Pierfranco Costabile, Carmelina Costanzo, John Kalogiros, Vasilis Bellos
Abstract In our era, the rapid increase of parallel programming coupled with high‐performance computing (HPC) facilities allows for the use of two‐dimensional shallow water equation (2D‐SWE) algorithms for simulating floods at the “hydrological” catchment scale, rather than just at the “hydraulic” fluvial scale. This approach paves the way for the development of new operational systems focused on impact‐based flash‐floods nowcasting, wherein hydrodynamic simulations directly model the spatial and temporal variability of measured or predicted rainfall on impacts even at a street scale. Specifically, the main goal of this research is to make a step to move toward the implementation of an effective flash flood nowcasting system in which timely and accurate impact warnings are provided by including weather radar products in the HPC 2D‐SWEs modelling framework able to integrate watershed hydrology, flow hydrodynamics, and river urban flooding in just one model. The timing, location, and intensity of the street‐level evolution of some key elements at risk (people, vehicles, and infrastructures) are also discussed considering both calibration issues and the role played by the spatial and temporal rainfall resolution. All these issues are analyzed and discussed having as a starting point the flood event which hit the Mandra town (Athens, Greece) on the 15 November 2017, highlighting the feasibility and the accuracy of the overall approach and providing new insights for the research in this field.
{"title":"Toward Street‐Level Nowcasting of Flash Floods Impacts Based on HPC Hydrodynamic Modeling at the Watershed Scale and High‐Resolution Weather Radar Data","authors":"Pierfranco Costabile, Carmelina Costanzo, John Kalogiros, Vasilis Bellos","doi":"10.1029/2023wr034599","DOIUrl":"https://doi.org/10.1029/2023wr034599","url":null,"abstract":"Abstract In our era, the rapid increase of parallel programming coupled with high‐performance computing (HPC) facilities allows for the use of two‐dimensional shallow water equation (2D‐SWE) algorithms for simulating floods at the “hydrological” catchment scale, rather than just at the “hydraulic” fluvial scale. This approach paves the way for the development of new operational systems focused on impact‐based flash‐floods nowcasting, wherein hydrodynamic simulations directly model the spatial and temporal variability of measured or predicted rainfall on impacts even at a street scale. Specifically, the main goal of this research is to make a step to move toward the implementation of an effective flash flood nowcasting system in which timely and accurate impact warnings are provided by including weather radar products in the HPC 2D‐SWEs modelling framework able to integrate watershed hydrology, flow hydrodynamics, and river urban flooding in just one model. The timing, location, and intensity of the street‐level evolution of some key elements at risk (people, vehicles, and infrastructures) are also discussed considering both calibration issues and the role played by the spatial and temporal rainfall resolution. All these issues are analyzed and discussed having as a starting point the flood event which hit the Mandra town (Athens, Greece) on the 15 November 2017, highlighting the feasibility and the accuracy of the overall approach and providing new insights for the research in this field.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136010153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The water‐receiving area of the South‐to‐North Water Diversion Eastern Route Project (SNWDP‐ER) is one of the most severely affected water‐shortage areas in China, and no previous study has been conducted on the changes in water storage in this area. In this study, we combined the latest Gravity Recovery and Climate Experiment (GRACE) And GRACE Follow‐On products with global models for the first time to analyze changes in water storages in this area from 2002 to 2020, and to investigate the effects of climate change and human activity on changes in water storage. We found that SNWDP‐ER aided the recovery of surface water (nongroundwater) with a recovery rate of 9.44 ± 1.65 mm/yr after its implementation, but had little effect on the recovery of groundwater and terrestrial water storage in the water‐receiving area. Before the SNWDP‐ER was implemented, the rates of decrease of groundwater and terrestrial water storage were only −1.59 ± 0.58 and −5.18 ± 0.75 mm/yr, respectively. After implementation, the rates of decrease of groundwater and terrestrial water storage were −17.7 ± 1.27 and −8.16 ± 1.18 mm/yr, respectively. Groundwater decline, accelerated by human activity and climate change, has led to an accelerated decline in terrestrial water storage. Effects of SNWDP‐ER and stringent policies reducing groundwater use, along with largely increased precipitation in North China on groundwater storage after year 2020 need to be examined in the future. Our results have important implications for the management and evaluation of SNWDP‐ER.
{"title":"Continuing Severe Water Shortage in the Water‐Receiving Area of the South‐To‐North Water Diversion Eastern Route Project From 2002 to 2020","authors":"Yuyue Xu, Zhao Gun, Jianwei Zhao, Jianli Chen, Qing Liu, Xing Cheng, Edwin H. Sutanudjaja, Jida Wang, Hehua Liu, Wenfeng Zhan","doi":"10.1029/2022wr034365","DOIUrl":"https://doi.org/10.1029/2022wr034365","url":null,"abstract":"Abstract The water‐receiving area of the South‐to‐North Water Diversion Eastern Route Project (SNWDP‐ER) is one of the most severely affected water‐shortage areas in China, and no previous study has been conducted on the changes in water storage in this area. In this study, we combined the latest Gravity Recovery and Climate Experiment (GRACE) And GRACE Follow‐On products with global models for the first time to analyze changes in water storages in this area from 2002 to 2020, and to investigate the effects of climate change and human activity on changes in water storage. We found that SNWDP‐ER aided the recovery of surface water (nongroundwater) with a recovery rate of 9.44 ± 1.65 mm/yr after its implementation, but had little effect on the recovery of groundwater and terrestrial water storage in the water‐receiving area. Before the SNWDP‐ER was implemented, the rates of decrease of groundwater and terrestrial water storage were only −1.59 ± 0.58 and −5.18 ± 0.75 mm/yr, respectively. After implementation, the rates of decrease of groundwater and terrestrial water storage were −17.7 ± 1.27 and −8.16 ± 1.18 mm/yr, respectively. Groundwater decline, accelerated by human activity and climate change, has led to an accelerated decline in terrestrial water storage. Effects of SNWDP‐ER and stringent policies reducing groundwater use, along with largely increased precipitation in North China on groundwater storage after year 2020 need to be examined in the future. Our results have important implications for the management and evaluation of SNWDP‐ER.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135810643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Mathematical models in engineering play an important role in understanding and predicting the behavior of a system. A mechanistic coupled liquid water, water vapor and heat transfer model incorporating kinetic phase change accounting for real‐time interfacial area between water and gas phases was developed to predict coupled subsurface processes and evaporation (drying) rates from bare soils. To enhance the model capability to predict evaporation rates, the air resistance associated with the viscous sublayer was implemented in energy and mass exchange across the soil‐air interface (the land‐atmosphere boundary condition [BC]). The atmospheric stability condition was also considered in the calculation of sensible heat and vapor fluxes at the ground surface. This comprehensive model was validated against measured field data from bare soil test plots from a green roof study, during temperate summer conditions in Canada, demonstrating that the model captured the main coupled processes in the subsurface of bare soil during drying periods. A sensitivity analysis was performed to determine the importance of various components of the comprehensive model. Removal of viscous sublayer resistance in the vapor transfer BC resulted in poorer predictions of evaporation (drying) rates. Incorporating the atmospheric stability function accounting for real‐time atmospheric conditions did not improve the predictive capability for the simulated drying events compared to the case when only a neutral atmospheric condition was implemented. Neglecting heat transfer associated with hydrodynamic dispersion of water vapor in the subsurface had limited impact on subsurface temperature predictions.
{"title":"Model Validation and Sensitivity Analysis of Coupled Non‐Equilibrium Heat and Mass Transfer in Porous Media With Application to Evaporation From Bare Soils","authors":"Ashkan Talebi, Brent E. Sleep, Denis M. O'Carroll","doi":"10.1029/2023wr035573","DOIUrl":"https://doi.org/10.1029/2023wr035573","url":null,"abstract":"Abstract Mathematical models in engineering play an important role in understanding and predicting the behavior of a system. A mechanistic coupled liquid water, water vapor and heat transfer model incorporating kinetic phase change accounting for real‐time interfacial area between water and gas phases was developed to predict coupled subsurface processes and evaporation (drying) rates from bare soils. To enhance the model capability to predict evaporation rates, the air resistance associated with the viscous sublayer was implemented in energy and mass exchange across the soil‐air interface (the land‐atmosphere boundary condition [BC]). The atmospheric stability condition was also considered in the calculation of sensible heat and vapor fluxes at the ground surface. This comprehensive model was validated against measured field data from bare soil test plots from a green roof study, during temperate summer conditions in Canada, demonstrating that the model captured the main coupled processes in the subsurface of bare soil during drying periods. A sensitivity analysis was performed to determine the importance of various components of the comprehensive model. Removal of viscous sublayer resistance in the vapor transfer BC resulted in poorer predictions of evaporation (drying) rates. Incorporating the atmospheric stability function accounting for real‐time atmospheric conditions did not improve the predictive capability for the simulated drying events compared to the case when only a neutral atmospheric condition was implemented. Neglecting heat transfer associated with hydrodynamic dispersion of water vapor in the subsurface had limited impact on subsurface temperature predictions.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135761810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Desneiges S. Murray, Edom Moges, Laurel Larsen, Michelle D. Shattuck, William H. McDowell, Adam S. Wymore
Abstract Nitrogen (N) wet deposition chemistry impacts watershed biogeochemical cycling. The timescale and magnitude of (a)synchrony between wet deposition N inputs and watershed N outputs remains unresolved. We quantify deposition‐river N (a)synchrony with transfer entropy (TE), an information theory metric enabling quantification of lag‐dependent feedbacks in a hydrologic system by calculating directional information flow between variables. Synchrony is defined as a significant amount of TE‐calculated reduction in uncertainty of river N from wet deposition N after conditioning for antecedent river N conditions. Using long‐term timeseries of wet deposition and river DON, NO 3 − , and NH 4 + concentrations from the Lamprey River watershed, New Hampshire (USA), we constrain the role of wet deposition N to watershed biogeochemistry. Wet deposition N contributed information to river N at timescales greater than quick‐flow runoff generation, indicating that river N losses are a lagged non‐linear function of hydro‐biogeochemical forcings. River DON received the most information from all three wet deposition N solutes while wet deposition DON and NH 4 + contributed the most information to all three river N solutes. Information theoretic algorithms facilitated data‐driven inferences on the hydro‐biogeochemical processes influencing the fate of N wet deposition. For example, signals of mineralization and assimilation at a timescale of 12 to 21‐weeks lag display greater synchrony than nitrification, and we find that N assimilation is a positive lagged function of increasing N wet deposition. Although wet deposition N is not the main driver of river N, it contributes a significant amount of information resolvable at time scales of transport and transformations.
{"title":"Synchrony of Nitrogen Wet Deposition Inputs and Watershed Nitrogen Outputs Using Information Theory","authors":"Desneiges S. Murray, Edom Moges, Laurel Larsen, Michelle D. Shattuck, William H. McDowell, Adam S. Wymore","doi":"10.1029/2023wr034794","DOIUrl":"https://doi.org/10.1029/2023wr034794","url":null,"abstract":"Abstract Nitrogen (N) wet deposition chemistry impacts watershed biogeochemical cycling. The timescale and magnitude of (a)synchrony between wet deposition N inputs and watershed N outputs remains unresolved. We quantify deposition‐river N (a)synchrony with transfer entropy (TE), an information theory metric enabling quantification of lag‐dependent feedbacks in a hydrologic system by calculating directional information flow between variables. Synchrony is defined as a significant amount of TE‐calculated reduction in uncertainty of river N from wet deposition N after conditioning for antecedent river N conditions. Using long‐term timeseries of wet deposition and river DON, NO 3 − , and NH 4 + concentrations from the Lamprey River watershed, New Hampshire (USA), we constrain the role of wet deposition N to watershed biogeochemistry. Wet deposition N contributed information to river N at timescales greater than quick‐flow runoff generation, indicating that river N losses are a lagged non‐linear function of hydro‐biogeochemical forcings. River DON received the most information from all three wet deposition N solutes while wet deposition DON and NH 4 + contributed the most information to all three river N solutes. Information theoretic algorithms facilitated data‐driven inferences on the hydro‐biogeochemical processes influencing the fate of N wet deposition. For example, signals of mineralization and assimilation at a timescale of 12 to 21‐weeks lag display greater synchrony than nitrification, and we find that N assimilation is a positive lagged function of increasing N wet deposition. Although wet deposition N is not the main driver of river N, it contributes a significant amount of information resolvable at time scales of transport and transformations.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136055256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Large‐scale cross‐site scientific synthesis on low‐flow storage–discharge relation can promote developing transferable hypotheses on the interactions among critical zone attributes and on how such interactions affect catchments’ water vulnerabilities. This study leverages cross‐site empirical and theoretical analyses and develops a similarity index, based on the interactions among critical zone attributes, to help determine the less‐explored influence of upland hillslope groundwater subsidy on storage–discharge relation. We show that an increase in the relative extent of upland hillslope groundwater subsidy to low‐flow discharge, occurring through deep slow low‐moving (e.g., bedrock) storage unit, leads to (a) an increase in the nonlinearity of low‐flow discharge sensitivity to storage ( β 1 ) and (b) an increase in the convexity of low‐flow storage–discharge relation. Our findings also raise new hypotheses on the applicability of Boussinesq‐based hydraulic groundwater theory at low‐flow condition. Empirical results show that in a portion of our study catchments, particularly in those with a relatively small extent of upland hillslope groundwater subsidy, the theory’s proposed range of nonlinearity sufficiently explains the nonlinearity of low‐flow storage–discharge relation. However, in catchments with a strong influence of upland hillslope groundwater subsidy through deep slow‐moving storage unit, the current state of hydraulic groundwater theory, using one single (non)linear representative storage unit, may not be sufficient to explain the large nonlinearity and convexity of low‐flow storage–discharge relation (or the long tail of hydrograph late recession). Considering β 1 informs the low‐flow vulnerability of catchments, the findings of this study deepen and generalize our understanding of where low‐flow discharge is vulnerable to storage’s change.
{"title":"Upland Hillslope Groundwater Subsidy Affects Low‐flow Storage‐Discharge Relationship","authors":"Hongyi Li, Ali A. Ameli","doi":"10.1029/2022wr034155","DOIUrl":"https://doi.org/10.1029/2022wr034155","url":null,"abstract":"Abstract Large‐scale cross‐site scientific synthesis on low‐flow storage–discharge relation can promote developing transferable hypotheses on the interactions among critical zone attributes and on how such interactions affect catchments’ water vulnerabilities. This study leverages cross‐site empirical and theoretical analyses and develops a similarity index, based on the interactions among critical zone attributes, to help determine the less‐explored influence of upland hillslope groundwater subsidy on storage–discharge relation. We show that an increase in the relative extent of upland hillslope groundwater subsidy to low‐flow discharge, occurring through deep slow low‐moving (e.g., bedrock) storage unit, leads to (a) an increase in the nonlinearity of low‐flow discharge sensitivity to storage ( β 1 ) and (b) an increase in the convexity of low‐flow storage–discharge relation. Our findings also raise new hypotheses on the applicability of Boussinesq‐based hydraulic groundwater theory at low‐flow condition. Empirical results show that in a portion of our study catchments, particularly in those with a relatively small extent of upland hillslope groundwater subsidy, the theory’s proposed range of nonlinearity sufficiently explains the nonlinearity of low‐flow storage–discharge relation. However, in catchments with a strong influence of upland hillslope groundwater subsidy through deep slow‐moving storage unit, the current state of hydraulic groundwater theory, using one single (non)linear representative storage unit, may not be sufficient to explain the large nonlinearity and convexity of low‐flow storage–discharge relation (or the long tail of hydrograph late recession). Considering β 1 informs the low‐flow vulnerability of catchments, the findings of this study deepen and generalize our understanding of where low‐flow discharge is vulnerable to storage’s change.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135274800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Many lakes in China suffer from algal bloom problems. However, the spatial and temporal distribution of lacustrine algal blooms at the national scale has not been well characterized. Here, we developed an automated algal bloom surface scums (hereafter referred to as algal bloom) detection algorithm for Moderate‐Resolution Imaging Spectroradiometer (MODIS) images based on a normalized floating algal index and the Commission on Illumination colorimetry system. This algorithm was then applied to 35,556 daily MODIS images acquired between 2003 and 2020 to hindcast the spatial and temporal dynamics of lacustrine algal blooms in 171 lakes in China. The results show that 103 (60.2%) of the examined lakes have been affected by algal blooms over the past two decades, and the bloom occurrence in 95 lakes showed an increasing trend. The prevailing increasing trends of algal blooms in Chinese lakes were also manifested by an earlier onset time and prolonged potential occurrence period. We found that approximately 80% of the historical algal blooms occurred under calm water surfaces (wind speed <3 m/s) and high temperatures (>16°C), and we revealed positive correlations between bloom occurrence and fertilizer use. We further demonstrated that the increasing trends in algal blooms were highly linked to recent increases in air temperature. The results here not only highlight the severe lacustrine algal bloom problems in China but also provide important baseline information for lake management and restoration efforts for the government.
{"title":"Algal Blooms in Lakes in China Over the Past Two Decades: Patterns, Trends, and Drivers","authors":"Ying Wang, Lian Feng, Xuejiao Hou","doi":"10.1029/2022wr033340","DOIUrl":"https://doi.org/10.1029/2022wr033340","url":null,"abstract":"Abstract Many lakes in China suffer from algal bloom problems. However, the spatial and temporal distribution of lacustrine algal blooms at the national scale has not been well characterized. Here, we developed an automated algal bloom surface scums (hereafter referred to as algal bloom) detection algorithm for Moderate‐Resolution Imaging Spectroradiometer (MODIS) images based on a normalized floating algal index and the Commission on Illumination colorimetry system. This algorithm was then applied to 35,556 daily MODIS images acquired between 2003 and 2020 to hindcast the spatial and temporal dynamics of lacustrine algal blooms in 171 lakes in China. The results show that 103 (60.2%) of the examined lakes have been affected by algal blooms over the past two decades, and the bloom occurrence in 95 lakes showed an increasing trend. The prevailing increasing trends of algal blooms in Chinese lakes were also manifested by an earlier onset time and prolonged potential occurrence period. We found that approximately 80% of the historical algal blooms occurred under calm water surfaces (wind speed <3 m/s) and high temperatures (>16°C), and we revealed positive correlations between bloom occurrence and fertilizer use. We further demonstrated that the increasing trends in algal blooms were highly linked to recent increases in air temperature. The results here not only highlight the severe lacustrine algal bloom problems in China but also provide important baseline information for lake management and restoration efforts for the government.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"80 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135810644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nikolas Galli, Davide Danilo Chiarelli, Livia Ricciardi, Maria Cristina Rulli
Abstract Sustainable development and intergenerational responsibility entail the prudent use of natural resources. Water availability can constrain agriculture, a key sector in terms of resources consumed and goods and services provided. The sustainability of its intensification and expansion has been studied, often with a particular focus on water. Agricultural strategies have been based on local water availability, and some downstream effects have been evaluated. However, a method to identify and quantify hydrologically sustainable land use and crop use changes directly accounting for downstream effects is yet to be defined. We propose a framework to design land‐use and crop‐use changes preventing local and downstream effects. We apply it on of coffee plantations expansion in Kenya, a sector that is growing and planned to grow, given its agricultural, economic and social development potential, not without risks associated to hydroclimatic change. We use crop‐ and land‐use specific hydrological modeling to simulate water scarcity impacts of coffee plantation expansion onto available suitable areas, and use the results to iteratively identify and filter out expansion areas increasing water scarcity locally or downstream. This assessment proves effective in preserving water availability, identifying 10% of the suitable and available areas as hydrologically sustainable. Total water footprints are similar in these expansion areas and in currently used areas, but expansion areas have higher precipitation‐generated water availability. The proposed methodology locates and quantifies areas in a physically robust way, maintaining flexibility to the selected expansion scenario. Thus, the methodology is replicable for planning hydrologically agricultural development.
{"title":"A blue water scarcity‐based method for hydrologically sustainable agricultural expansion design","authors":"Nikolas Galli, Davide Danilo Chiarelli, Livia Ricciardi, Maria Cristina Rulli","doi":"10.1029/2023wr034473","DOIUrl":"https://doi.org/10.1029/2023wr034473","url":null,"abstract":"Abstract Sustainable development and intergenerational responsibility entail the prudent use of natural resources. Water availability can constrain agriculture, a key sector in terms of resources consumed and goods and services provided. The sustainability of its intensification and expansion has been studied, often with a particular focus on water. Agricultural strategies have been based on local water availability, and some downstream effects have been evaluated. However, a method to identify and quantify hydrologically sustainable land use and crop use changes directly accounting for downstream effects is yet to be defined. We propose a framework to design land‐use and crop‐use changes preventing local and downstream effects. We apply it on of coffee plantations expansion in Kenya, a sector that is growing and planned to grow, given its agricultural, economic and social development potential, not without risks associated to hydroclimatic change. We use crop‐ and land‐use specific hydrological modeling to simulate water scarcity impacts of coffee plantation expansion onto available suitable areas, and use the results to iteratively identify and filter out expansion areas increasing water scarcity locally or downstream. This assessment proves effective in preserving water availability, identifying 10% of the suitable and available areas as hydrologically sustainable. Total water footprints are similar in these expansion areas and in currently used areas, but expansion areas have higher precipitation‐generated water availability. The proposed methodology locates and quantifies areas in a physically robust way, maintaining flexibility to the selected expansion scenario. Thus, the methodology is replicable for planning hydrologically agricultural development.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135343296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In this study, dispersion and mixing were studied in a steady two‐phase flow generated using a co‐injection method. The impact of oil viscosity was investigated over a large range of fluid viscosity ratios. The results indicate that highly heterogeneous flow fields are generated by a wide distribution of oil clusters with varied volumes. Variation in the velocity distribution enhanced the deformation and spreading of a tracer plume, resulting in large dispersion scales and accelerated spreading rates. The dispersion coefficients vary with time and exhibit a non‐Fickian dispersion during co‐injection. Consequently, anomalous mixing behaviors can be observed when the viscosity ratio exceeds 10. The mixing strength, characterized by the scalar dissipation rate, is first enhanced by distortion on the surface of the solute. Therefore, diffusion contributes to mixing, resulting in a faster decrease in the mixing strength in the late time regime. These results can be attributed to the fact that the non‐wetting fluid becomes disconnected, and the size of each cluster decreases as the oil viscosity increases. The formation of an oil film narrows pore spaces, and a lubrication effect of the oil film may contribute to the enhanced dispersion and mixing state, even with the low relative permeability of the wetting phase. This study provides insights into dispersion in partially saturated porous media with varied oil viscosities at both the macro and pore scales, which can further improve CO 2 storage capacity and safety.
{"title":"Impact of Oil Viscosity on Dispersion in the Aqueous Phase of an Immiscible Two‐Phase Flow in Porous Media: An X‐ray Tomography Study","authors":"Zijing Li, Muhammad Nasir, Weicen Wang, Kazuki Kaito, Chunwei Zhang, Tetsuya Suekane, Shintaro Matsushita","doi":"10.1029/2023wr034849","DOIUrl":"https://doi.org/10.1029/2023wr034849","url":null,"abstract":"Abstract In this study, dispersion and mixing were studied in a steady two‐phase flow generated using a co‐injection method. The impact of oil viscosity was investigated over a large range of fluid viscosity ratios. The results indicate that highly heterogeneous flow fields are generated by a wide distribution of oil clusters with varied volumes. Variation in the velocity distribution enhanced the deformation and spreading of a tracer plume, resulting in large dispersion scales and accelerated spreading rates. The dispersion coefficients vary with time and exhibit a non‐Fickian dispersion during co‐injection. Consequently, anomalous mixing behaviors can be observed when the viscosity ratio exceeds 10. The mixing strength, characterized by the scalar dissipation rate, is first enhanced by distortion on the surface of the solute. Therefore, diffusion contributes to mixing, resulting in a faster decrease in the mixing strength in the late time regime. These results can be attributed to the fact that the non‐wetting fluid becomes disconnected, and the size of each cluster decreases as the oil viscosity increases. The formation of an oil film narrows pore spaces, and a lubrication effect of the oil film may contribute to the enhanced dispersion and mixing state, even with the low relative permeability of the wetting phase. This study provides insights into dispersion in partially saturated porous media with varied oil viscosities at both the macro and pore scales, which can further improve CO 2 storage capacity and safety.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135343608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Ponding at the soil surface exerts profound impacts on infiltration. However, the effects of ponding depth on infiltration, especially the development of a saturated zone below the soil surface, have yet to be considered in present infiltration models. A new general Green‐Ampt model solution (GAMS) was derived for a one‐dimensional vertical infiltration problem under a uniform initial moisture distribution with ponding on its surface. An expression was included in the new solution for simulating the saturated layer developed below the soil surface as long as the pressure head at the surface is sufficiently high to saturate the soil. The GAMS simulates the infiltration processes closer to the numerical solution by HYDRUS‐1D than the traditional and the recently improved Green‐Ampt model. Moreover, an inversion method to improve the estimates of soil hydraulic parameters from one‐dimensional vertical infiltration experiments that is based on the GAMS was suggested. The effect of ponding depth ( h p ), initial soil moisture content, soil texture, and hydraulic soil properties (saturated hydraulic conductivity K s , water‐entry suction h d and shape coefficient n of soil water retention curve) in the saturated zone was also evaluated. The results indicate that the saturated zone length increased at a comparable rate with the unsaturated wetted zone length during infiltration. Generally, a larger saturated zone was found for soils with higher initial soil moisture contents, coarser texture, higher K s values, greater n , and lower − h d . Our findings reveal that including the saturated zone in the infiltration model yields a better estimate of the soil hydraulic parameters. The proposed GAMS model can improve irrigation design and rainfall‐runoff simulations.
{"title":"A novel analytical solution for ponded infiltration with consideration of a developing saturated zone","authors":"DongHao Ma, SiCong Wu, ZhiPeng Liu, JiaBao Zhang","doi":"10.1029/2022wr034228","DOIUrl":"https://doi.org/10.1029/2022wr034228","url":null,"abstract":"Abstract Ponding at the soil surface exerts profound impacts on infiltration. However, the effects of ponding depth on infiltration, especially the development of a saturated zone below the soil surface, have yet to be considered in present infiltration models. A new general Green‐Ampt model solution (GAMS) was derived for a one‐dimensional vertical infiltration problem under a uniform initial moisture distribution with ponding on its surface. An expression was included in the new solution for simulating the saturated layer developed below the soil surface as long as the pressure head at the surface is sufficiently high to saturate the soil. The GAMS simulates the infiltration processes closer to the numerical solution by HYDRUS‐1D than the traditional and the recently improved Green‐Ampt model. Moreover, an inversion method to improve the estimates of soil hydraulic parameters from one‐dimensional vertical infiltration experiments that is based on the GAMS was suggested. The effect of ponding depth ( h p ), initial soil moisture content, soil texture, and hydraulic soil properties (saturated hydraulic conductivity K s , water‐entry suction h d and shape coefficient n of soil water retention curve) in the saturated zone was also evaluated. The results indicate that the saturated zone length increased at a comparable rate with the unsaturated wetted zone length during infiltration. Generally, a larger saturated zone was found for soils with higher initial soil moisture contents, coarser texture, higher K s values, greater n , and lower − h d . Our findings reveal that including the saturated zone in the infiltration model yields a better estimate of the soil hydraulic parameters. The proposed GAMS model can improve irrigation design and rainfall‐runoff simulations.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135477768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Sediment transport load monitoring is important in civil and environmental engineering fields. Monitoring the total load is difficult, especially because of the cost of the bed load transport measurement. This study proposes estimation models for the suspended‐to‐total load fraction using dimensionless hydro‐morphological variables. Two prominent variable combinations were identified using the recursive feature elimination for support vector regression (SVR): (1) width‐to‐depth ratio, dimensionless particle size, flow Reynolds number, densimetric Froude number, and falling particle Reynolds number, and (2) flow Reynolds number, Froude number, and densimetric Froude number. The explicit relations between the suspended‐to‐total load fraction and the two combinations were revealed by two modern symbolic regression methods: multi‐gene genetic programming and Operon. The five‐variable SVR model showed the best performance. Clustering analyses using a self‐organizing map and Gaussian mixture model, respectively, identified the underlying relationships between dimensionless variables. Subsequently, the one‐at‐a‐time sensitivity of the input variables of the empirical models was investigated. The suspended‐to‐total load fraction is positively related to the flow Reynolds number and is inversely related to the densimetric Froude number. The models developed in this study are practical and easy to implement in other suspended sediment monitoring methods because they only require basic measurable hydro‐morphological variables, such as velocity, depth, width, and median bed material size. This article is protected by copyright. All rights reserved.
{"title":"A novel efficient method of estimating suspended‐to‐total sediment load fraction in natural rivers","authors":"Hyoseob Noh, Yong Sung Park, Il Won Seo","doi":"10.1029/2022wr034401","DOIUrl":"https://doi.org/10.1029/2022wr034401","url":null,"abstract":"Abstract Sediment transport load monitoring is important in civil and environmental engineering fields. Monitoring the total load is difficult, especially because of the cost of the bed load transport measurement. This study proposes estimation models for the suspended‐to‐total load fraction using dimensionless hydro‐morphological variables. Two prominent variable combinations were identified using the recursive feature elimination for support vector regression (SVR): (1) width‐to‐depth ratio, dimensionless particle size, flow Reynolds number, densimetric Froude number, and falling particle Reynolds number, and (2) flow Reynolds number, Froude number, and densimetric Froude number. The explicit relations between the suspended‐to‐total load fraction and the two combinations were revealed by two modern symbolic regression methods: multi‐gene genetic programming and Operon. The five‐variable SVR model showed the best performance. Clustering analyses using a self‐organizing map and Gaussian mixture model, respectively, identified the underlying relationships between dimensionless variables. Subsequently, the one‐at‐a‐time sensitivity of the input variables of the empirical models was investigated. The suspended‐to‐total load fraction is positively related to the flow Reynolds number and is inversely related to the densimetric Froude number. The models developed in this study are practical and easy to implement in other suspended sediment monitoring methods because they only require basic measurable hydro‐morphological variables, such as velocity, depth, width, and median bed material size. This article is protected by copyright. All rights reserved.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135864344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}