首页 > 最新文献

Water Practice and Technology最新文献

英文 中文
UV/periodate and UV/chlorine for dye degradation and real wastewater treatment: a comparative study UV/高碘酸盐和UV/氯降解染料及实际废水处理的比较研究
Q3 Environmental Science Pub Date : 2023-10-01 DOI: 10.2166/wpt.2023.160
Soheila Madihibidgoli, Fatemeh Asghari, Sahel Cheraghi, Hadis Hamidinia, Elnaz Shagerdi, Sahar Asadnezhad
Abstract The discharge of synthetic dyes into the environment poses a significant threat to both human health and the ecosystem, necessitating the treatment of contaminated water. To generate free radicals for the elimination of Direct Blue 71 (DB71) dye from aqueous solutions, periodate (PI) and chlorine (Cl2) have been employed. In this study, separate activation of PI and Cl2 was achieved using ultraviolet (UV) light. The impact of various operational parameters was investigated, resulting in the complete degradation of the dye within 12 min. The presence of ferrous and copper ions had a minor enhancing effect on the degradation rate in both systems. Scavenging experiments confirmed that HO• and IO3• were the primary agents responsible for DB71 degradation in the UV/PI system, while reactive chlorine radicals played a dominant role in the UV/Cl2 process. In terms of mineralization, application for real wastewater and energy efficiency, the UV/PI system exhibited slightly superior performance compared to the UV/Cl2 system.
合成染料排放到环境中对人类健康和生态系统构成重大威胁,需要对污染水进行处理。采用高碘酸盐(PI)和氯(Cl2)在水溶液中产生自由基以消除直接蓝71 (DB71)染料。在本研究中,利用紫外线(UV)实现了PI和Cl2的分离活化。研究了各种操作参数的影响,结果表明染料在12分钟内完全降解。铁离子和铜离子的存在对两种体系的降解率都有轻微的增强作用。清除实验证实,在UV/PI系统中,HO•和IO3•是DB71降解的主要因子,而活性氯自由基在UV/Cl2过程中起主导作用。在矿化、实际废水应用和能源效率方面,UV/PI体系表现出略优于UV/Cl2体系的性能。
{"title":"UV/periodate and UV/chlorine for dye degradation and real wastewater treatment: a comparative study","authors":"Soheila Madihibidgoli, Fatemeh Asghari, Sahel Cheraghi, Hadis Hamidinia, Elnaz Shagerdi, Sahar Asadnezhad","doi":"10.2166/wpt.2023.160","DOIUrl":"https://doi.org/10.2166/wpt.2023.160","url":null,"abstract":"Abstract The discharge of synthetic dyes into the environment poses a significant threat to both human health and the ecosystem, necessitating the treatment of contaminated water. To generate free radicals for the elimination of Direct Blue 71 (DB71) dye from aqueous solutions, periodate (PI) and chlorine (Cl2) have been employed. In this study, separate activation of PI and Cl2 was achieved using ultraviolet (UV) light. The impact of various operational parameters was investigated, resulting in the complete degradation of the dye within 12 min. The presence of ferrous and copper ions had a minor enhancing effect on the degradation rate in both systems. Scavenging experiments confirmed that HO• and IO3• were the primary agents responsible for DB71 degradation in the UV/PI system, while reactive chlorine radicals played a dominant role in the UV/Cl2 process. In terms of mineralization, application for real wastewater and energy efficiency, the UV/PI system exhibited slightly superior performance compared to the UV/Cl2 system.","PeriodicalId":23794,"journal":{"name":"Water Practice and Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135654200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valorization of lignocellulosic solid waste obtained from essential oil industry for bio-oil production and dye removal 从精油工业中获得的木质纤维素固体废物的增值用于生物油生产和染料去除
Q3 Environmental Science Pub Date : 2023-10-01 DOI: 10.2166/wpt.2023.154
Sourodipto Modak, Priyanka Katiyar, Sanjeev Yadav, Annapurna Hans
Abstract This research underscores the potential of utilizing carrot seed waste and its derived biochar as effective solutions for waste management and wastewater treatment applications. This waste is thoroughly characterized for its chemical, thermal, and morphological properties. It is found to be rich in carbon and cellulose, proved suitable for pyrolysis, yielding 25% biochar and 45% bio-oil, with the latter containing carboxylic acids and hydrocarbons. Biochar, characterized by a high surface area of around 300 m2/g, micro- and mesopores, and the presence of metal oxides, demonstrated outstanding adsorption properties. Biochar shows superior performance compared to raw carrot seed waste, mainly in the context of methylene blue dye removal, obtaining an impressive removal efficiency of 99%. Subsequently, optimization of pH, adsorbent dosage, dye concentration, and reaction temperature is carried out using biochar as the adsorbent to maximize dye removal and adsorption capacity, whereas adsorption kinetics follows pseudo-first-order kinetics.
本研究强调了利用胡萝卜种子废物及其衍生生物炭作为废物管理和废水处理应用的有效解决方案的潜力。这种废物的化学、热学和形态特性都得到了充分的表征。发现它富含碳和纤维素,证明适合热解,产25%的生物炭和45%的生物油,后者含有羧酸和碳氢化合物。生物炭具有约300 m2/g的高表面积、微孔和中孔以及金属氧化物的存在等特点,表现出优异的吸附性能。生物炭在去除亚甲基蓝染料方面表现出比胡萝卜籽废料更优越的性能,其去除效率高达99%。随后,以生物炭为吸附剂,对pH、吸附剂用量、染料浓度和反应温度进行了优化,以最大限度地提高染料的去除和吸附能力,而吸附动力学遵循准一级动力学。
{"title":"Valorization of lignocellulosic solid waste obtained from essential oil industry for bio-oil production and dye removal","authors":"Sourodipto Modak, Priyanka Katiyar, Sanjeev Yadav, Annapurna Hans","doi":"10.2166/wpt.2023.154","DOIUrl":"https://doi.org/10.2166/wpt.2023.154","url":null,"abstract":"Abstract This research underscores the potential of utilizing carrot seed waste and its derived biochar as effective solutions for waste management and wastewater treatment applications. This waste is thoroughly characterized for its chemical, thermal, and morphological properties. It is found to be rich in carbon and cellulose, proved suitable for pyrolysis, yielding 25% biochar and 45% bio-oil, with the latter containing carboxylic acids and hydrocarbons. Biochar, characterized by a high surface area of around 300 m2/g, micro- and mesopores, and the presence of metal oxides, demonstrated outstanding adsorption properties. Biochar shows superior performance compared to raw carrot seed waste, mainly in the context of methylene blue dye removal, obtaining an impressive removal efficiency of 99%. Subsequently, optimization of pH, adsorbent dosage, dye concentration, and reaction temperature is carried out using biochar as the adsorbent to maximize dye removal and adsorption capacity, whereas adsorption kinetics follows pseudo-first-order kinetics.","PeriodicalId":23794,"journal":{"name":"Water Practice and Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134977194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovating superparamagnetic chitosan hybrid nanoparticles for a high-efficiency separation of oil from oil–water emulsions 创新的超顺磁性壳聚糖杂化纳米颗粒用于油与油水乳液的高效分离
Q3 Environmental Science Pub Date : 2023-10-01 DOI: 10.2166/wpt.2023.158
Anup Kumar Bairagi, Soumya Sanjeeb Mohapatra, Abanti Sahoo, Saurabh Chokhoba Tembhurne
Abstract In an era marked by rapid industrialization and heightened automobile usage, the demand for crude oil has surged, inducing ecological degradation and resource depletion. Effective management of intricate oily wastewater presents a formidable challenge. While diverse methods like gravity separation, centrifugation, and membrane techniques are employed for oil-water separation, gravity separation is the prevailing choice, yet limited to unstable emulsions. These methods often involve toxic substances harmful to marine life. Our research focuses on separating oil microemulsions in aqueous solutions. This study explores the application of superparamagnetic chitosan coagulants, revealing an optimal 10 ml dosage for peak efficiency. Aiming for rapid oil separation, we achieved a breakthrough with just 30 minutes, establishing a new benchmark. Rigorous VSM testing solidified the particles' magnetic capabilities, augmented through size reduction. Notably, at a 15% oil concentration, a remarkable 99.26% efficiency in oil separation was achieved, offering potential in microbiology, medicine, and drug delivery systems.
在快速工业化和汽车使用量增加的时代,对原油的需求激增,导致生态退化和资源枯竭。复杂含油废水的有效管理是一项艰巨的挑战。虽然采用重力分离、离心和膜技术等多种方法进行油水分离,但重力分离是主要的选择,但仅限于不稳定的乳液。这些方法通常涉及对海洋生物有害的有毒物质。我们的研究重点是在水溶液中分离油微乳。本研究探讨了超顺磁性壳聚糖混凝剂的应用,发现最佳投加量为10ml,效率最高。以快速油分离为目标,我们只用了30分钟就实现了突破,建立了新的标杆。严格的VSM测试固化了颗粒的磁性,并通过减小尺寸增强了颗粒的磁性。值得注意的是,在15%的油浓度下,油分离效率达到了99.26%,这在微生物学、医学和药物输送系统中具有潜力。
{"title":"Innovating superparamagnetic chitosan hybrid nanoparticles for a high-efficiency separation of oil from oil–water emulsions","authors":"Anup Kumar Bairagi, Soumya Sanjeeb Mohapatra, Abanti Sahoo, Saurabh Chokhoba Tembhurne","doi":"10.2166/wpt.2023.158","DOIUrl":"https://doi.org/10.2166/wpt.2023.158","url":null,"abstract":"Abstract In an era marked by rapid industrialization and heightened automobile usage, the demand for crude oil has surged, inducing ecological degradation and resource depletion. Effective management of intricate oily wastewater presents a formidable challenge. While diverse methods like gravity separation, centrifugation, and membrane techniques are employed for oil-water separation, gravity separation is the prevailing choice, yet limited to unstable emulsions. These methods often involve toxic substances harmful to marine life. Our research focuses on separating oil microemulsions in aqueous solutions. This study explores the application of superparamagnetic chitosan coagulants, revealing an optimal 10 ml dosage for peak efficiency. Aiming for rapid oil separation, we achieved a breakthrough with just 30 minutes, establishing a new benchmark. Rigorous VSM testing solidified the particles' magnetic capabilities, augmented through size reduction. Notably, at a 15% oil concentration, a remarkable 99.26% efficiency in oil separation was achieved, offering potential in microbiology, medicine, and drug delivery systems.","PeriodicalId":23794,"journal":{"name":"Water Practice and Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134978327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of adsorption potential of illite/quartz/kaolinite/montmorillonite for Cr(VI), Ni(II), and Cu(II) ions and modeling of experimental results by artificial neural networks 伊利石/石英/高岭石/蒙脱土对Cr(VI)、Ni(II)和Cu(II)离子的吸附电位评价及实验结果的人工神经网络建模
Q3 Environmental Science Pub Date : 2023-10-01 DOI: 10.2166/wpt.2023.134
Kavitha Balasubramani, D. Sarala Thambavani
Abstract An artificial neural network (ANN) was used to predict the removal efficiency of Cr(VI), Ni(II), and Cu(II) ions on riverbed sand containing illite/quartz/kaolinite/montmorillonite (IQKM) clay minerals. The effect of operational parameters such as initial metal ion concentration (10–100 mg/L), initial pH (2–10), adsorbent dosage (0.025–0.15 g/L), contact time (15–90 min), agitation speed (100–800 rpm), and temperature (303–323 K) is studied to optimize the conditions for greatest removal of metal ions. Employment of equilibrium isotherm models for the description of adsorption capacities for IQKM explored better efficiency of the Langmuir model for the best representation of experimental data with the highest adsorption capacity of 8.802, 7.5125, 6.608 mg/g for Cr(VI), Ni(II), and Cu(II) ions in the solution. The kinetics of the proposed adsorption processes efficiently followed pseudo-second-order and intraparticle diffusion kinetic models. .
摘要采用人工神经网络(ANN)预测了含伊利石/石英/高岭石/蒙脱土(IQKM)粘土矿物河床砂对Cr(VI)、Ni(II)和Cu(II)离子的去除效果。考察了初始金属离子浓度(10 ~ 100 mg/L)、初始pH(2 ~ 10)、吸附剂用量(0.025 ~ 0.15 g/L)、接触时间(15 ~ 90 min)、搅拌速度(100 ~ 800 rpm)、温度(303 ~ 323 K)等操作参数对金属离子脱除效果的影响。利用平衡等温线模型来描述IQKM的吸附容量,探索了Langmuir模型的更好效率,以最佳地表示实验数据,溶液中Cr(VI), Ni(II)和Cu(II)离子的最高吸附容量分别为8.802,7.5125和6.608 mg/g。所提出的吸附过程的动力学有效地遵循伪二级和颗粒内扩散动力学模型。
{"title":"Evaluation of adsorption potential of illite/quartz/kaolinite/montmorillonite for Cr(VI), Ni(II), and Cu(II) ions and modeling of experimental results by artificial neural networks","authors":"Kavitha Balasubramani, D. Sarala Thambavani","doi":"10.2166/wpt.2023.134","DOIUrl":"https://doi.org/10.2166/wpt.2023.134","url":null,"abstract":"Abstract An artificial neural network (ANN) was used to predict the removal efficiency of Cr(VI), Ni(II), and Cu(II) ions on riverbed sand containing illite/quartz/kaolinite/montmorillonite (IQKM) clay minerals. The effect of operational parameters such as initial metal ion concentration (10–100 mg/L), initial pH (2–10), adsorbent dosage (0.025–0.15 g/L), contact time (15–90 min), agitation speed (100–800 rpm), and temperature (303–323 K) is studied to optimize the conditions for greatest removal of metal ions. Employment of equilibrium isotherm models for the description of adsorption capacities for IQKM explored better efficiency of the Langmuir model for the best representation of experimental data with the highest adsorption capacity of 8.802, 7.5125, 6.608 mg/g for Cr(VI), Ni(II), and Cu(II) ions in the solution. The kinetics of the proposed adsorption processes efficiently followed pseudo-second-order and intraparticle diffusion kinetic models. .","PeriodicalId":23794,"journal":{"name":"Water Practice and Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135760583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model parameter sensitivity and identifiability for urban river water quality: impact of domestic wastewater discharges from on-site treatment facilities 城市河流水质模型参数敏感性和可辨识性:现场处理设施排放生活污水的影响
Q3 Environmental Science Pub Date : 2023-10-01 DOI: 10.2166/wpt.2023.166
Yoshihiko Inagaki, Elias Habineza, Hieu Minh Dang, Rodgers Makwinja, Masahito Komori, Yutaka Sakakibara
Abstract River water quality degradation is a risk to human health. Hence, many water quality models have been developed to predict the future states of water bodies and understand how the current water treatment systems will respond to future pollution loads and climatic drivers. A Japanese river was evaluated with the River Water Quality Model No.1 (RWQM1), and parameter sensitivity and identifiability analyses were executed on the model output using parameter sensitivity ranking, collinearity index, and Fisher Information Matrix-derived criterion. Among RWQM1 kinetic parameters, those related to hydrolysis, growth of aerobicheterotrophs, and first-stage nitrifiers were the most influential. Reactive soluble organic substances included in untreated gray waters, in addition to a prevalence ratio of the most advanced on-site treatment facility, strongly contributed to the model output variability. A remediation analysis revealed that a renewal to the most advanced on-site treatment facility by 20% increment was almost equivalent to the 70% decrease in the effluent concentration from an on-site treatment facility producing the highest pollutant load in terms of a BOD concentration decrease in the stream. This study provided baseline data assisting in policy implementation regarding the management of effluents from on-site treatment facilities.
摘要河流水质退化是危害人类健康的一大问题。因此,人们开发了许多水质模型来预测水体的未来状态,并了解当前的水处理系统将如何应对未来的污染负荷和气候驱动因素。使用河流水质模型1号(RWQM1)对一条日本河流进行评价,并使用参数敏感性排序、共线性指数和Fisher信息矩阵衍生准则对模型输出进行参数敏感性和可识别性分析。在RWQM1动力学参数中,与水解、好氧异养菌生长和第一期硝化菌相关的动力学参数影响最大。未经处理的灰水中包含的活性可溶性有机物,以及最先进的现场处理设施的流行率,对模型输出变异性有很大贡献。一项补救分析显示,更新最先进的现场处理设施20%的增量几乎相当于从产生最高污染物负荷的现场处理设施的流出浓度降低70%。这项研究提供了基线数据,有助于实施有关现场处理设施废水管理的政策。
{"title":"Model parameter sensitivity and identifiability for urban river water quality: impact of domestic wastewater discharges from on-site treatment facilities","authors":"Yoshihiko Inagaki, Elias Habineza, Hieu Minh Dang, Rodgers Makwinja, Masahito Komori, Yutaka Sakakibara","doi":"10.2166/wpt.2023.166","DOIUrl":"https://doi.org/10.2166/wpt.2023.166","url":null,"abstract":"Abstract River water quality degradation is a risk to human health. Hence, many water quality models have been developed to predict the future states of water bodies and understand how the current water treatment systems will respond to future pollution loads and climatic drivers. A Japanese river was evaluated with the River Water Quality Model No.1 (RWQM1), and parameter sensitivity and identifiability analyses were executed on the model output using parameter sensitivity ranking, collinearity index, and Fisher Information Matrix-derived criterion. Among RWQM1 kinetic parameters, those related to hydrolysis, growth of aerobicheterotrophs, and first-stage nitrifiers were the most influential. Reactive soluble organic substances included in untreated gray waters, in addition to a prevalence ratio of the most advanced on-site treatment facility, strongly contributed to the model output variability. A remediation analysis revealed that a renewal to the most advanced on-site treatment facility by 20% increment was almost equivalent to the 70% decrease in the effluent concentration from an on-site treatment facility producing the highest pollutant load in terms of a BOD concentration decrease in the stream. This study provided baseline data assisting in policy implementation regarding the management of effluents from on-site treatment facilities.","PeriodicalId":23794,"journal":{"name":"Water Practice and Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135809737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sol–gel catalysts immobilized on stainless steel meshes for Ba2+ removal in a continuous flow process: an experimental design 不锈钢网固载溶胶-凝胶催化剂在连续流动过程中去除Ba2+的实验设计
Q3 Environmental Science Pub Date : 2023-10-01 DOI: 10.2166/wpt.2023.156
Lisandra N. Bueno, Michel Zampieri Fidelis, Eduardo Abreu, Angelo Marcelo Tusset, Giane Gonçalves Lenzi
Abstract This study describes the use of a continuous flow system for photocatalytic reactions employing a TiO2 sol–gel structured catalyst. The catalyst was immobilized on various stainless steel meshes to investigate the barium(II) removal. To verify its photocatalytic activity, batch tests were carried out and the results were compared to the commercial catalyst P25. Effects of thermal treatment on the structured catalyst were investigated. The continuous flow photocatalytic tests were conducted under different experimental conditions through an experimental design to verify the effect of the parameters (pH and volume flow). The results of the batch tests indicated that the TiO2 sol–gel catalyst showed very similar activity to the TiO2 P25 when used in powder suspension (32% reduction of Ba2+). In the continuous flow process, maximum adhesion of catalysts on meshes was found at a calcination temperature of 623 K. The experimental design indicated the pH as a significant parameter in the studied conditions. It was observed that at pH levels close to 7, also indicated by the study of the zero charge point and lower flow rates, it was possible to obtain ∼20% removal of Ba2+ ions, in a continuous flow reactor with a residence time of 83 min.
摘要本研究描述了采用TiO2溶胶-凝胶结构催化剂的连续流系统进行光催化反应。将催化剂固定在不同的不锈钢网上,研究了钡(II)的去除。为了验证其光催化活性,进行了批量测试,并将结果与商用催化剂P25进行了比较。研究了热处理对结构催化剂的影响。通过实验设计,在不同的实验条件下进行了连续流光催化试验,验证了参数(pH和体积流量)的影响。批量试验结果表明,TiO2溶胶-凝胶催化剂在粉末悬浮液中与TiO2 P25表现出非常相似的活性(Ba2+还原32%)。在连续流过程中,在623 K的煅烧温度下,催化剂在网面上的粘附力最大。实验设计表明pH是研究条件下的一个重要参数。观察到,在pH值接近7的情况下,零电荷点和较低流速的研究也表明,在连续流动反应器中,停留时间为83分钟,可以获得~ 20%的Ba2+离子去除率。
{"title":"Sol–gel catalysts immobilized on stainless steel meshes for Ba2+ removal in a continuous flow process: an experimental design","authors":"Lisandra N. Bueno, Michel Zampieri Fidelis, Eduardo Abreu, Angelo Marcelo Tusset, Giane Gonçalves Lenzi","doi":"10.2166/wpt.2023.156","DOIUrl":"https://doi.org/10.2166/wpt.2023.156","url":null,"abstract":"Abstract This study describes the use of a continuous flow system for photocatalytic reactions employing a TiO2 sol–gel structured catalyst. The catalyst was immobilized on various stainless steel meshes to investigate the barium(II) removal. To verify its photocatalytic activity, batch tests were carried out and the results were compared to the commercial catalyst P25. Effects of thermal treatment on the structured catalyst were investigated. The continuous flow photocatalytic tests were conducted under different experimental conditions through an experimental design to verify the effect of the parameters (pH and volume flow). The results of the batch tests indicated that the TiO2 sol–gel catalyst showed very similar activity to the TiO2 P25 when used in powder suspension (32% reduction of Ba2+). In the continuous flow process, maximum adhesion of catalysts on meshes was found at a calcination temperature of 623 K. The experimental design indicated the pH as a significant parameter in the studied conditions. It was observed that at pH levels close to 7, also indicated by the study of the zero charge point and lower flow rates, it was possible to obtain ∼20% removal of Ba2+ ions, in a continuous flow reactor with a residence time of 83 min.","PeriodicalId":23794,"journal":{"name":"Water Practice and Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134937022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel solar simulated photocatalytic heterolysis of pharmaceutical wastewater via slag nanocomposite immobilization: optimization using response surface methodology 基于炉渣纳米复合材料固定化的新型太阳能模拟光催化制药废水异分解:响应面法优化
Q3 Environmental Science Pub Date : 2023-10-01 DOI: 10.2166/wpt.2023.152
Kingsley Safo, Hussien Noby, Masatoshi Mitsuhara, Hiroshi Naragino, Ahmed H. El-Shazly
Abstract This study converted slag from the steelmaking industry into an Fe2O3-rich nanocomposite using solvothermal technique for photodegradation of pharmaceutical wastewater in an immobilized mode. The nanocomposite was characterized using XRF, SEM, EDX, TEM, FTIR, XRD, and UV–Vis spectrometer. The XRF analysis result reveals a significant increase in the weight percent of Fe2O3 and SiO2, with a decrease in CaO content. The SEM images revealed the spherical and heterogeneous nature of the nanocomposite in shape and structure, while the FTIR confirms the increase in the vibration band of Si–O–Si and Fe–O with a reduction in the wide stretch mode of Ca–O. The XRD result illustrated the crystalline peak of Fe2O3 with a nanoparticle crystal size of 15.17 nm. The slag nanocomposite was used for the photodegradation of paracetamol. The optimum operating parameters were obtained using response surface methodology at an R2 value of 0.99 and p-value < 0.05. The degradation efficiency obtained at the optimum value was 96.96%. The degradation efficiency of the fifth repeated cycle of the immobilized nanocomposite was 77.89%. The degradation mechanism revealed that OH• radical was the major species of the degradation process. This work showed that slag nanocomposite might be effectively used for pharmaceutical wastewater treatment.
摘要本研究采用溶剂热法将炼钢炉渣转化为富fe2o3纳米复合材料,在固定化模式下光降解制药废水。采用XRF、SEM、EDX、TEM、FTIR、XRD和UV-Vis光谱仪对纳米复合材料进行了表征。XRF分析结果表明,Fe2O3和SiO2的重量百分比显著增加,而CaO的含量则显著降低。SEM图像显示了纳米复合材料在形状和结构上的球形和非均质性质,而FTIR证实了Si-O-Si和Fe-O的振动带增加,而Ca-O的宽拉伸模式减少。XRD结果表明,Fe2O3的晶峰尺寸为15.17 nm。采用炉渣纳米复合材料对扑热息痛进行光降解。采用响应面法在R2值为0.99,p值为<0.05. 在最优值下得到的降解效率为96.96%。第5次循环时,固定化纳米复合材料的降解效率为77.89%。降解机理表明,OH•自由基是降解过程中的主要物质。研究表明,矿渣纳米复合材料可有效地用于制药废水的处理。
{"title":"Novel solar simulated photocatalytic heterolysis of pharmaceutical wastewater via slag nanocomposite immobilization: optimization using response surface methodology","authors":"Kingsley Safo, Hussien Noby, Masatoshi Mitsuhara, Hiroshi Naragino, Ahmed H. El-Shazly","doi":"10.2166/wpt.2023.152","DOIUrl":"https://doi.org/10.2166/wpt.2023.152","url":null,"abstract":"Abstract This study converted slag from the steelmaking industry into an Fe2O3-rich nanocomposite using solvothermal technique for photodegradation of pharmaceutical wastewater in an immobilized mode. The nanocomposite was characterized using XRF, SEM, EDX, TEM, FTIR, XRD, and UV–Vis spectrometer. The XRF analysis result reveals a significant increase in the weight percent of Fe2O3 and SiO2, with a decrease in CaO content. The SEM images revealed the spherical and heterogeneous nature of the nanocomposite in shape and structure, while the FTIR confirms the increase in the vibration band of Si–O–Si and Fe–O with a reduction in the wide stretch mode of Ca–O. The XRD result illustrated the crystalline peak of Fe2O3 with a nanoparticle crystal size of 15.17 nm. The slag nanocomposite was used for the photodegradation of paracetamol. The optimum operating parameters were obtained using response surface methodology at an R2 value of 0.99 and p-value &amp;lt; 0.05. The degradation efficiency obtained at the optimum value was 96.96%. The degradation efficiency of the fifth repeated cycle of the immobilized nanocomposite was 77.89%. The degradation mechanism revealed that OH• radical was the major species of the degradation process. This work showed that slag nanocomposite might be effectively used for pharmaceutical wastewater treatment.","PeriodicalId":23794,"journal":{"name":"Water Practice and Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134934695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum: Water Practice and Technology 1 April 2023; 18 (4): 947–966: Synthesis of activated carbon from banana peels for dye removal of an aqueous solution in textile industries: optimization, kinetics, and isotherm aspects. Talbachew Tadesse Nadew, Mestawot Keana, Tsegaye Sisay, Belay Getye, Nigus Gabbiye Habtu. https://doi.org/10.2166/wpt.2023.042 勘误:水的实践和技术2023年4月1日;纺织工业用香蕉皮合成活性炭:优化、动力学和等温线方面。Talbachew Tadesse nadu, Mestawot Keana, Tsegaye Sisay, Belay Getye, Nigus Gabbiye Habtu。https://doi.org/10.2166/wpt.2023.042
Q3 Environmental Science Pub Date : 2023-10-01 DOI: 10.2166/wpt.2023.149
{"title":"Corrigendum: <i>Water Practice and Technology</i> 1 April 2023; 18 (4): 947–966: Synthesis of activated carbon from banana peels for dye removal of an aqueous solution in textile industries: optimization, kinetics, and isotherm aspects. Talbachew Tadesse Nadew, Mestawot Keana, Tsegaye Sisay, Belay Getye, Nigus Gabbiye Habtu. https://doi.org/10.2166/wpt.2023.042","authors":"","doi":"10.2166/wpt.2023.149","DOIUrl":"https://doi.org/10.2166/wpt.2023.149","url":null,"abstract":"","PeriodicalId":23794,"journal":{"name":"Water Practice and Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135568492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance evaluation of water supply distribution system: a case study of Muke Turi town, Oromia region, Ethiopia 供水分配系统绩效评价——以埃塞俄比亚奥罗米亚地区Muke Turi镇为例
Q3 Environmental Science Pub Date : 2023-09-27 DOI: 10.2166/wpt.2023.150
Solomon Ayele Negese, Habtamu Hailu Kebede
Abstract Adequate and sustainable supply of potable water in urban areas of developing countries is often a challenge. This study assessed the performance of the water supply system in Muke Turi town, Oromia, Ethiopia. The Water Geospatial Engineering Modeling System (WaterGEMS) model was used for hydraulic analysis of the distribution network. The water losses were determined by different indicators including non-revenue water (NRW), losses per pipe connection (LPC), losses per main pipe length (LMPL), unavoidable annual real losses (UARL), and infrastructure leakage index (ILI). The water supply coverage of the town was found as 43.34%, which is considerably low. From the hydraulic analysis, the velocity of flow in 54.2% of the pipe and pressure at 60% of the nodes were found within the recommended ranges. The NRW was estimated at 37.61%, which is above the acceptable limit. Of which, the real losses are the major ones with 37.14%. Moreover, the LPC and LMPL were found to be 298 l/d and 29,709 l/km/d, respectively, which are again above the recommended limits. Based on ILI, the annual real losses were estimated to be 4.31 times the UARL. Finally, it was concluded that access to water in the town is inadequate which is exacerbated by high losses.
在发展中国家的城市地区,充足和可持续的饮用水供应往往是一个挑战。本研究评估了埃塞俄比亚奥罗米亚州Muke Turi镇供水系统的性能。采用水地理空间工程建模系统(waterergems)模型对配电网进行水力分析。水损失由不同的指标确定,包括非收入水(NRW)、每个管道连接的损失(LPC)、每个主管道长度的损失(LMPL)、不可避免的年实际损失(UARL)和基础设施泄漏指数(ILI)。该城镇的供水覆盖率为43.34%,相当低。通过水力分析,54.2%的管道流速和60%的节点压力均在推荐范围内。NRW估计为37.61%,超过可接受的限度。其中,实际亏损占比最大,为37.14%。此外,LPC和LMPL分别为298 l/d和29,709 l/km/d,再次超过建议限值。根据ILI,每年的实际损失估计为UARL的4.31倍。最后,得出的结论是,该镇的供水不足,而高损失加剧了这一点。
{"title":"Performance evaluation of water supply distribution system: a case study of Muke Turi town, Oromia region, Ethiopia","authors":"Solomon Ayele Negese, Habtamu Hailu Kebede","doi":"10.2166/wpt.2023.150","DOIUrl":"https://doi.org/10.2166/wpt.2023.150","url":null,"abstract":"Abstract Adequate and sustainable supply of potable water in urban areas of developing countries is often a challenge. This study assessed the performance of the water supply system in Muke Turi town, Oromia, Ethiopia. The Water Geospatial Engineering Modeling System (WaterGEMS) model was used for hydraulic analysis of the distribution network. The water losses were determined by different indicators including non-revenue water (NRW), losses per pipe connection (LPC), losses per main pipe length (LMPL), unavoidable annual real losses (UARL), and infrastructure leakage index (ILI). The water supply coverage of the town was found as 43.34%, which is considerably low. From the hydraulic analysis, the velocity of flow in 54.2% of the pipe and pressure at 60% of the nodes were found within the recommended ranges. The NRW was estimated at 37.61%, which is above the acceptable limit. Of which, the real losses are the major ones with 37.14%. Moreover, the LPC and LMPL were found to be 298 l/d and 29,709 l/km/d, respectively, which are again above the recommended limits. Based on ILI, the annual real losses were estimated to be 4.31 times the UARL. Finally, it was concluded that access to water in the town is inadequate which is exacerbated by high losses.","PeriodicalId":23794,"journal":{"name":"Water Practice and Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135535952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of flood inundation maps for the Chaliyar Basin, Kerala under climate change scenarios 气候变化情景下喀拉拉邦Chaliyar盆地洪水淹没图的开发
Q3 Environmental Science Pub Date : 2023-09-27 DOI: 10.2166/wpt.2023.148
Nagireddy Venkata Jayasimha Reddy, R. Arunkumar
Abstract Floods are one of the extreme events and widespread natural disasters that significantly affect the civil infrastructure and livelihoods of people. Recently, climate change has significantly altered the rainfall pattern and increased flood events worldwide, especially in India. Therefore, it has become essential to map potential flood inundation regions for various future extreme events to develop appropriate flood mitigation and management strategies. This study aims to develop flood inundation maps for different return periods under climate change scenarios for the Chaliyar basin, Kerala. The Hydrologic Engineering Center-Hydrologic Modelling System model was used to simulate streamflow under SSP2-4.5 and SSP5-8.5 scenarios. Later, flood inundation maps were developed for different return periods using the Hydrologic Engineering Center-River Analysis System model. It was observed that for the near future (2031–2040) and far future (2071–2080), simulated streamflow is higher for SSP5-8.5. However, the mid-future (2051–2060) resulted in a higher streamflow for SSP2-4.5 than the SSP5-8.5 scenario. A maximum of 19.52 m of water surface elevation occurred at Kizhupparamba during mid-future for SSP2-4.5, followed by 18.38 m of water surface elevation at Cheekode during the near future for SSP5-8.5, for 100-year return period events. This study showed that hydrologic and hydraulic models could be effectively combined for mapping the flood inundation areas.
洪水是严重影响民用基础设施和人民生计的极端事件和广泛的自然灾害之一。最近,气候变化显著改变了降雨模式,增加了世界范围内的洪水事件,尤其是在印度。因此,绘制未来各种极端事件的潜在洪水淹没区域地图,以制定适当的洪水缓解和管理战略变得至关重要。本研究旨在开发喀拉拉邦Chaliyar盆地在气候变化情景下不同回归期的洪水淹没图。采用水文工程中心-水文模拟系统模型模拟了SSP2-4.5和SSP5-8.5两种情景下的河流流量。随后,利用水文工程中心-河流分析系统模型,绘制了不同回归期的洪水淹没图。在近未来(2031-2040年)和远未来(2071-2080年),SSP5-8.5的模拟流量较高。然而,中期未来(2051-2060)导致SSP2-4.5情景的流量高于SSP5-8.5情景。在100年回归期事件中,Kizhupparamba的中期水面高度最大值为19.52 m,其次是chekode的近期水面高度最大值,SSP5-8.5为18.38 m。研究表明,水文和水工模型可以有效地结合起来进行洪水淹没区制图。
{"title":"Development of flood inundation maps for the Chaliyar Basin, Kerala under climate change scenarios","authors":"Nagireddy Venkata Jayasimha Reddy, R. Arunkumar","doi":"10.2166/wpt.2023.148","DOIUrl":"https://doi.org/10.2166/wpt.2023.148","url":null,"abstract":"Abstract Floods are one of the extreme events and widespread natural disasters that significantly affect the civil infrastructure and livelihoods of people. Recently, climate change has significantly altered the rainfall pattern and increased flood events worldwide, especially in India. Therefore, it has become essential to map potential flood inundation regions for various future extreme events to develop appropriate flood mitigation and management strategies. This study aims to develop flood inundation maps for different return periods under climate change scenarios for the Chaliyar basin, Kerala. The Hydrologic Engineering Center-Hydrologic Modelling System model was used to simulate streamflow under SSP2-4.5 and SSP5-8.5 scenarios. Later, flood inundation maps were developed for different return periods using the Hydrologic Engineering Center-River Analysis System model. It was observed that for the near future (2031–2040) and far future (2071–2080), simulated streamflow is higher for SSP5-8.5. However, the mid-future (2051–2060) resulted in a higher streamflow for SSP2-4.5 than the SSP5-8.5 scenario. A maximum of 19.52 m of water surface elevation occurred at Kizhupparamba during mid-future for SSP2-4.5, followed by 18.38 m of water surface elevation at Cheekode during the near future for SSP5-8.5, for 100-year return period events. This study showed that hydrologic and hydraulic models could be effectively combined for mapping the flood inundation areas.","PeriodicalId":23794,"journal":{"name":"Water Practice and Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135536148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Water Practice and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1