首页 > 最新文献

Water Resources Research最新文献

英文 中文
Uncertainties in Simulating Flooding During Hurricane Harvey Using 2D Shallow Water Equations 利用二维浅水方程模拟哈维飓风期间洪水的不确定性
IF 5.4 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-01-17 DOI: 10.1029/2024wr038032
Donghui Xu, Gautam Bisht, Darren Engwirda, Dongyu Feng, Zeli Tan, Valeriy Y. Ivanov
Flooding is one of the most impactful weather-related natural hazards. Numerical models that solve the two dimensional (2D) shallow water equations (SWE) represent the first-principles approach to simulate all types of spatial flooding, such as pluvial, fluvial, and coastal flooding, and their compound dynamics. High spatial resolution (e.g., <span data-altimg="/cms/asset/93295735-ee5d-45b7-8772-0db8498f5c30/wrcr27642-math-0001.png"></span><mjx-container ctxtmenu_counter="91" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/wrcr27642-math-0001.png"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="script" data-semantic- data-semantic-role="latinletter" data-semantic-speech="script upper O" data-semantic-type="identifier"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display="inline" unselectable="on"><math altimg="urn:x-wiley:00431397:media:wrcr27642:wrcr27642-math-0001" display="inline" location="graphic/wrcr27642-math-0001.png" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi data-semantic-="" data-semantic-annotation="clearspeak:simple" data-semantic-font="script" data-semantic-role="latinletter" data-semantic-speech="script upper O" data-semantic-type="identifier" mathvariant="script">O</mi></mrow>$mathcal{O}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> (<span data-altimg="/cms/asset/64a5befb-e85d-48dc-a5fb-25a4738d96c7/wrcr27642-math-0002.png"></span><mjx-container ctxtmenu_counter="92" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/wrcr27642-math-0002.png"><mjx-semantics><mjx-mrow data-semantic-children="2,6" data-semantic-content="3" data-semantic- data-semantic-role="subtraction" data-semantic-speech="10 Superscript 0 Baseline minus 10 Superscript 1" data-semantic-type="infixop"><mjx-msup data-semantic-children="0,1" data-semantic- data-semantic-parent="7" data-semantic-role="integer" data-semantic-type="superscript"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn><mjx-script style="vertical-align: 0.393em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-mo data-semantic- data-semantic-operator="infixop,−" data-semantic-parent="7" data-semantic-role="subtraction" data-semantic-type="operator" rspace="4" space="4"><mjx-c></mjx-c></mjx-mo><mjx-msup data-semantic-children="4,5" data-semantic- data-semantic-parent="7"
洪水是影响最大的与天气有关的自然灾害之一。求解二维(2D)浅水方程(SWE)的数值模型代表了模拟所有类型的空间洪水的第一性原理方法,例如雨洪、河流和海岸洪水及其复合动力学。二维SWE模拟需要高空间分辨率(例如O$mathcal{O}$(100−101${10}^{0}-{10}^{1}$)m)才能准确捕获洪水动态,这导致了巨大的计算挑战。因此,相对较粗的空间分辨率用于大规模洪水模拟,这在结果中引入了不确定性。目前尚不清楚与模式分辨率相关的不确定性与降水数据集的不确定性以及渠化水流与其他水体相互作用时关于边界条件的假设的不确定性相比如何。在本研究中,我们比较了2017年休斯顿洪水事件二维SWE模拟中的这三种不确定性来源。结果表明,降水不确定性和网格分辨率对模拟径流和淹没动态的影响比流域出口下游边界条件的选择更显著。我们指出了利用可变分辨率网格(VRM)来限制粗化网格分辨率的不确定性的可行性,该网格可以用更少的网格单元来细化关键地形特征。具体而言,在VRM模拟中,精细化区域的模拟淹没深度与使用最细均匀网格的模拟淹没深度相当。该研究有助于理解应用二维SWE模型提高大尺度洪水模拟真实感的挑战和途径。
{"title":"Uncertainties in Simulating Flooding During Hurricane Harvey Using 2D Shallow Water Equations","authors":"Donghui Xu, Gautam Bisht, Darren Engwirda, Dongyu Feng, Zeli Tan, Valeriy Y. Ivanov","doi":"10.1029/2024wr038032","DOIUrl":"https://doi.org/10.1029/2024wr038032","url":null,"abstract":"Flooding is one of the most impactful weather-related natural hazards. Numerical models that solve the two dimensional (2D) shallow water equations (SWE) represent the first-principles approach to simulate all types of spatial flooding, such as pluvial, fluvial, and coastal flooding, and their compound dynamics. High spatial resolution (e.g., &lt;span data-altimg=\"/cms/asset/93295735-ee5d-45b7-8772-0db8498f5c30/wrcr27642-math-0001.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"91\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27642-math-0001.png\"&gt;&lt;mjx-semantics&gt;&lt;mjx-mrow&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"script upper O\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;/mjx-semantics&gt;&lt;/mjx-math&gt;&lt;mjx-assistive-mml display=\"inline\" unselectable=\"on\"&gt;&lt;math altimg=\"urn:x-wiley:00431397:media:wrcr27642:wrcr27642-math-0001\" display=\"inline\" location=\"graphic/wrcr27642-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;semantics&gt;&lt;mrow&gt;&lt;mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic-role=\"latinletter\" data-semantic-speech=\"script upper O\" data-semantic-type=\"identifier\" mathvariant=\"script\"&gt;O&lt;/mi&gt;&lt;/mrow&gt;$mathcal{O}$&lt;/annotation&gt;&lt;/semantics&gt;&lt;/math&gt;&lt;/mjx-assistive-mml&gt;&lt;/mjx-container&gt; (&lt;span data-altimg=\"/cms/asset/64a5befb-e85d-48dc-a5fb-25a4738d96c7/wrcr27642-math-0002.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"92\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27642-math-0002.png\"&gt;&lt;mjx-semantics&gt;&lt;mjx-mrow data-semantic-children=\"2,6\" data-semantic-content=\"3\" data-semantic- data-semantic-role=\"subtraction\" data-semantic-speech=\"10 Superscript 0 Baseline minus 10 Superscript 1\" data-semantic-type=\"infixop\"&gt;&lt;mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-script style=\"vertical-align: 0.393em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msup&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"7\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"4\" space=\"4\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-msup data-semantic-children=\"4,5\" data-semantic- data-semantic-parent=\"7\" ","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"96 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving Streamflow Prediction Using Multiple Hydrological Models and Machine Learning Methods 利用多种水文模型和机器学习方法改进流量预测
IF 5.4 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-01-17 DOI: 10.1029/2024wr038192
Hiren Solanki, Urmin Vegad, Anuj Kushwaha, Vimal Mishra
Streamflow prediction is crucial for flood monitoring and early warning, which often hampered by bias and uncertainties arising from nonlinear processes, model parameterization, and errors in meteorological forecast. We examined the utility of multiple hydrological models (VIC, H08, CWatM, Noah-MP, and CLM) and machine learning (ML) methods to improve streamflow simulations and prediction. The hydrological models (HMs) were forced with observed meteorological data from the India Meteorological Department (IMD) and meteorological forecast from the Global Ensemble Forecast System (GEFS) to simulate flood peaks and flood inundation areas. We used Multiple Linear Regression, Random Forest (RF), Extreme Gradient Boosting (XGB), and Long Short-Term Memory (LSTM) for the post-processing of simulated streamflow from HMs. Considering the influence of dams is crucial for the effectiveness of HMs and ML methods for improving streamflow simulations and predictions. In addition, ML-based multi-model ensemble streamflow from HMs performs better than individual models, highlighting the need for multi-model-based streamflow forecast systems. The post-processing of streamflow simulated by the hydrological models using ML significantly improved overall streamflow simulations, with limited improvement in high-flow conditions. The combination of physics-based hydrological models, observed climate data, and ML methods improve streamflow predictions for flood magnitude, timing, and inundated area, which can be valuable for developing flood early warning systems in India.
河流流量预测是洪水监测和预警的关键,但往往受到非线性过程、模型参数化和气象预报误差带来的偏差和不确定性的阻碍。我们研究了多种水文模型(VIC、H08、CWatM、Noah-MP和CLM)和机器学习(ML)方法在改善河流模拟和预测方面的效用。水文模型(HMs)利用来自印度气象部门(IMD)的观测气象数据和来自全球综合预报系统(GEFS)的气象预报来模拟洪峰和洪水淹没区域。我们使用多元线性回归、随机森林(RF)、极限梯度增强(XGB)和长短期记忆(LSTM)对HMs模拟的水流进行后处理。考虑水坝的影响对于提高HMs和ML方法在改善水流模拟和预测方面的有效性至关重要。此外,基于ml的HMs多模型集成流比单个模型表现更好,突出了基于多模型的流预测系统的需求。利用ML对水文模型模拟的水流进行后处理,显著改善了整体的水流模拟,但在大流量条件下改善有限。基于物理的水文模型、观测到的气候数据和ML方法相结合,改进了对洪水规模、时间和淹没面积的流量预测,这对印度开发洪水预警系统很有价值。
{"title":"Improving Streamflow Prediction Using Multiple Hydrological Models and Machine Learning Methods","authors":"Hiren Solanki, Urmin Vegad, Anuj Kushwaha, Vimal Mishra","doi":"10.1029/2024wr038192","DOIUrl":"https://doi.org/10.1029/2024wr038192","url":null,"abstract":"Streamflow prediction is crucial for flood monitoring and early warning, which often hampered by bias and uncertainties arising from nonlinear processes, model parameterization, and errors in meteorological forecast. We examined the utility of multiple hydrological models (VIC, H08, CWatM, Noah-MP, and CLM) and machine learning (ML) methods to improve streamflow simulations and prediction. The hydrological models (HMs) were forced with observed meteorological data from the India Meteorological Department (IMD) and meteorological forecast from the Global Ensemble Forecast System (GEFS) to simulate flood peaks and flood inundation areas. We used Multiple Linear Regression, Random Forest (RF), Extreme Gradient Boosting (XGB), and Long Short-Term Memory (LSTM) for the post-processing of simulated streamflow from HMs. Considering the influence of dams is crucial for the effectiveness of HMs and ML methods for improving streamflow simulations and predictions. In addition, ML-based multi-model ensemble streamflow from HMs performs better than individual models, highlighting the need for multi-model-based streamflow forecast systems. The post-processing of streamflow simulated by the hydrological models using ML significantly improved overall streamflow simulations, with limited improvement in high-flow conditions. The combination of physics-based hydrological models, observed climate data, and ML methods improve streamflow predictions for flood magnitude, timing, and inundated area, which can be valuable for developing flood early warning systems in India.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"15 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analytical Solutions for Groundwater Response to Earth Tides in Thick Semiconfined Aquifers 厚半细含水层地下水对潮汐响应的解析解
IF 5.4 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-01-16 DOI: 10.1029/2023wr036237
Xunfeng Lu, Kozo Sato, Roland N. Horne
The tidal behavior of a well in semiconfined aquifers can be described by a diffusion equation including a leakage term. This approach is valid for thin aquifers, as long as the aquitard has low permeability relative to the aquifer. However, in cases where the aquifer is thick and the permeability of the aquitard is not low, using the existing solutions based on these approximations leads to unsatisfactory outcomes. Alternative solutions for both vertical and horizontal wells were obtained by solving the standard diffusion equation, with leakage expressed as a boundary condition. The solutions can be used to estimate any one of wellbore storage coefficient, skin effect, hydraulic diffusivity, and vertical leakage, given the other three. Furthermore, a nondimensional number, named hydraulic Biot number, was derived mathematically, which forms the basis for a quantitative criterion to assess the applicability of existing solutions. In the case of a vertical well, the existing solution exhibits acceptable error only if the hydraulic Biot number is less than 0.245. The new solution extends this upper limitation to 0.475. However, when the number is greater than 0.475, both the existing solution and new solution are invalid due to the invalid uniform flowrate assumption. For a horizontal well, when the number is less than 0.245, the existing solution is suitable with acceptable error. Our new solution effectively overcomes this limitation. Finally, the new solution was applied to the case of the Arbuckle aquifer to demonstrate the improved validity of the new solution compared to the existing one.
半精细含水层中井的潮汐行为可以用包含泄漏项的扩散方程来描述。这种方法对薄含水层是有效的,只要含水层相对于含水层具有低渗透率。然而,在含水层较厚且含水层渗透率不低的情况下,使用基于这些近似的现有解会导致不满意的结果。通过求解标准扩散方程,以泄漏量作为边界条件,得到了水平井和直井的备选解。该解决方案可用于估算井筒储存系数、集皮效应、水力扩散系数和垂直泄漏中的任何一个,并给出其他三个。在此基础上,导出了一个非量纲数,即水力Biot数,为评价现有方案适用性的定量准则奠定了基础。对于直井,只有当水力Biot值小于0.245时,现有的解决方案才会出现可接受的误差。新的解决方案将上限扩展到0.475。但当该数大于0.475时,由于流量均匀假设无效,现有解和新解均无效。对于水平井,当该数值小于0.245时,现有解是合适的,误差可接受。我们的新解决方案有效地克服了这一限制。最后,以Arbuckle含水层为例,验证了新解的有效性。
{"title":"Analytical Solutions for Groundwater Response to Earth Tides in Thick Semiconfined Aquifers","authors":"Xunfeng Lu, Kozo Sato, Roland N. Horne","doi":"10.1029/2023wr036237","DOIUrl":"https://doi.org/10.1029/2023wr036237","url":null,"abstract":"The tidal behavior of a well in semiconfined aquifers can be described by a diffusion equation including a leakage term. This approach is valid for thin aquifers, as long as the aquitard has low permeability relative to the aquifer. However, in cases where the aquifer is thick and the permeability of the aquitard is not low, using the existing solutions based on these approximations leads to unsatisfactory outcomes. Alternative solutions for both vertical and horizontal wells were obtained by solving the standard diffusion equation, with leakage expressed as a boundary condition. The solutions can be used to estimate any one of wellbore storage coefficient, skin effect, hydraulic diffusivity, and vertical leakage, given the other three. Furthermore, a nondimensional number, named hydraulic Biot number, was derived mathematically, which forms the basis for a quantitative criterion to assess the applicability of existing solutions. In the case of a vertical well, the existing solution exhibits acceptable error only if the hydraulic Biot number is less than 0.245. The new solution extends this upper limitation to 0.475. However, when the number is greater than 0.475, both the existing solution and new solution are invalid due to the invalid uniform flowrate assumption. For a horizontal well, when the number is less than 0.245, the existing solution is suitable with acceptable error. Our new solution effectively overcomes this limitation. Finally, the new solution was applied to the case of the Arbuckle aquifer to demonstrate the improved validity of the new solution compared to the existing one.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"328 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142988070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling Non-Stationary Wind-Induced Fluid Motions With Physics-Informed Neural Networks for the Shallow Water Equations in a Polar Coordinate System 极坐标系下浅水方程组的非平稳风致流体运动的物理信息神经网络建模
IF 5.4 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-01-16 DOI: 10.1029/2024wr037490
Zaiyang Zhou, Yu Kuai, Jianzhong Ge, Bas van Maren, Zhenwu Wang, Kailin Huang, Pingxing Ding, Zhengbing Wang
Physics-informed neural networks (PINNs) are increasingly being used in various scientific disciplines. However, dealing with non-stationary physical processes remains a significant challenge in such models, whereas fluid motions are typically non-stationary. In this study, a PINN-based method was designed and optimized to solve non-stationary fluid dynamics with shallow water equations in a polar coordinate system (PINN-SWEP). It was developed and validated with a classic circular basin case that is well-documented in scientific literature. In the validation case, the wind-induced water surface fluctuations are less than 1 cm, posing challenges in modeling. However, our PINN-SWEP model can accurately simulate such tiny water surface fluctuations and resolve complex fluid motions based on limited and sparse data. A boundary discontinuity problem associated with the use of a polar coordinate system is further discussed and improved, thereby enhancing the applicability of PINN in water research. The methodology can provide an alternative solution for numerical or analytical solutions with high accuracy.
物理信息神经网络(pinn)越来越多地应用于各种科学学科。然而,在这种模型中,处理非固定的物理过程仍然是一个重大挑战,而流体运动通常是非固定的。本文设计并优化了一种在极坐标系下求解浅水非定常流体动力学方程的方法(pin - swep)。它是由一个经典的圆形盆地案例开发和验证的,在科学文献中有充分的记录。在验证案例中,风引起的水面波动小于1 cm,这给建模带来了挑战。然而,我们的PINN-SWEP模型可以准确地模拟这种微小的水面波动,并基于有限和稀疏的数据解决复杂的流体运动。进一步讨论和改进了与极坐标系统相关的边界不连续问题,从而提高了PINN在水资源研究中的适用性。该方法可以为数值解或解析解提供一种高精度的替代解。
{"title":"Modeling Non-Stationary Wind-Induced Fluid Motions With Physics-Informed Neural Networks for the Shallow Water Equations in a Polar Coordinate System","authors":"Zaiyang Zhou, Yu Kuai, Jianzhong Ge, Bas van Maren, Zhenwu Wang, Kailin Huang, Pingxing Ding, Zhengbing Wang","doi":"10.1029/2024wr037490","DOIUrl":"https://doi.org/10.1029/2024wr037490","url":null,"abstract":"Physics-informed neural networks (PINNs) are increasingly being used in various scientific disciplines. However, dealing with non-stationary physical processes remains a significant challenge in such models, whereas fluid motions are typically non-stationary. In this study, a PINN-based method was designed and optimized to solve non-stationary fluid dynamics with shallow water equations in a polar coordinate system (PINN-SWEP). It was developed and validated with a classic circular basin case that is well-documented in scientific literature. In the validation case, the wind-induced water surface fluctuations are less than 1 cm, posing challenges in modeling. However, our PINN-SWEP model can accurately simulate such tiny water surface fluctuations and resolve complex fluid motions based on limited and sparse data. A boundary discontinuity problem associated with the use of a polar coordinate system is further discussed and improved, thereby enhancing the applicability of PINN in water research. The methodology can provide an alternative solution for numerical or analytical solutions with high accuracy.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"19 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copula Modeling and Uncertainty Propagation in Field-Scale Simulation of CO2 Fault Leakage CO2故障泄漏场尺度模拟中的Copula建模与不确定性传播
IF 5.4 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-01-13 DOI: 10.1029/2024wr038073
Per Pettersson, Eirik Keilegavlen, Tor Harald Sandve, Sarah E. Gasda, Sebastian Krumscheid
Subsurface storage of <span data-altimg="/cms/asset/20bf5cc9-7d61-4509-ae19-f73bc9260b28/wrcr27501-math-0001.png"></span><mjx-container ctxtmenu_counter="366" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/wrcr27501-math-0001.png"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children="3,4" data-semantic- data-semantic-role="implicit" data-semantic-speech="normal upper C normal upper O Subscript 2" data-semantic-type="subscript"><mjx-mrow data-semantic-annotation="clearspeak:simple;clearspeak:unit" data-semantic-children="0,1" data-semantic-content="2" data-semantic- data-semantic-parent="5" data-semantic-role="implicit" data-semantic-type="infixop"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="3" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="3" data-semantic-role="multiplication" data-semantic-type="operator" style="margin-left: 0.056em; margin-right: 0.056em;"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="3" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display="inline" unselectable="on"><math altimg="urn:x-wiley:00431397:media:wrcr27501:wrcr27501-math-0001" display="inline" location="graphic/wrcr27501-math-0001.png" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub data-semantic-="" data-semantic-children="3,4" data-semantic-role="implicit" data-semantic-speech="normal upper C normal upper O Subscript 2" data-semantic-type="subscript"><mrow data-semantic-="" data-semantic-annotation="clearspeak:simple;clearspeak:unit" data-semantic-children="0,1" data-semantic-content="2" data-semantic-parent="5" data-semantic-role="implicit" data-semantic-type="infixop"><mi data-semantic-="" data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic-parent="3" data-semantic-role="latinletter" data-semantic-type="identifier" mathvariant="normal">C</mi><mo data-semantic-="" data-semantic-added="true" data-semantic-operator="infixop,⁢" data-semantic-parent="3" data-semantic-role="multiplication" data-semantic-type="operator">⁢</mo><mi data-semantic-="" data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic-parent="3" data-semantic-role="latinletter" data-semantic-
C²O2${mathrm{C}mathrm{O}}_{2}$的地下储存是减缓气候变化的重要手段,北海拥有相当大的潜在储存资源。为了研究大型储层中C _ O2${ mathm {C} mathm {O}}_{2}$几十年来的变化,基于现实模型的数值模拟是必不可少的。断层和其他复杂的地质构造对存储操作的影响具有高度的不确定性,因此给建模带来了挑战。我们提出了一个不确定性前向传播的计算框架,包括随机上尺度和多元分布的copula表示,该计算框架适用于具有故障的C²O2${mathrm{C}mathrm{O}}_{2}$存储站点模型。以北海Smeaheia组的Vette断裂带为例进行了试验。随机上尺度法减少了随机维数,降低了储层模型的评价成本。copula提供了相关多维随机变量的表示和对数据的良好拟合,允许快速采样和通过独立均匀随机变量耦合到前向传播方法。通过数据驱动的转换模型,可以准确地捕获升尺度流函数中的非平稳相关性。利用CO2 -卤水两相油藏数值模拟,将放大流量函数的不确定性和其他不确定性参数有效地传播到泄漏估计中。采用自适应分层抽样技术,有效地在随机空间中分配样本,估计泄漏期望值。我们证明了与标准蒙特卡罗相比,在简单的测试用例中成本降低了一到两个数量级,在随机多相流特性和更复杂的随机模型中成本降低了2-8倍。
{"title":"Copula Modeling and Uncertainty Propagation in Field-Scale Simulation of CO2 Fault Leakage","authors":"Per Pettersson, Eirik Keilegavlen, Tor Harald Sandve, Sarah E. Gasda, Sebastian Krumscheid","doi":"10.1029/2024wr038073","DOIUrl":"https://doi.org/10.1029/2024wr038073","url":null,"abstract":"Subsurface storage of &lt;span data-altimg=\"/cms/asset/20bf5cc9-7d61-4509-ae19-f73bc9260b28/wrcr27501-math-0001.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"366\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27501-math-0001.png\"&gt;&lt;mjx-semantics&gt;&lt;mjx-mrow&gt;&lt;mjx-msub data-semantic-children=\"3,4\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"normal upper C normal upper O Subscript 2\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-mrow&gt;&lt;/mjx-semantics&gt;&lt;/mjx-math&gt;&lt;mjx-assistive-mml display=\"inline\" unselectable=\"on\"&gt;&lt;math altimg=\"urn:x-wiley:00431397:media:wrcr27501:wrcr27501-math-0001\" display=\"inline\" location=\"graphic/wrcr27501-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;semantics&gt;&lt;mrow&gt;&lt;msub data-semantic-=\"\" data-semantic-children=\"3,4\" data-semantic-role=\"implicit\" data-semantic-speech=\"normal upper C normal upper O Subscript 2\" data-semantic-type=\"subscript\"&gt;&lt;mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic-parent=\"5\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"&gt;&lt;mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\"&gt;C&lt;/mi&gt;&lt;mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;⁢&lt;/mo&gt;&lt;mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"128 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniting Surface Properties With Hydrodynamic Roughness in Shallow Overland Flow Models 浅层坡面流模型中地表特性与水动力粗糙度的统一
IF 5.4 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-01-12 DOI: 10.1029/2024wr037176
Octavia Crompton, Gabriel Katul, Sally E. Thompson
Describing flow resistance from the properties of an underlying surface is a challenge in surface hydrology. Runoff models must specify a resistance formulation or “roughness scheme”—describing the functional relationship between flow resistance and flow depth/velocity—and its parameters. Uncertainty in runoff predictions derives from both the selected roughness scheme (e.g., Darcy Weisbach, Manning's, or laminar flow equations), and its parameterization with a roughness coefficient (e.g., Manning's <span data-altimg="/cms/asset/2a3656c5-62e3-412d-a272-a537de64215e/wrcr27631-math-0001.png"></span><mjx-container ctxtmenu_counter="453" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/wrcr27631-math-0001.png"><mjx-semantics><mjx-mrow><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-role="latinletter" data-semantic-speech="n" data-semantic-type="identifier"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display="inline" unselectable="on"><math altimg="urn:x-wiley:00431397:media:wrcr27631:wrcr27631-math-0001" display="inline" location="graphic/wrcr27631-math-0001.png" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi data-semantic-="" data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic-role="latinletter" data-semantic-speech="n" data-semantic-type="identifier">n</mi></mrow>$n$</annotation></semantics></math></mjx-assistive-mml></mjx-container>). Both choices are informed by model calibration to data, usually discharge, and, if available, velocity. In this study, a Saint Venant Equation-based runoff model is calibrated to discharge and velocity data from 112 rainfall simulator experiments. The results are used to identify the optimal roughness scheme among four widely-used options for each experiment, and to explore whether surface properties can be used to select the optimal roughness scheme and its coefficient. Among the tested roughness schemes, a transitional flow equation provided the best fit to the plurality of experiments. The most suitable roughness scheme for a given experiment was not related to measured surface properties. Regression models predicted the calibrated roughness coefficients with adjusted <span data-altimg="/cms/asset/26faa875-27e4-4e97-a2cb-aab07ded999f/wrcr27631-math-0002.png"></span><mjx-container ctxtmenu_counter="454" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/wrcr27631-math-0002.png"><mjx-semantics><mjx-mrow><mjx-msup data-semantic-children="0,1" data-semantic- data-semantic-role="latinletter" data-semantic-speech="r squared" data-semantic-type="superscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-fon
在地表水文学中,从下垫面性质描述流动阻力是一个挑战。径流模型必须指定一个阻力公式或“粗糙度方案”-描述流动阻力和流动深度/速度之间的函数关系-及其参数。径流预测的不确定性来源于所选择的粗糙度方案(例如,Darcy Weisbach, Manning或层流方程)及其参数化粗糙度系数(例如,Manning的n$n$)。这两种选择都是通过对数据的模型校准来确定的,通常是流量,如果有的话,还有速度。在本研究中,基于Saint Venant方程的径流模型对112个降雨模拟器实验的流量和流速数据进行了校准。结果用于在每个实验的四种广泛使用的选项中识别最佳粗糙度方案,并探讨是否可以使用表面特性来选择最佳粗糙度方案及其系数。在所测试的粗糙度方案中,过渡流动方程最适合于多个实验。给定实验中最合适的粗糙度方案与测量的表面性质无关。回归模型预测校准后的粗糙度系数,调整后的r2${r}^{2}$值在0.48到0.54之间,具体取决于所使用的粗糙度方案。凋落物盖度是粗糙度系数的最佳预测因子,其次是土壤盖度和平均冠层间隙大小。结果表明,仅根据表面特性选择最佳粗糙度方案仍然是困难的,但一旦选择了方案,可以从表面特性估计粗糙度系数。
{"title":"Uniting Surface Properties With Hydrodynamic Roughness in Shallow Overland Flow Models","authors":"Octavia Crompton, Gabriel Katul, Sally E. Thompson","doi":"10.1029/2024wr037176","DOIUrl":"https://doi.org/10.1029/2024wr037176","url":null,"abstract":"Describing flow resistance from the properties of an underlying surface is a challenge in surface hydrology. Runoff models must specify a resistance formulation or “roughness scheme”—describing the functional relationship between flow resistance and flow depth/velocity—and its parameters. Uncertainty in runoff predictions derives from both the selected roughness scheme (e.g., Darcy Weisbach, Manning's, or laminar flow equations), and its parameterization with a roughness coefficient (e.g., Manning's &lt;span data-altimg=\"/cms/asset/2a3656c5-62e3-412d-a272-a537de64215e/wrcr27631-math-0001.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"453\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27631-math-0001.png\"&gt;&lt;mjx-semantics&gt;&lt;mjx-mrow&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"n\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;/mjx-semantics&gt;&lt;/mjx-math&gt;&lt;mjx-assistive-mml display=\"inline\" unselectable=\"on\"&gt;&lt;math altimg=\"urn:x-wiley:00431397:media:wrcr27631:wrcr27631-math-0001\" display=\"inline\" location=\"graphic/wrcr27631-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;semantics&gt;&lt;mrow&gt;&lt;mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"n\" data-semantic-type=\"identifier\"&gt;n&lt;/mi&gt;&lt;/mrow&gt;$n$&lt;/annotation&gt;&lt;/semantics&gt;&lt;/math&gt;&lt;/mjx-assistive-mml&gt;&lt;/mjx-container&gt;). Both choices are informed by model calibration to data, usually discharge, and, if available, velocity. In this study, a Saint Venant Equation-based runoff model is calibrated to discharge and velocity data from 112 rainfall simulator experiments. The results are used to identify the optimal roughness scheme among four widely-used options for each experiment, and to explore whether surface properties can be used to select the optimal roughness scheme and its coefficient. Among the tested roughness schemes, a transitional flow equation provided the best fit to the plurality of experiments. The most suitable roughness scheme for a given experiment was not related to measured surface properties. Regression models predicted the calibrated roughness coefficients with adjusted &lt;span data-altimg=\"/cms/asset/26faa875-27e4-4e97-a2cb-aab07ded999f/wrcr27631-math-0002.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"454\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" location=\"graphic/wrcr27631-math-0002.png\"&gt;&lt;mjx-semantics&gt;&lt;mjx-mrow&gt;&lt;mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"r squared\" data-semantic-type=\"superscript\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-fon","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"29 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water Table Fluctuations Control Nitrate and Ammonium Fate in Coastal Aquifers 地下水位波动控制沿海含水层硝酸盐和铵态盐的命运
IF 5.4 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-01-12 DOI: 10.1029/2024wr038087
Christian Roumelis, Fabian Willert, Maria Scaccia, Susan Welch, Rachel Gabor, Jesús Carrera, Albert Folch, Miquel Salgot, Audrey H. Sawyer
Coastal aquifers experience water table fluctuations that push and pull water and air through organic-rich soils. This exchange affects the supply of oxygen, dissolved organic carbon (DOC), and nitrogen (N) to shallow aquifers and influences groundwater quality. To investigate the fate of N species, we used a meter-long column containing a sequence of natural organic topsoil and aquifer sediments. A fluctuating head was imposed at the column bottom with local, nitrate-rich groundwater (16.5 mg/L NO3-N). We monitored in-situ redox potential and collected pore water samples for analysis of inorganic N species and DOC over 16 days. Reactive processes were more complex than anticipated. The organic-rich topsoil remained anaerobic, while mineral sediments beneath alternated between aerobic, when the water table dropped and sucked air across preferential flow paths, and anaerobic conditions, when the water table was high. A fluid flow and reactive transport model shows that when the water table rises into organic-rich soils, it limits the flow of oxygen, while the soils release DOC, which stimulates the removal of nitrate from groundwater by denitrification. At the end of the experiment, we introduced seawater to the column to mimic a storm surge. Seawater mobilized N and DOC from shallow soil horizons, which could reach the aquifer if the surge is long enough. These processes are relevant for groundwater quality in developed coastal areas with anthropogenic N sources, as climate change and rising seas will drive changes in water table and flood dynamics.
沿海含水层经历了地下水位的波动,在富含有机物的土壤中推动和拉动水和空气。这种交换影响氧气、溶解有机碳(DOC)和氮(N)向浅层含水层的供应,并影响地下水质量。为了研究N物种的命运,我们使用了一个一米长的柱,其中包含天然有机表土和含水层沉积物的序列。柱底有局部富硝酸盐地下水(16.5 mg/L NO3-N)施加波动水头。在16天的时间里,我们监测了原位氧化还原电位,并收集了孔隙水样品,分析了无机N种类和DOC。反应过程比预期的更复杂。富有机质的表层土保持厌氧状态,而地下的矿物沉积物在好氧状态和厌氧状态之间交替,好氧状态是指当地下水位下降并通过优先流动路径吸入空气时,厌氧状态是指当地下水位高时。流体流动和反应输运模型表明,当地下水位上升到富有机质土壤时,氧气的流动受到限制,而土壤释放DOC,通过反硝化作用刺激地下水中硝酸盐的去除。在实验的最后,我们向柱子中注入海水来模拟风暴潮。海水从浅层土壤中动员了N和DOC,如果浪涌时间足够长,它们可以到达含水层。这些过程与具有人为氮源的发达沿海地区的地下水质量有关,因为气候变化和海平面上升将驱动地下水位和洪水动态的变化。
{"title":"Water Table Fluctuations Control Nitrate and Ammonium Fate in Coastal Aquifers","authors":"Christian Roumelis, Fabian Willert, Maria Scaccia, Susan Welch, Rachel Gabor, Jesús Carrera, Albert Folch, Miquel Salgot, Audrey H. Sawyer","doi":"10.1029/2024wr038087","DOIUrl":"https://doi.org/10.1029/2024wr038087","url":null,"abstract":"Coastal aquifers experience water table fluctuations that push and pull water and air through organic-rich soils. This exchange affects the supply of oxygen, dissolved organic carbon (DOC), and nitrogen (N) to shallow aquifers and influences groundwater quality. To investigate the fate of N species, we used a meter-long column containing a sequence of natural organic topsoil and aquifer sediments. A fluctuating head was imposed at the column bottom with local, nitrate-rich groundwater (16.5 mg/L NO<sub>3</sub>-N). We monitored in-situ redox potential and collected pore water samples for analysis of inorganic N species and DOC over 16 days. Reactive processes were more complex than anticipated. The organic-rich topsoil remained anaerobic, while mineral sediments beneath alternated between aerobic, when the water table dropped and sucked air across preferential flow paths, and anaerobic conditions, when the water table was high. A fluid flow and reactive transport model shows that when the water table rises into organic-rich soils, it limits the flow of oxygen, while the soils release DOC, which stimulates the removal of nitrate from groundwater by denitrification. At the end of the experiment, we introduced seawater to the column to mimic a storm surge. Seawater mobilized N and DOC from shallow soil horizons, which could reach the aquifer if the surge is long enough. These processes are relevant for groundwater quality in developed coastal areas with anthropogenic N sources, as climate change and rising seas will drive changes in water table and flood dynamics.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"72 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A New Capillary and Adsorption‒Force Model Predicting Hydraulic Conductivity of Soil During Freeze‒thaw Processes 一种预测冻融过程中土壤导电性的毛细吸附力模型
IF 5.4 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-01-10 DOI: 10.1029/2023wr036857
Shufeng Qiao, Rui Ma, Yunquan Wang, Ziyong Sun, Helen Kristine French, Yanxin Wang
Understanding the change in soil hydraulic conductivity with temperature is key to predicting groundwater flow and solute transport in cold regions. The most commonly used models for hydraulic conductivity during freeze‒thaw cycles only consider the flow of capillary water in the soil and neglect water flowing along thin films around the particle surface. This paper proposed a new hydraulic conductivity model of frozen soil via the Clausius–Clapeyron equation based on an unsaturated soil hydraulic conductivity model over the entire moisture range using an analogy between freeze‒thaw and dry‒wet processes in soils. The new model used a single equation to describe the conductivity behaviors resulting from both capillary and adsorption forces, thus accounting for the effect of both capillary water and thin liquid film around soil. By comparison with other existing models, the results demonstrated that the new model is applicable to various types of soils and that the predicted hydraulic conductivity is in the highest agreement with the observed data, while reducing the root mean square error by 38.9% compared to the van Genuchten–Mualem model. Finally, our new model was validated with thermal–hydrological benchmark problem and laboratory experiment result. The benchmark results indicated that the advective heat transfer was more significant, and the phase change was completed earlier when considering both capillary and adsorption forces than when only considering capillary forces. Furthermore, the coupled flow–heat model with the new hydraulic conductivity expression replicated well the results from a laboratory column experiment.
了解土壤导电性随温度的变化是预测寒区地下水流动和溶质运移的关键。冻融循环过程中最常用的水力传导性模型只考虑土壤中毛细水的流动,而忽略了沿颗粒表面周围薄膜流动的水。本文在全水分范围非饱和土导电性模型的基础上,利用土壤冻融过程和干湿过程的类比,通过Clausius-Clapeyron方程提出了新的冻土导电性模型。新模型采用单一方程来描述毛细力和吸附力导致的电导率行为,从而考虑毛细水和土壤周围薄液膜的影响。通过与已有模型的比较,结果表明,新模型适用于各种类型的土壤,预测的水力导率与实测数据吻合度最高,与van Genuchten-Mualem模型相比,均方根误差降低了38.9%。最后,用热水文基准问题和室内实验结果对新模型进行了验证。基准结果表明,考虑毛细力和吸附力时,对流换热更显著,相变完成时间比只考虑毛细力时要早。此外,采用新的导热系数表达式建立的流-热耦合模型与室内柱实验结果吻合较好。
{"title":"A New Capillary and Adsorption‒Force Model Predicting Hydraulic Conductivity of Soil During Freeze‒thaw Processes","authors":"Shufeng Qiao, Rui Ma, Yunquan Wang, Ziyong Sun, Helen Kristine French, Yanxin Wang","doi":"10.1029/2023wr036857","DOIUrl":"https://doi.org/10.1029/2023wr036857","url":null,"abstract":"Understanding the change in soil hydraulic conductivity with temperature is key to predicting groundwater flow and solute transport in cold regions. The most commonly used models for hydraulic conductivity during freeze‒thaw cycles only consider the flow of capillary water in the soil and neglect water flowing along thin films around the particle surface. This paper proposed a new hydraulic conductivity model of frozen soil via the Clausius–Clapeyron equation based on an unsaturated soil hydraulic conductivity model over the entire moisture range using an analogy between freeze‒thaw and dry‒wet processes in soils. The new model used a single equation to describe the conductivity behaviors resulting from both capillary and adsorption forces, thus accounting for the effect of both capillary water and thin liquid film around soil. By comparison with other existing models, the results demonstrated that the new model is applicable to various types of soils and that the predicted hydraulic conductivity is in the highest agreement with the observed data, while reducing the root mean square error by 38.9% compared to the van Genuchten–Mualem model. Finally, our new model was validated with thermal–hydrological benchmark problem and laboratory experiment result. The benchmark results indicated that the advective heat transfer was more significant, and the phase change was completed earlier when considering both capillary and adsorption forces than when only considering capillary forces. Furthermore, the coupled flow–heat model with the new hydraulic conductivity expression replicated well the results from a laboratory column experiment.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"1 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stream Discharge Determinations Using Slug Additions and Specific Conductance 使用段塞添加剂和特定电导测定流放电
IF 5.4 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-01-10 DOI: 10.1029/2024wr037771
R. Blaine McCleskey, Robert L. Runkel, Sheila F. Murphy, David A. Roth
Stream discharge is often determined by wading the stream and measuring the point velocity at fixed widths and depths. However, there are conditions when wading measurements are not safe or the measurements are poor because of high turbulence, rocky streambeds, non-standard velocity distributions, shallow or sheet flow, aquatic plants, or inaccessibility due to ice. Under these conditions, it is often preferable to determine discharge using salt slug addition and downstream measurement of salt concentration with time. A new method for determining stream discharge using specific conductance as a surrogate for salt concentrations is presented. The method adapts an approach that accurately calculates the specific conductance by utilizing ionic molal conductivities to determine the concentration of salt. The method was applied at four mountainous stream sites where a total of twenty-nine slug-additions were performed. The discharge determined from the new method was compared to four alternative methods including discharge from continuous injection, slug addition with discrete sample calibration, wading measurements with velocity measurement, and a stream gage. The discharge ranged from 21.5 to 778 L/s and the median difference between the new method and the traditional methods was −0.01%. Additionally, the p-value (0.75) determined from a paired t-test indicates that there is no significant difference between the discharge determined from the new and alternative discharge methods. The primary advantage of the new method is that it obviates the need to collect and analyze discrete samples to accurately quantify the specific conductance-salt surrogate relationship, allowing for rapid, low-cost determination of discharge.
水流流量通常是通过涉水和测量固定宽度和深度的点流速来确定的。然而,由于高湍流、岩石河床、非标准流速分布、浅流或片状流、水生植物或由于冰而无法进入,涉水测量不安全或测量结果不佳。在这些条件下,通常采用添加盐段塞和下游随时间测量盐浓度的方法来确定排放量。提出了一种用比电导代替盐浓度测定水流流量的新方法。该方法采用了一种利用离子摩尔电导率精确计算比电导的方法来测定盐的浓度。该方法应用于四个山区溪流站点,共进行了29次段塞井添加。将新方法确定的流量与四种替代方法进行了比较,这些方法包括连续注入的流量、使用离散样品校准的段塞添加量、使用速度测量的趟水测量和流量计。放电范围为21.5 ~ 778 L/s,与传统方法的中位数差值为−0.01%。此外,由配对t检验确定的p值(0.75)表明,新放电方法和替代放电方法确定的放电之间没有显着差异。新方法的主要优点是,它不需要收集和分析离散样品,以准确量化特定的电导-盐替代关系,从而实现快速、低成本的放电测定。
{"title":"Stream Discharge Determinations Using Slug Additions and Specific Conductance","authors":"R. Blaine McCleskey, Robert L. Runkel, Sheila F. Murphy, David A. Roth","doi":"10.1029/2024wr037771","DOIUrl":"https://doi.org/10.1029/2024wr037771","url":null,"abstract":"Stream discharge is often determined by wading the stream and measuring the point velocity at fixed widths and depths. However, there are conditions when wading measurements are not safe or the measurements are poor because of high turbulence, rocky streambeds, non-standard velocity distributions, shallow or sheet flow, aquatic plants, or inaccessibility due to ice. Under these conditions, it is often preferable to determine discharge using salt slug addition and downstream measurement of salt concentration with time. A new method for determining stream discharge using specific conductance as a surrogate for salt concentrations is presented. The method adapts an approach that accurately calculates the specific conductance by utilizing ionic molal conductivities to determine the concentration of salt. The method was applied at four mountainous stream sites where a total of twenty-nine slug-additions were performed. The discharge determined from the new method was compared to four alternative methods including discharge from continuous injection, slug addition with discrete sample calibration, wading measurements with velocity measurement, and a stream gage. The discharge ranged from 21.5 to 778 L/s and the median difference between the new method and the traditional methods was −0.01%. Additionally, the p-value (0.75) determined from a paired <i>t</i>-test indicates that there is no significant difference between the discharge determined from the new and alternative discharge methods. The primary advantage of the new method is that it obviates the need to collect and analyze discrete samples to accurately quantify the specific conductance-salt surrogate relationship, allowing for rapid, low-cost determination of discharge.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"48 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influences of Evaporation and Aquitard on Groundwater Dynamics and Solute Transport in a Tidal Flat With a Slope Break 坡折潮滩中蒸发和含水层对地下水动态和溶质运移的影响
IF 5.4 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-01-10 DOI: 10.1029/2024wr038231
Manhua Luo, Hailong Li, Gang Li, Wei Wang, Shengchao Yu, Qian Ma, Yan Zheng
Coastal groundwater dynamics and solute transport were influenced by multiple factors including aquitards, tides, evaporation, and slope breaks in coastal aquifers. However, quantification of the impacts of these factors on groundwater flow and salinity distribution remains a challenge. In this study, both field observations and numerical modeling were applied to investigate hydraulic heads and groundwater salinity in a tidal flat with large-scale seepage faces at Laizhou Bay, China. Results showed that seepage-face evaporation increased groundwater salinity landward and promoted groundwater and salt exchange within the intertidal zone significantly in comparison to the case without evaporation. Seawater infiltrated the aquifer on the left of the slope break and discharged on the right, forming a groundwater circulation cell, which notably influenced leakage flow between unconfined and confined aquifers through the aquitard. The aquitard prevented approximately 85% of inland freshwater discharge near the slope break, resulting in the formation of two atypical freshwater discharge tubes in the upper and middle intertidal zones. Two additional groundwater circulation cells developed in the lower intertidal zone due to the spring-neap tidal cycle. The outflow and inflow fluxes over a spring-neap tidal cycle were numerically estimated to be 1.46 and 1.27 m2/d, respectively, with evaporation accounting for 45% of the outflow flux. These findings provide significant insights for further investigations on groundwater dynamics and solute transport in multi-layered coastal aquifers, and have strong implications for biogeochemical processes within the intertidal zone.
海岸带地下水动态和溶质运移受到含水层含水层含水率、潮汐、蒸发和坡折等多种因素的影响。然而,量化这些因素对地下水流量和盐度分布的影响仍然是一个挑战。本文采用现场观测和数值模拟相结合的方法,对莱州湾大尺度渗流面滩涂水头和地下水盐度进行了研究。结果表明:与没有蒸发的情况相比,渗漏面蒸发显著增加了向陆方向的地下水盐度,促进了潮间带内地下水和盐的交换;海水从坡口左侧渗入含水层,从坡口右侧排出,形成地下水循环单元,对无承压含水层与承压含水层之间的渗漏流动产生显著影响。该引水层阻止了坡口附近约85%的内陆淡水排放,导致在潮间带上部和中部形成了两个非典型淡水排放管。由于春季-小潮潮循环,在潮间带下部又形成了两个地下水循环单元。在一个大潮-小潮周期内,流出通量和流入通量分别为1.46和1.27 m2/d,其中蒸发占流出通量的45%。这些发现为进一步研究多层沿海含水层的地下水动力学和溶质运移提供了重要的见解,并对潮间带的生物地球化学过程具有重要意义。
{"title":"The Influences of Evaporation and Aquitard on Groundwater Dynamics and Solute Transport in a Tidal Flat With a Slope Break","authors":"Manhua Luo, Hailong Li, Gang Li, Wei Wang, Shengchao Yu, Qian Ma, Yan Zheng","doi":"10.1029/2024wr038231","DOIUrl":"https://doi.org/10.1029/2024wr038231","url":null,"abstract":"Coastal groundwater dynamics and solute transport were influenced by multiple factors including aquitards, tides, evaporation, and slope breaks in coastal aquifers. However, quantification of the impacts of these factors on groundwater flow and salinity distribution remains a challenge. In this study, both field observations and numerical modeling were applied to investigate hydraulic heads and groundwater salinity in a tidal flat with large-scale seepage faces at Laizhou Bay, China. Results showed that seepage-face evaporation increased groundwater salinity landward and promoted groundwater and salt exchange within the intertidal zone significantly in comparison to the case without evaporation. Seawater infiltrated the aquifer on the left of the slope break and discharged on the right, forming a groundwater circulation cell, which notably influenced leakage flow between unconfined and confined aquifers through the aquitard. The aquitard prevented approximately 85% of inland freshwater discharge near the slope break, resulting in the formation of two atypical freshwater discharge tubes in the upper and middle intertidal zones. Two additional groundwater circulation cells developed in the lower intertidal zone due to the spring-neap tidal cycle. The outflow and inflow fluxes over a spring-neap tidal cycle were numerically estimated to be 1.46 and 1.27 m<sup>2</sup>/d, respectively, with evaporation accounting for 45% of the outflow flux. These findings provide significant insights for further investigations on groundwater dynamics and solute transport in multi-layered coastal aquifers, and have strong implications for biogeochemical processes within the intertidal zone.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"27 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Water Resources Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1