME平台通过用户友好的界面确保可访问性,允许非专家使用先进的数据提取方法。这种自动化方法通过改进结构化数据的检索来促进毒理学研究。通过使llm支持的工作流程民主化,这种方法为支持生物医学研究的知识合成方面的重大进步铺平了道路。本文分类如下:
{"title":"Automating Data Extraction From Scientific Literature and General PDF Files Using Large Language Models and KNIME: An Application in Toxicology","authors":"José Teófilo Moreira-Filho,&nbsp;Dhruv Ranganath,&nbsp;Ricardo S. Tieghi,&nbsp;Robert Patton,&nbsp;Vicki Sutherland,&nbsp;Charles Schmitt,&nbsp;Andrew A. Rooney,&nbsp;Jennifer Fostel,&nbsp;Vickie R. Walker,&nbsp;Trey Saddler,&nbsp;David Reif,&nbsp;Kamel Mansouri,&nbsp;Nicole Kleinstreuer","doi":"10.1002/wcms.70047","DOIUrl":"10.1002/wcms.70047","url":null,"abstract":"<p>The large and steadily increasing volume of scientific publications presents a challenge in accessing and utilizing data due to their unstructured nature. Toxicology, in particular, depends on structured data from diverse study types for study evaluation, weight-of-evidence chemical assessments, and validation of new approach methodologies (NAMs). Manual data extraction is time and labor-intensive. This work presents an automated data extraction workflow using large language models (LLMs) within the KNIME platform. The workflow integrates document parsing tools with LLMs to extract variables from scientific publications and general PDF files. Two execution modes are available: text mode and image mode. Text mode applies tools for extracting text and tables, while image mode uses multimodal LLMs to process non-linear layouts and graphical content. The workflow achieves 81.14% accuracy in text mode for scientific publications and up to 98.54% in image mode for general PDF files. The KNIME platform ensures accessibility through a user-friendly interface, allowing non-experts to use advanced data extraction methods. This automated approach facilitates toxicological research by improving the retrieval of structured data. By democratizing access to LLM-powered workflows, this approach paves the way for significant advancements in knowledge synthesis to support biomedical research.</p><p>This article is categorized under:\u0000\u0000 </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 5","pages":""},"PeriodicalIF":27.0,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://wires.onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.70047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145101564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computation of Protein Thermostability and Epistasis 蛋白质热稳定性和上位性的计算
IF 27 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-09-18 DOI: 10.1002/wcms.70045
Francesca Peccati, Cristina M. Segovia, Reyes Núñez-Franco, Gonzalo Jiménez-Osés

The ability to computationally predict changes in protein thermostability upon mutation is crucial for advancing protein design and engineering, with applications ranging from therapeutics to biocatalysis. This review provides a comprehensive overview of the significant challenges and diverse computational strategies for predicting protein stability and understanding epistatic interactions across protein variants. A primary obstacle to this goal is the scarcity of high-quality, large-scale thermodynamic datasets, which are often biased toward single-point, destabilizing mutations and lack standardized experimental metrics. This limitation directly impacts the performance and generalizability of data-driven methods, from early machine learning approaches to modern deep learning architectures such as ThermoMPNN and protein language models. Physics-based approaches, such as those employing Rosetta and FoldX energy functions, offer valuable insights but are often limited by their reliance on static structures and oversimplified representations of the unfolded state. While molecular dynamics simulations can capture the critical role of protein flexibility and dynamics in thermostabilization, their computational cost restricts their application in high-throughput screening. Accurately predicting the effects of multiple mutations is further complicated by epistasis, where nonadditive interactions can significantly alter stability and function. Overcoming these hurdles requires a synergistic approach, integrating AI-driven predictions with physics-based simulations and accurate conformational sampling methods. Promising future directions include the development of more comprehensive and unbiased datasets, and improved modeling of epistasis and the (un)folded states and their ensembles. Such advancements are essential for enhancing the reliability of thermostability predictions and navigating the complex stability–activity trade-offs inherent in protein optimization and design.

This article is categorized under:

计算预测突变后蛋白质热稳定性变化的能力对于推进蛋白质设计和工程至关重要,其应用范围从治疗学到生物催化。这篇综述全面概述了预测蛋白质稳定性和理解蛋白质变异之间的上位相互作用的重大挑战和不同的计算策略。实现这一目标的主要障碍是缺乏高质量、大规模的热力学数据集,这些数据集往往偏向于单点、不稳定的突变,并且缺乏标准化的实验指标。这种限制直接影响了数据驱动方法的性能和通用性,从早期的机器学习方法到现代深度学习架构(如ThermoMPNN和蛋白质语言模型)。基于物理的方法,如使用Rosetta和FoldX能量函数的方法,提供了有价值的见解,但往往受到静态结构和过度简化的展开状态表示的限制。虽然分子动力学模拟可以捕捉蛋白质柔韧性和动力学在热稳定中的关键作用,但其计算成本限制了其在高通量筛选中的应用。上位性使准确预测多重突变的影响变得更加复杂,其中非加性相互作用可以显著改变稳定性和功能。克服这些障碍需要协同的方法,将人工智能驱动的预测与基于物理的模拟和精确的构象采样方法相结合。有希望的未来方向包括开发更全面和无偏的数据集,以及改进上位性和(非)折叠态及其集合的建模。这些进步对于提高热稳定性预测的可靠性以及在蛋白质优化和设计中固有的复杂稳定性-活性权衡中导航至关重要。本文分类如下:
{"title":"Computation of Protein Thermostability and Epistasis","authors":"Francesca Peccati,&nbsp;Cristina M. Segovia,&nbsp;Reyes Núñez-Franco,&nbsp;Gonzalo Jiménez-Osés","doi":"10.1002/wcms.70045","DOIUrl":"10.1002/wcms.70045","url":null,"abstract":"<p>The ability to computationally predict changes in protein thermostability upon mutation is crucial for advancing protein design and engineering, with applications ranging from therapeutics to biocatalysis. This review provides a comprehensive overview of the significant challenges and diverse computational strategies for predicting protein stability and understanding epistatic interactions across protein variants. A primary obstacle to this goal is the scarcity of high-quality, large-scale thermodynamic datasets, which are often biased toward single-point, destabilizing mutations and lack standardized experimental metrics. This limitation directly impacts the performance and generalizability of data-driven methods, from early machine learning approaches to modern deep learning architectures such as ThermoMPNN and protein language models. Physics-based approaches, such as those employing Rosetta and FoldX energy functions, offer valuable insights but are often limited by their reliance on static structures and oversimplified representations of the unfolded state. While molecular dynamics simulations can capture the critical role of protein flexibility and dynamics in thermostabilization, their computational cost restricts their application in high-throughput screening. Accurately predicting the effects of multiple mutations is further complicated by epistasis, where nonadditive interactions can significantly alter stability and function. Overcoming these hurdles requires a synergistic approach, integrating AI-driven predictions with physics-based simulations and accurate conformational sampling methods. Promising future directions include the development of more comprehensive and unbiased datasets, and improved modeling of epistasis and the (un)folded states and their ensembles. Such advancements are essential for enhancing the reliability of thermostability predictions and navigating the complex stability–activity trade-offs inherent in protein optimization and design.</p><p>This article is categorized under:\u0000\u0000 </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 5","pages":""},"PeriodicalIF":27.0,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://wires.onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.70045","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145101561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multistate Density Functional Theory: Theory, Methods, and Applications 多态密度泛函理论:理论、方法与应用
IF 27 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-09-18 DOI: 10.1002/wcms.70043
Yangyi Lu, Jiali Gao
<p>A quantum theory of density functionals and its applications is presented. By introducing a matrix density <span></span><math> <semantics> <mrow> <mi>D</mi> <mfenced> <mi>r</mi> </mfenced> </mrow> <annotation>$$ mathbf{D}(r) $$</annotation> </semantics></math> of rank <span></span><math> <semantics> <mrow> <mi>N</mi> </mrow> <annotation>$$ N $$</annotation> </semantics></math> as the fundamental variable, a one-to-one correspondence has been established between <span></span><math> <semantics> <mrow> <mi>D</mi> <mfenced> <mi>r</mi> </mfenced> </mrow> <annotation>$$ mathbf{D}(r) $$</annotation> </semantics></math> and the Hamiltonian matrix representing <span></span><math> <semantics> <mrow> <mi>N</mi> </mrow> <annotation>$$ N $$</annotation> </semantics></math> electronic states—that is, a matrix density functional <span></span><math> <semantics> <mrow> <mi>H</mi> <mfenced> <mi>D</mi> </mfenced> </mrow> <annotation>$$ mathcal{H}left[mathbf{D}right] $$</annotation> </semantics></math>. Moreover, no more than <span></span><math> <semantics> <mrow> <msup> <mi>N</mi> <mn>2</mn> </msup> </mrow> <annotation>$$ {N}^2 $$</annotation> </semantics></math> Slater determinants are sufficient to represent <span></span><math> <semantics> <mrow> <mi>D</mi> <mfenced> <mi>r</mi> </mfenced> </mrow> <annotation>$$ mathbf{D}(r) $$</annotation> </semantics></math> exactly, giving rise to the concept of minimal active space (MAS). The use of a MAS naturally leads to the definition of correlation matrix functional <span></span><math> <semantics> <mrow> <msup> <mi>E</mi> <mi>c</mi> </msup> <mfenced> <mi>D</mi> </mfenced> </mrow> <annotation>$$ {mathcal{E}}^cleft[mathbf{D}right] $$</annotation>
提出了密度泛函的量子理论及其应用。通过引入N阶矩阵密度D r $$ mathbf{D}(r) $$$$ N $$作为基本变量,D r $$ mathbf{D}(r) $$与表示N $$ N $$电子态的哈密顿矩阵之间建立了一一对应关系,即:矩阵密度泛函H D $$ mathcal{H}left[mathbf{D}right] $$。此外,不超过n2 $$ {N}^2 $$斯莱特行列式足以精确地表示dr $$ mathbf{D}(r) $$,由此产生了最小活动空间(MAS)的概念。MAS的使用自然导致相关矩阵泛函E c D $$ {mathcal{E}}^cleft[mathbf{D}right] $$的定义,这是Kohn-Sham DFT中交换相关泛函的多状态扩展。多态能量的变分最小化,定义为哈密顿矩阵函数的轨迹,产生最低N个$$ N $$特征态的精确能量和密度。提出了一种非正交态相互作用(NOSI)算法来优化与D r $$ mathbf{D}(r) $$相关的轨道并近似相关矩阵泛函。MSDFT-NOSI方法在一系列应用中得到了验证,特别是在KS-DFT和线性响应时变DFT失效的情况下,通过与高级多组态波函数理论的比较,验证了其准确性。本文分类如下:
{"title":"Multistate Density Functional Theory: Theory, Methods, and Applications","authors":"Yangyi Lu,&nbsp;Jiali Gao","doi":"10.1002/wcms.70043","DOIUrl":"10.1002/wcms.70043","url":null,"abstract":"&lt;p&gt;A quantum theory of density functionals and its applications is presented. By introducing a matrix density &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;mfenced&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;/mfenced&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ mathbf{D}(r) $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of rank &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ N $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; as the fundamental variable, a one-to-one correspondence has been established between &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;mfenced&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;/mfenced&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ mathbf{D}(r) $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and the Hamiltonian matrix representing &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ N $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; electronic states—that is, a matrix density functional &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;mfenced&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;/mfenced&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ mathcal{H}left[mathbf{D}right] $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Moreover, no more than &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {N}^2 $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; Slater determinants are sufficient to represent &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;mfenced&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;/mfenced&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ mathbf{D}(r) $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; exactly, giving rise to the concept of minimal active space (MAS). The use of a MAS naturally leads to the definition of correlation matrix functional &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;E&lt;/mi&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mfenced&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;/mfenced&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {mathcal{E}}^cleft[mathbf{D}right] $$&lt;/annotation&gt;\u0000 ","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 5","pages":""},"PeriodicalIF":27.0,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://wires.onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.70043","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145101565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Wiley Interdisciplinary Reviews: Computational Molecular Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1