Vitaly A. Zlotnik, D. Kip Solomon, David P. Genereux, Troy E. Gilmore, C. Eric Humphrey, Aaron R. Mittelstet, Anatoly V. Zlotnik
Abstract A new approach for measuring fluxes across surface water—groundwater interfaces was recently proposed. The Automatic Seepage Meter (ASM) is equipped with a precise water level sensor and digital memory that analyzes water level time series in a vertical tube inserted into a streambed (Solomon et al., 2020, https://doi.org/10.1029/2019WR026983 ). The ability to infer flux values with high temporal resolution relies on an accurate interpretation of water level dynamics inside the tube. Here, we reduce the three‐dimensional hydrodynamic problem that describes the ASM water level in a variety of field conditions to a single ordinary differential equation. This novel general analytical solution for estimating ASM responses is more comprehensive and flexible than previous approaches and is applicable to the entire range of field conditions, including steady or transient stream stages, evaporation, rainfall, and noise. For example, our analysis determines the timing of the nonmonotonic ASM response to a monotonic linear stream stage variation and explains previously used empirical parabolic approximation for estimating fluxes. We present algorithms for simultaneous inference of vertical interface flux and hydraulic conductivity values together with an example code. We quantify how the accuracy of parameter estimation depends on test duration and noise amplitude and propose how our analysis can be used to optimize field test protocols. On this basis, changing the ASM geometry by increasing the radius and decreasing tube insertion depth may enable ASM field test protocols that estimate interface flux and hydraulic conductivity faster while maintaining desired accuracy. Potential applications of joint parameter estimation are suggested.
摘要最近提出了一种测量地表水-地下水界面通量的新方法。自动渗水仪(ASM)配备了精确的水位传感器和数字存储器,可以分析插入河床的垂直管中的水位时间序列(Solomon et al., 2020, https://doi.org/10.1029/2019WR026983)。以高时间分辨率推断通量值的能力依赖于对管道内水位动态的准确解释。在这里,我们将描述各种场条件下ASM水位的三维水动力问题简化为单个常微分方程。这种估算ASM响应的新型通用解析解比以前的方法更全面、更灵活,适用于整个现场条件范围,包括稳定或瞬态流阶段、蒸发、降雨和噪声。例如,我们的分析确定了非单调ASM响应单调线性流阶段变化的时间,并解释了以前使用的经验抛物线近似来估计通量。本文给出了同时推断垂直界面通量和水力导率值的算法,并给出了示例代码。我们量化了参数估计的准确性如何取决于测试持续时间和噪声幅度,并提出了如何使用我们的分析来优化现场测试方案。在此基础上,通过增加半径和减小管插入深度来改变ASM的几何形状,可以使ASM现场测试协议更快地估计界面通量和水力导电性,同时保持所需的精度。提出了联合参数估计的应用前景。
{"title":"Theory of an Automatic Seepage Meter and Ramifications for Applications","authors":"Vitaly A. Zlotnik, D. Kip Solomon, David P. Genereux, Troy E. Gilmore, C. Eric Humphrey, Aaron R. Mittelstet, Anatoly V. Zlotnik","doi":"10.1029/2023wr034766","DOIUrl":"https://doi.org/10.1029/2023wr034766","url":null,"abstract":"Abstract A new approach for measuring fluxes across surface water—groundwater interfaces was recently proposed. The Automatic Seepage Meter (ASM) is equipped with a precise water level sensor and digital memory that analyzes water level time series in a vertical tube inserted into a streambed (Solomon et al., 2020, https://doi.org/10.1029/2019WR026983 ). The ability to infer flux values with high temporal resolution relies on an accurate interpretation of water level dynamics inside the tube. Here, we reduce the three‐dimensional hydrodynamic problem that describes the ASM water level in a variety of field conditions to a single ordinary differential equation. This novel general analytical solution for estimating ASM responses is more comprehensive and flexible than previous approaches and is applicable to the entire range of field conditions, including steady or transient stream stages, evaporation, rainfall, and noise. For example, our analysis determines the timing of the nonmonotonic ASM response to a monotonic linear stream stage variation and explains previously used empirical parabolic approximation for estimating fluxes. We present algorithms for simultaneous inference of vertical interface flux and hydraulic conductivity values together with an example code. We quantify how the accuracy of parameter estimation depends on test duration and noise amplitude and propose how our analysis can be used to optimize field test protocols. On this basis, changing the ASM geometry by increasing the radius and decreasing tube insertion depth may enable ASM field test protocols that estimate interface flux and hydraulic conductivity faster while maintaining desired accuracy. Potential applications of joint parameter estimation are suggested.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135809566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. M. Johaneman, K. B. Lininger, D. M. Schook, J. Pitlick, M. Martin
Hydrogeomorphic processes strongly influence riparian vegetation, but few studies have determined the influence of knickpoint development on these processes. We investigate the influence of knickpoint development and channel incision on flood inundation, channel morphology, and riparian vegetation on the Fremont River in Utah. We conducted topographic surveys (n = 30 transects) and plot‐based vegetation surveys (n = 336) in three 1 km‐long reaches with varying proximities to a human‐created knickpoint. We also developed 1D hydraulic models to assess flood inundation patterns. Our data indicate that knickpoint development affects riparian vegetation composition and abundance through its influence on geomorphic and hydrologic processes. The study reach located just upstream of the knickpoint (R2) had a deeper channel, flooded less frequently, and required higher flows to inundate the floodplain compared to the study reach located 5 km upstream of the knickpoint (R1). Overall mean vegetation abundance (percent cover) was higher in R1 (55.7%) than in R2 (30.1%), and R1 had more occurrences of wet‐adapted (facultative wetland and obligate) species than R2 (198 and 79, respectively). Vegetation in the human‐created abandoned meander reach near the knickpoint (R4) was predominantly dry‐adapted (upland) species. Cross‐reach comparisons and more than 3 m of incision in the knickzone since knickpoint creation indicate that knickpoint development has resulted in channel incision in R2, shifting its vegetation toward more dry‐adapted species reminiscent of the surrounding uplands. This work informs natural resource management practices for habitat in riparian ecosystems and can be applied to rivers in drier regions.
{"title":"The Influence of Knickpoint Development and Channel Incision on Riparian Vegetation in Semi‐Arid River Corridors","authors":"T. M. Johaneman, K. B. Lininger, D. M. Schook, J. Pitlick, M. Martin","doi":"10.1029/2023wr034872","DOIUrl":"https://doi.org/10.1029/2023wr034872","url":null,"abstract":"Hydrogeomorphic processes strongly influence riparian vegetation, but few studies have determined the influence of knickpoint development on these processes. We investigate the influence of knickpoint development and channel incision on flood inundation, channel morphology, and riparian vegetation on the Fremont River in Utah. We conducted topographic surveys (n = 30 transects) and plot‐based vegetation surveys (n = 336) in three 1 km‐long reaches with varying proximities to a human‐created knickpoint. We also developed 1D hydraulic models to assess flood inundation patterns. Our data indicate that knickpoint development affects riparian vegetation composition and abundance through its influence on geomorphic and hydrologic processes. The study reach located just upstream of the knickpoint (R2) had a deeper channel, flooded less frequently, and required higher flows to inundate the floodplain compared to the study reach located 5 km upstream of the knickpoint (R1). Overall mean vegetation abundance (percent cover) was higher in R1 (55.7%) than in R2 (30.1%), and R1 had more occurrences of wet‐adapted (facultative wetland and obligate) species than R2 (198 and 79, respectively). Vegetation in the human‐created abandoned meander reach near the knickpoint (R4) was predominantly dry‐adapted (upland) species. Cross‐reach comparisons and more than 3 m of incision in the knickzone since knickpoint creation indicate that knickpoint development has resulted in channel incision in R2, shifting its vegetation toward more dry‐adapted species reminiscent of the surrounding uplands. This work informs natural resource management practices for habitat in riparian ecosystems and can be applied to rivers in drier regions.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135810645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liuming Wang, Junxiao Wang, Lachun Wang, Liping Zhu, Xingong Li
Abstract Effects of lake evaporation ( E W ) on basin evapotranspiration ( ET B ) and lake water storage change ( LWSC ) at lake‐basin scale have never been reported for most basins on the inner Tibetan Plateau (IB). In this study, E W of 118 large lakes in 95 closed lake‐basins were estimated, and its effects on ET B and LWSC over 2001–2018 were examined using a derivative‐guided framework from the aspects of E W amount, rate, trend slope and inter‐annual variability. We found that E W amount has a high effect (17%) on regional ET B amount compared to the average lake area ratio ( α ) (∼5%), and the effect has increased significantly (2%/10 a). The spatial pattern of the effect is mainly controlled by α , and the increasing trend of α (0.6%/10 a) also dominated the increasing trend in regional ET B rate (0.30 mm/a) though with large spatial heterogeneity. Variance in α and E W rate have a minor effect (∼3%) on ET B variance, especially for the basins with lower α . The combination of quasi lake inflow ( R L , 41%) and lake surface precipitation ( P W , 16%) offset the depletion of E W (−43%), resulting in the surplus of regional lake water ( LWSC > 0). The increase in E W mount, which is mainly from lake area expansion (90%), caused a decreasing trend in LWSC (i.e., slower growth rate) with a contribution of −59%. This suggests a negative feedback between lake area expansion and E W amount in the IB, and the feedback may continue with the predicted area increases.
{"title":"Lake Evaporation and Its Effects on Basin Evapotranspiration and Lake Water Storage on the Inner Tibetan Plateau","authors":"Liuming Wang, Junxiao Wang, Lachun Wang, Liping Zhu, Xingong Li","doi":"10.1029/2022wr034030","DOIUrl":"https://doi.org/10.1029/2022wr034030","url":null,"abstract":"Abstract Effects of lake evaporation ( E W ) on basin evapotranspiration ( ET B ) and lake water storage change ( LWSC ) at lake‐basin scale have never been reported for most basins on the inner Tibetan Plateau (IB). In this study, E W of 118 large lakes in 95 closed lake‐basins were estimated, and its effects on ET B and LWSC over 2001–2018 were examined using a derivative‐guided framework from the aspects of E W amount, rate, trend slope and inter‐annual variability. We found that E W amount has a high effect (17%) on regional ET B amount compared to the average lake area ratio ( α ) (∼5%), and the effect has increased significantly (2%/10 a). The spatial pattern of the effect is mainly controlled by α , and the increasing trend of α (0.6%/10 a) also dominated the increasing trend in regional ET B rate (0.30 mm/a) though with large spatial heterogeneity. Variance in α and E W rate have a minor effect (∼3%) on ET B variance, especially for the basins with lower α . The combination of quasi lake inflow ( R L , 41%) and lake surface precipitation ( P W , 16%) offset the depletion of E W (−43%), resulting in the surplus of regional lake water ( LWSC > 0). The increase in E W mount, which is mainly from lake area expansion (90%), caused a decreasing trend in LWSC (i.e., slower growth rate) with a contribution of −59%. This suggests a negative feedback between lake area expansion and E W amount in the IB, and the feedback may continue with the predicted area increases.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136055254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Three primary driving factors are responsible for the lateral flux of streamwise momentum within meander bends: topographic steering of the flow related to changes in channel morphology, rapid changes in channel curvature, and curvature‐driven helical motion. While these factors have been studied previously, their relative contributions to the net redistribution of streamwise momentum within a series of consecutive bends have not yet been fully documented. This study explores the relative contributions of these three mechanisms to the redistribution of streamwise momentum using three‐dimensional velocity data obtained along six consecutive meander bends on the Pearl River (Louisiana, USA) for two different discharges. The magnitudes of lateral momentum flux are systematically compared to spatial series of channel width, bed shape, and channel curvature to elucidate the interactions between channel form and flow structure. Results show that the lateral flux of streamwise momentum is primarily driven by topographic steering with values of momentum flux due to curvature‐driven secondary circulation on average an order of magnitude less than values of flux related to topographic steering. The spatial patterns of the lateral flux components show that momentum redistribution due to topographic steering is highest at the entrance to the bend, and momentum redistribution due to secondary circulation is typically highest downstream of the apex. The results of this study emphasize the important role that interaction between process and form plays in dynamics of natural meandering rivers.
{"title":"The Role of Bed Morphology and Channel Curvature on the Redistribution of Momentum in a Series of Meander Bends, Pearl River, USA","authors":"Kory Konsoer, Taylor Rowley, Bruce Rhoads","doi":"10.1029/2023wr034804","DOIUrl":"https://doi.org/10.1029/2023wr034804","url":null,"abstract":"Abstract Three primary driving factors are responsible for the lateral flux of streamwise momentum within meander bends: topographic steering of the flow related to changes in channel morphology, rapid changes in channel curvature, and curvature‐driven helical motion. While these factors have been studied previously, their relative contributions to the net redistribution of streamwise momentum within a series of consecutive bends have not yet been fully documented. This study explores the relative contributions of these three mechanisms to the redistribution of streamwise momentum using three‐dimensional velocity data obtained along six consecutive meander bends on the Pearl River (Louisiana, USA) for two different discharges. The magnitudes of lateral momentum flux are systematically compared to spatial series of channel width, bed shape, and channel curvature to elucidate the interactions between channel form and flow structure. Results show that the lateral flux of streamwise momentum is primarily driven by topographic steering with values of momentum flux due to curvature‐driven secondary circulation on average an order of magnitude less than values of flux related to topographic steering. The spatial patterns of the lateral flux components show that momentum redistribution due to topographic steering is highest at the entrance to the bend, and momentum redistribution due to secondary circulation is typically highest downstream of the apex. The results of this study emphasize the important role that interaction between process and form plays in dynamics of natural meandering rivers.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136055255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Tajima, P. Brunner, J. Liu, H. Delottier, T. Tokunaga
Abstract Storm surges associated with tropical cyclones endanger atolls through groundwater flooding, where groundwater is discharged from the land surface as the sea level rises. Atolls are characterized by a “dual‐aquifer” configuration, where recent Holocene sediments unconformably overlie highly permeable Pleistocene limestone, creating an interface called a “Thurber discontinuity.” This study aimed to quantitatively analyze how the dual‐aquifer configuration of atolls controls the temporal dynamics of groundwater flooding caused by storm surge. To this end, we ran surface‐subsurface coupled synthetic numerical simulations using HydroGeoSphere and compared 12 scenarios with different Thurber discontinuity elevations and hydraulic conductivities of the Pleistocene aquifer ( K P ). The results showed that the shallower the Thurber discontinuity and the higher the K P value, the higher the maximum water depth in the freshwater swamp on the atoll during the storm surge and the longer the flooding duration. Despite the effects of the different dual‐aquifer configurations, the initial water table elevation and salinity distribution were almost identical in all the simulation cases. These findings suggest that accurate information on the dual‐aquifer configuration is necessary to evaluate the potential risk of groundwater flooding on atolls accompanying storm surges. Furthermore, the results indicate that groundwater flooding caused by storm surges substantially contributes to cyclone‐driven flooding on atolls, and hence, it should not be neglected in flood predictions to avoid underestimation.
{"title":"Groundwater Flooding on Atolls Caused by Storm Surges: Effects of the Dual‐aquifer Configuration","authors":"S. Tajima, P. Brunner, J. Liu, H. Delottier, T. Tokunaga","doi":"10.1029/2023wr034762","DOIUrl":"https://doi.org/10.1029/2023wr034762","url":null,"abstract":"Abstract Storm surges associated with tropical cyclones endanger atolls through groundwater flooding, where groundwater is discharged from the land surface as the sea level rises. Atolls are characterized by a “dual‐aquifer” configuration, where recent Holocene sediments unconformably overlie highly permeable Pleistocene limestone, creating an interface called a “Thurber discontinuity.” This study aimed to quantitatively analyze how the dual‐aquifer configuration of atolls controls the temporal dynamics of groundwater flooding caused by storm surge. To this end, we ran surface‐subsurface coupled synthetic numerical simulations using HydroGeoSphere and compared 12 scenarios with different Thurber discontinuity elevations and hydraulic conductivities of the Pleistocene aquifer ( K P ). The results showed that the shallower the Thurber discontinuity and the higher the K P value, the higher the maximum water depth in the freshwater swamp on the atoll during the storm surge and the longer the flooding duration. Despite the effects of the different dual‐aquifer configurations, the initial water table elevation and salinity distribution were almost identical in all the simulation cases. These findings suggest that accurate information on the dual‐aquifer configuration is necessary to evaluate the potential risk of groundwater flooding on atolls accompanying storm surges. Furthermore, the results indicate that groundwater flooding caused by storm surges substantially contributes to cyclone‐driven flooding on atolls, and hence, it should not be neglected in flood predictions to avoid underestimation.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135324526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The emergence of large language models (LLMs), such as ChatGPT, has garnered significant attention, particularly in academic and scientific circles. Researchers, scientists, and instructors hold varying perspectives on the advantages and disadvantages of using ChatGPT for research and teaching purposes. ChatGPT will be used by many scientists going forward for creating content and driving scientific progress. This commentary offers a brief explanation of the fundamental principles behind ChatGPT and how it can be applied in the fields of hydrology and other Earth sciences. The article examines the primary applications of this open artificial intelligence tool within these fields, specifically its ability to assist with writing and coding tasks, and highlights both the advantages and concerns associated with using such a model. Moreover, the study brings up some other limitations of the model, and the dangers of potential miss‐uses. Finally, we suggest that the academic community adapts its regulations and policies to harness the potential benefits of LLMs while mitigating its pitfalls, including establishing a structure for utilizing LLMs and presenting clear regulations for their implementation. We also outline some specific steps on how to accomplish this structure.
{"title":"ChatGPT in Hydrology and Earth Sciences: Opportunities, Prospects and Concerns","authors":"Ehsan Foroumandi, Hamid Moradkhani, Xavier Sanchez‐Vila, Kamini Singha, Andrea Castelletti, Georgia Destouni","doi":"10.1029/2023wr036288","DOIUrl":"https://doi.org/10.1029/2023wr036288","url":null,"abstract":"Abstract The emergence of large language models (LLMs), such as ChatGPT, has garnered significant attention, particularly in academic and scientific circles. Researchers, scientists, and instructors hold varying perspectives on the advantages and disadvantages of using ChatGPT for research and teaching purposes. ChatGPT will be used by many scientists going forward for creating content and driving scientific progress. This commentary offers a brief explanation of the fundamental principles behind ChatGPT and how it can be applied in the fields of hydrology and other Earth sciences. The article examines the primary applications of this open artificial intelligence tool within these fields, specifically its ability to assist with writing and coding tasks, and highlights both the advantages and concerns associated with using such a model. Moreover, the study brings up some other limitations of the model, and the dangers of potential miss‐uses. Finally, we suggest that the academic community adapts its regulations and policies to harness the potential benefits of LLMs while mitigating its pitfalls, including establishing a structure for utilizing LLMs and presenting clear regulations for their implementation. We also outline some specific steps on how to accomplish this structure.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"92 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136079718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julie Collignan, Jan Polcher, Sophie Bastin, Pere Quintana‐Segui
Abstract In the context of climate change, the stakes surrounding water availability are rapidly intensifying. Decomposing and quantifying the effects of climate on discharge allows us to understand their impact on water resources better. We propose a methodology to separate the effect of change in the annual mean of climate variables from the effect of the intra‐annual distribution of precipitation. It combines the Budyko framework with land surface model (LSM) outputs. The LSM is used to reproduce the behavior of 2,134 reconstructed watersheds across Europe between 1902 and 2010, with climate inputs as the only source of change. We fit a one‐parameter approximation of the Budyko framework to the LSM outputs. It accounts for the evolution of the annual mean in precipitation ( P ) and potential evapotranspiration (PET). We introduce a varying parameter in the equation, representing the effect of long‐term variations in the intra‐annual distribution of P and PET. To better assess the effects of changes in annual means or intra‐annual distribution of P , we construct synthetic forcings fixing one or the other. European results show that the trends in the annual averages of P dominate the trends in discharge due to climate. The second main climate driver is PET, except over the Mediterranean area, where changes in intra‐annual variations of P have a higher impact on discharge than trends in PET. Therefore, the effects of changes in the intra‐annual distribution of climate variables are to be addressed when looking at changes in annual discharge.
{"title":"Budyko framework based analysis of the effect of climate change on watershed evaporation efficiency and its impact on discharge over Europe","authors":"Julie Collignan, Jan Polcher, Sophie Bastin, Pere Quintana‐Segui","doi":"10.1029/2023wr034509","DOIUrl":"https://doi.org/10.1029/2023wr034509","url":null,"abstract":"Abstract In the context of climate change, the stakes surrounding water availability are rapidly intensifying. Decomposing and quantifying the effects of climate on discharge allows us to understand their impact on water resources better. We propose a methodology to separate the effect of change in the annual mean of climate variables from the effect of the intra‐annual distribution of precipitation. It combines the Budyko framework with land surface model (LSM) outputs. The LSM is used to reproduce the behavior of 2,134 reconstructed watersheds across Europe between 1902 and 2010, with climate inputs as the only source of change. We fit a one‐parameter approximation of the Budyko framework to the LSM outputs. It accounts for the evolution of the annual mean in precipitation ( P ) and potential evapotranspiration (PET). We introduce a varying parameter in the equation, representing the effect of long‐term variations in the intra‐annual distribution of P and PET. To better assess the effects of changes in annual means or intra‐annual distribution of P , we construct synthetic forcings fixing one or the other. European results show that the trends in the annual averages of P dominate the trends in discharge due to climate. The second main climate driver is PET, except over the Mediterranean area, where changes in intra‐annual variations of P have a higher impact on discharge than trends in PET. Therefore, the effects of changes in the intra‐annual distribution of climate variables are to be addressed when looking at changes in annual discharge.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135274448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongfei Yang, Jinlei Wang, Jianzhong Wang, Yingwen Li, Hai Sun, Lei Zhang, Junjie Zhong, Kai Zhang, Jun Yao
Abstract Dissolution trapping is one of the crucial trapping mechanisms for geological carbon storage in deep saline aquifers. The injected supercritical CO 2 (scCO 2 ) flow and dissolution processes are coupled and interact with each other. Therefore, we performed direct numerical simulations in three‐dimensional micro‐CT images of sandstones using the volume of fluid and continuous species transfer method. We investigated the coupled scCO 2 flow and dissolution processes at pore‐scale under different rock structures, capillary numbers, and rock wettability conditions. The dynamic evolution of the scCO 2 /brine phase distribution and scCO 2 concentration distribution occurring during the injection period were presented and analyzed. Complicated coupling mechanisms between scCO 2 ‐brine two‐phase flow and interphase mass transfer were also revealed. Our results showed that the scCO 2 dissolution was highly dependent on the local distribution of scCO 2 clusters. The rock with relatively high porosity and permeability would have more capacity for scCO 2 injection resulting in a faster and greater dissolution of scCO 2 in brine. The effect of capillary number on the scCO 2 dissolution process was related to the range of capillary number. The effective upscaled (macro‐scale) mass transfer coefficient ( k A ) during scCO 2 dissolution was evaluated, and the power‐law relationship between k A and Péclet number was obtained. Rock wettability was found to be another factor controlling the scCO 2 dissolution process by affecting the scCO 2 ‐brine interfacial area. Our pore‐scale study provides a deep understanding of the scCO 2 dissolution trapping mechanism, which is important to enhance the prediction of sequestration risk and improve sequestration efficiency.
{"title":"Pore‐scale modelling of coupled CO<sub>2</sub> flow and dissolution in 3D porous media for geological carbon storage","authors":"Yongfei Yang, Jinlei Wang, Jianzhong Wang, Yingwen Li, Hai Sun, Lei Zhang, Junjie Zhong, Kai Zhang, Jun Yao","doi":"10.1029/2023wr035402","DOIUrl":"https://doi.org/10.1029/2023wr035402","url":null,"abstract":"Abstract Dissolution trapping is one of the crucial trapping mechanisms for geological carbon storage in deep saline aquifers. The injected supercritical CO 2 (scCO 2 ) flow and dissolution processes are coupled and interact with each other. Therefore, we performed direct numerical simulations in three‐dimensional micro‐CT images of sandstones using the volume of fluid and continuous species transfer method. We investigated the coupled scCO 2 flow and dissolution processes at pore‐scale under different rock structures, capillary numbers, and rock wettability conditions. The dynamic evolution of the scCO 2 /brine phase distribution and scCO 2 concentration distribution occurring during the injection period were presented and analyzed. Complicated coupling mechanisms between scCO 2 ‐brine two‐phase flow and interphase mass transfer were also revealed. Our results showed that the scCO 2 dissolution was highly dependent on the local distribution of scCO 2 clusters. The rock with relatively high porosity and permeability would have more capacity for scCO 2 injection resulting in a faster and greater dissolution of scCO 2 in brine. The effect of capillary number on the scCO 2 dissolution process was related to the range of capillary number. The effective upscaled (macro‐scale) mass transfer coefficient ( k A ) during scCO 2 dissolution was evaluated, and the power‐law relationship between k A and Péclet number was obtained. Rock wettability was found to be another factor controlling the scCO 2 dissolution process by affecting the scCO 2 ‐brine interfacial area. Our pore‐scale study provides a deep understanding of the scCO 2 dissolution trapping mechanism, which is important to enhance the prediction of sequestration risk and improve sequestration efficiency.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135323899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongpeng Lin, Chenge An, Shan Zheng, Ruihua Nie, Gary Parker, Marwan A. Hassan, Matthew J. Czapiga, Xudong Fu
Abstract Since the 2008 Wenchuan (Ms. 8.0) Earthquake, the foreland rivers of the Longmen Mountains have suffered from significant bed degradation, among which the Shi‐ting River has experienced the largest local degradation of more than 20 m in 7 years. Potential reasons of the dramatic degradation include: (a) sediment disconnectivity due to in‐channel weirs; (b) the mobilization effect on gravel of an increased sand supply as a result of earthquake‐induced landslides; and (c) sediment extraction due to intensive mining. In this paper, we study the complex interaction among the above‐mentioned factors in the Shi‐ting River, using a one‐dimensional river morphodynamic model. Simulation results show that in‐channel weirs can reduce bedload transport and lead to bed degradation that is proportional to weir height. When coupled with additional sand supply, the weirs preferentially trap gravel and deliver sand, augmenting the downstream mobility of gravel and thus the degradation. For the Shi‐ting River, the simulated bed degradation agrees well with the observation when an annual sediment mining of 16 million tons is implemented in the simulation, along with the effects of in‐channel weirs and sand supply. The contribution of sediment mining is one order of magnitude larger than the coupling effect of weirs and sand supply. Both the simulation and observation show that the largest bed degradation occurs downstream of the Renmin Weir, due to the large spatial interval between the Renmin Weir and the next grade control structure.
{"title":"Degradation of a foreland river after the Wenchuan Earthquake, China: A combined effect of weirs, sediment supply and sediment mining","authors":"Yongpeng Lin, Chenge An, Shan Zheng, Ruihua Nie, Gary Parker, Marwan A. Hassan, Matthew J. Czapiga, Xudong Fu","doi":"10.1029/2023wr035345","DOIUrl":"https://doi.org/10.1029/2023wr035345","url":null,"abstract":"Abstract Since the 2008 Wenchuan (Ms. 8.0) Earthquake, the foreland rivers of the Longmen Mountains have suffered from significant bed degradation, among which the Shi‐ting River has experienced the largest local degradation of more than 20 m in 7 years. Potential reasons of the dramatic degradation include: (a) sediment disconnectivity due to in‐channel weirs; (b) the mobilization effect on gravel of an increased sand supply as a result of earthquake‐induced landslides; and (c) sediment extraction due to intensive mining. In this paper, we study the complex interaction among the above‐mentioned factors in the Shi‐ting River, using a one‐dimensional river morphodynamic model. Simulation results show that in‐channel weirs can reduce bedload transport and lead to bed degradation that is proportional to weir height. When coupled with additional sand supply, the weirs preferentially trap gravel and deliver sand, augmenting the downstream mobility of gravel and thus the degradation. For the Shi‐ting River, the simulated bed degradation agrees well with the observation when an annual sediment mining of 16 million tons is implemented in the simulation, along with the effects of in‐channel weirs and sand supply. The contribution of sediment mining is one order of magnitude larger than the coupling effect of weirs and sand supply. Both the simulation and observation show that the largest bed degradation occurs downstream of the Renmin Weir, due to the large spatial interval between the Renmin Weir and the next grade control structure.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135324749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Logjams may form at natural obstructions and are also used as nature‐based solutions for river restoration and natural flood management. Previous research has described backwater rise due to logjams that span the full channel cross‐section and logjams with a gap between the lower edge of the logjam and the bed. Logjams that fill the channel depth, but not its width, leaving a lateral gap between the logjam and the channel bank, are also common natural formations and the focus of this study. The flow distribution between the logjam and the lateral gap, backwater rise, and wake turbulence are key factors in determining the ecologic and flood risk impact of a logjam. Specifically, relative to a channel‐spanning logjam, the introduction of a lateral gap can reduce backwater rise and increase the potential for trapping particles, such as nutrients or microplastics, within the wake region, but may also promote erosion in the gap. The choice of logjam and gap widths can be used to maximize flow and habitat diversity in rivers, while reducing erosion risk. We present experimental results demonstrating that the flow distribution between the logjam and the lateral gap can be predicted by assuming equal resistance through the logjam and gap sections. Further, we show that backwater rise can be determined from the predicted discharge through the logjam using a momentum balance developed for channel‐spanning logjams. Finally, turbulence generated within the jam was observed directly downstream of the logjam, and, for the densities considered, increased with jam density.
{"title":"Impact of Lateral Gap on Flow Distribution, Backwater Rise, and Turbulence Generated by a Logjam","authors":"Isabella Schalko, Elizabeth Follett, Heidi Nepf","doi":"10.1029/2023wr034689","DOIUrl":"https://doi.org/10.1029/2023wr034689","url":null,"abstract":"Abstract Logjams may form at natural obstructions and are also used as nature‐based solutions for river restoration and natural flood management. Previous research has described backwater rise due to logjams that span the full channel cross‐section and logjams with a gap between the lower edge of the logjam and the bed. Logjams that fill the channel depth, but not its width, leaving a lateral gap between the logjam and the channel bank, are also common natural formations and the focus of this study. The flow distribution between the logjam and the lateral gap, backwater rise, and wake turbulence are key factors in determining the ecologic and flood risk impact of a logjam. Specifically, relative to a channel‐spanning logjam, the introduction of a lateral gap can reduce backwater rise and increase the potential for trapping particles, such as nutrients or microplastics, within the wake region, but may also promote erosion in the gap. The choice of logjam and gap widths can be used to maximize flow and habitat diversity in rivers, while reducing erosion risk. We present experimental results demonstrating that the flow distribution between the logjam and the lateral gap can be predicted by assuming equal resistance through the logjam and gap sections. Further, we show that backwater rise can be determined from the predicted discharge through the logjam using a momentum balance developed for channel‐spanning logjams. Finally, turbulence generated within the jam was observed directly downstream of the logjam, and, for the densities considered, increased with jam density.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"203 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135963685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}