Pub Date : 2024-07-20DOI: 10.1016/j.cis.2024.103251
Klaudia Trembecka-Wójciga , Joanna Ortyl
In the domain of photopolymerization-based additive manufacturing (3D vat printing), ceramic photopolymer resins represent a multifaceted composite, predominantly comprising oligomers, ceramic fillers, and photoinitiators. However, the synergy between the ceramic fillers and polymer matrix, along with the stabilization and homogenization of the composite, is facilitated by specific additives, notably surface-active agents, dispersants, and adhesion promoters. Although these additives constitute a minor fraction in terms of volume, their influence on the final properties of the material is substantial. Consequently, their meticulous selection and integration are crucial, subtly guiding the performance and characteristics of the resultant ceramic matrix composites toward enhancement. This review delves into the array of dispersants and coupling agents utilized in the additive manufacturing of ceramic components. It elucidates the interaction mechanisms between these additives and ceramic fillers and examines how these interactions affect the additive manufacturing process. Furthermore, this review investigates the impact of various additives on the rheological behavior of ceramic slurries and their subsequent effects on the post-manufacturing stages, such as debinding and sintering. It also addresses the challenges and prospects in the optimization of dispersants and coupling agents for advanced ceramic additive manufacturing applications.
{"title":"Enhancing 3D printed ceramic components: The function of dispersants, adhesion promoters, and surface-active agents in Photopolymerization-based additive manufacturing","authors":"Klaudia Trembecka-Wójciga , Joanna Ortyl","doi":"10.1016/j.cis.2024.103251","DOIUrl":"10.1016/j.cis.2024.103251","url":null,"abstract":"<div><p>In the domain of photopolymerization-based additive manufacturing (3D vat printing), ceramic photopolymer resins represent a multifaceted composite, predominantly comprising oligomers, ceramic fillers, and photoinitiators. However, the synergy between the ceramic fillers and polymer matrix, along with the stabilization and homogenization of the composite, is facilitated by specific additives, notably surface-active agents, dispersants, and adhesion promoters. Although these additives constitute a minor fraction in terms of volume, their influence on the final properties of the material is substantial. Consequently, their meticulous selection and integration are crucial, subtly guiding the performance and characteristics of the resultant ceramic matrix composites toward enhancement. This review delves into the array of dispersants and coupling agents utilized in the additive manufacturing of ceramic components. It elucidates the interaction mechanisms between these additives and ceramic fillers and examines how these interactions affect the additive manufacturing process. Furthermore, this review investigates the impact of various additives on the rheological behavior of ceramic slurries and their subsequent effects on the post-manufacturing stages, such as debinding and sintering. It also addresses the challenges and prospects in the optimization of dispersants and coupling agents for advanced ceramic additive manufacturing applications.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"332 ","pages":"Article 103251"},"PeriodicalIF":15.9,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S000186862400174X/pdfft?md5=303825d5a285541f914fbdd930e68a27&pid=1-s2.0-S000186862400174X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1016/j.cis.2024.103250
Muhammad Naveed Afridi , Zulakha Zafar , Imtiaz Afzal Khan , Imran Ali , Aziz-Ur-Rahim Bacha , Hubdar Ali Maitlo , Muhammad Qasim , Muhammad Nawaz , Fei Qi , Mika Sillanpää , Kang Hoon Lee , Muhammad Bilal Asif
The pressing global issue of organic pollutants, particularly phenolic compounds derived primarily from industrial wastes, poses a significant threat to the environment. Although progress has been made in the development of low-cost materials for phenolic compound removal, their effectiveness remains limited. Thus, there is an urgent need for novel technologies to comprehensively address this issue. In this context, MXenes, known for their exceptional physicochemical properties, have emerged as highly promising candidates for the remediation of phenolic pollutants. This review aims to provide a comprehensive and critical evaluation of MXene-based technologies for the removal of phenolic pollutants, focusing on the following key aspects: (1) The classification and categorization of phenolic pollutants, highlighting their adverse environmental impacts, and emphasizing the crucial need for their removal. (2) An in-depth discussion on the synthesis methods and properties of MXene-based composites, emphasizing their suitability for environmental remediation. (3) A detailed analysis of MXene-based adsorption, catalysis, photocatalysis, and hybrid processes, showcasing current advancements in MXene modification and functionalization to enhance removal efficiency. (4) A thorough examination of the removal mechanisms and stability of MXene-based technologies, elucidating their operating conditions and stability in pollutant removal scenarios. (5) Finally, this review concludes by outlining future challenges and opportunities for MXene-based technologies in water treatment, facilitating their potential applications. This comprehensive review provides valuable insights and innovative ideas for the development of versatile MXene-based technologies tailored to combat water pollution effectively.
{"title":"Advances in MXene-based technologies for the remediation of toxic phenols: A comprehensive review","authors":"Muhammad Naveed Afridi , Zulakha Zafar , Imtiaz Afzal Khan , Imran Ali , Aziz-Ur-Rahim Bacha , Hubdar Ali Maitlo , Muhammad Qasim , Muhammad Nawaz , Fei Qi , Mika Sillanpää , Kang Hoon Lee , Muhammad Bilal Asif","doi":"10.1016/j.cis.2024.103250","DOIUrl":"10.1016/j.cis.2024.103250","url":null,"abstract":"<div><p>The pressing global issue of organic pollutants, particularly phenolic compounds derived primarily from industrial wastes, poses a significant threat to the environment. Although progress has been made in the development of low-cost materials for phenolic compound removal, their effectiveness remains limited. Thus, there is an urgent need for novel technologies to comprehensively address this issue. In this context, MXenes, known for their exceptional physicochemical properties, have emerged as highly promising candidates for the remediation of phenolic pollutants. This review aims to provide a comprehensive and critical evaluation of MXene-based technologies for the removal of phenolic pollutants, focusing on the following key aspects: (1) The classification and categorization of phenolic pollutants, highlighting their adverse environmental impacts, and emphasizing the crucial need for their removal. (2) An in-depth discussion on the synthesis methods and properties of MXene-based composites, emphasizing their suitability for environmental remediation. (3) A detailed analysis of MXene-based adsorption, catalysis, photocatalysis, and hybrid processes, showcasing current advancements in MXene modification and functionalization to enhance removal efficiency. (4) A thorough examination of the removal mechanisms and stability of MXene-based technologies, elucidating their operating conditions and stability in pollutant removal scenarios. (5) Finally, this review concludes by outlining future challenges and opportunities for MXene-based technologies in water treatment, facilitating their potential applications. This comprehensive review provides valuable insights and innovative ideas for the development of versatile MXene-based technologies tailored to combat water pollution effectively.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"332 ","pages":"Article 103250"},"PeriodicalIF":15.9,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1016/j.cis.2024.103252
Rong Ma , Deke Li , Chenggong Xu , Juan Yang , Jinxia Huang , Zhiguang Guo
Fabrics are soft against the skin, flexible, easily accessible and able to wick away perspiration, to some extent for local private thermal management. In this review, we classify smart fabrics as passive thermal management fabrics and active thermal management fabrics based on the availability of outside energy consumption in the manipulation of heat generation and dissipation from the human body. The mechanism and research status of various thermal management fabrics are introduced in detail, and the article also analyses the advantages and disadvantages of various smart thermal management fabrics, achieving a better and more comprehensive comprehension of the current state of research on smart thermal management fabrics, which is quite an important reference guide for our future research. In addition, with the progress of science and technology, the social demand for fabrics has shifted from keeping warm to improving health and quality of life. E-textiles have potential value in areas such as remote health monitoring and life signal detection. New e-textiles are designed to mimic the skin, sense biological data and transmit information. At the same time, the ultra-moisturizing properties of the fabric's thermal management allow for applications beyond just the human body to energy. E-textiles hold great promise for energy harvesting and storage. The article also introduces the application of smart fabrics in life forms and energy harvesting. By combining electronic technology with textiles, e-textiles can be manufactured to promote human well-being and quality of life. Although smart textiles are equipped with more intelligent features, wearing comfort must be the first thing to be ensured in the multi-directional application of textiles. Eventually, we discuss the dares and prospects of smart thermal management fabric research.
{"title":"Fabricated advanced textile for personal thermal management, intelligent health monitoring and energy harvesting","authors":"Rong Ma , Deke Li , Chenggong Xu , Juan Yang , Jinxia Huang , Zhiguang Guo","doi":"10.1016/j.cis.2024.103252","DOIUrl":"10.1016/j.cis.2024.103252","url":null,"abstract":"<div><p>Fabrics are soft against the skin, flexible, easily accessible and able to wick away perspiration, to some extent for local private thermal management. In this review, we classify smart fabrics as passive thermal management fabrics and active thermal management fabrics based on the availability of outside energy consumption in the manipulation of heat generation and dissipation from the human body. The mechanism and research status of various thermal management fabrics are introduced in detail, and the article also analyses the advantages and disadvantages of various smart thermal management fabrics, achieving a better and more comprehensive comprehension of the current state of research on smart thermal management fabrics, which is quite an important reference guide for our future research. In addition, with the progress of science and technology, the social demand for fabrics has shifted from keeping warm to improving health and quality of life. <em>E</em>-textiles have potential value in areas such as remote health monitoring and life signal detection. New e-textiles are designed to mimic the skin, sense biological data and transmit information. At the same time, the ultra-moisturizing properties of the fabric's thermal management allow for applications beyond just the human body to energy. <em>E</em>-textiles hold great promise for energy harvesting and storage. The article also introduces the application of smart fabrics in life forms and energy harvesting. By combining electronic technology with textiles, e-textiles can be manufactured to promote human well-being and quality of life. Although smart textiles are equipped with more intelligent features, wearing comfort must be the first thing to be ensured in the multi-directional application of textiles. Eventually, we discuss the dares and prospects of smart thermal management fabric research.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"332 ","pages":"Article 103252"},"PeriodicalIF":15.9,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy storage systems, particularly rechargeable batteries, play a crucial role in establishing a sustainable energy infrastructure. Today, researchers focus on improving battery energy density, cycling stability, and rate performance. This involves enhancing existing materials or creating new ones with advanced properties for cathodes and anodes to achieve peak battery performance. Graphene aerogels (GAs) possess extraordinary attributes, including a hierarchical porous and lightweight structure, high electrical conductivity, and robust mechanical stability. These qualities facilitate the uniform distribution of active sites within electrodes, mitigate volume changes during repeated cycling, and enhance overall conductivity. When integrated into batteries, GAs expedite electron/ion transport, offer exceptional structural stability, and deliver outstanding cycling performance. This review offers a comprehensive survey of the advancements in the preparation, functionalization, and modification of GAs in the context of battery research. It explores their application as electrodes and hosts for the dispersion of active material nanoparticles, resulting in the creation of hybrid electrodes for a wide range of rechargeable batteries including lithium-ion batteries (LIBs), Li-metal-air batteries, sodium-ion batteries (SIBs), zinc-ion batteries (AZIBs) and zinc-air batteries (ZABs), aluminum-ion batteries (AIBs) and aluminum-air batteries and other.
储能系统,尤其是可充电电池,在建立可持续能源基础设施方面发挥着至关重要的作用。如今,研究人员专注于提高电池的能量密度、循环稳定性和速率性能。这就需要增强现有材料或为阴极和阳极创造具有先进性能的新材料,以实现电池的最佳性能。石墨烯气凝胶(GAs)具有非凡的特性,包括分层多孔轻质结构、高导电性和强大的机械稳定性。这些特性有助于电极内活性位点的均匀分布,缓解反复循环过程中的体积变化,并提高整体导电性。当集成到电池中时,GA 可加快电子/离子传输,提供优异的结构稳定性,并具有出色的循环性能。本综述以电池研究为背景,全面介绍了在制备、功能化和改性 GAs 方面取得的进展。它探讨了 GAs 作为电极和活性材料纳米颗粒分散宿主的应用,从而为各种可充电电池创造出混合电极,包括锂离子电池 (LIB)、锂金属-空气电池、钠离子电池 (SIB)、锌离子电池 (AZIB) 和锌-空气电池 (ZAB)、铝离子电池 (AIB) 和铝-空气电池及其他电池。
{"title":"The role of graphene aerogels in rechargeable batteries","authors":"Fail Sultanov , Batukhan Tatykayev , Zhumabay Bakenov , Almagul Mentbayeva","doi":"10.1016/j.cis.2024.103249","DOIUrl":"10.1016/j.cis.2024.103249","url":null,"abstract":"<div><p>Energy storage systems, particularly rechargeable batteries, play a crucial role in establishing a sustainable energy infrastructure. Today, researchers focus on improving battery energy density, cycling stability, and rate performance. This involves enhancing existing materials or creating new ones with advanced properties for cathodes and anodes to achieve peak battery performance. Graphene aerogels (GAs) possess extraordinary attributes, including a hierarchical porous and lightweight structure, high electrical conductivity, and robust mechanical stability. These qualities facilitate the uniform distribution of active sites within electrodes, mitigate volume changes during repeated cycling, and enhance overall conductivity. When integrated into batteries, GAs expedite electron/ion transport, offer exceptional structural stability, and deliver outstanding cycling performance. This review offers a comprehensive survey of the advancements in the preparation, functionalization, and modification of GAs in the context of battery research. It explores their application as electrodes and hosts for the dispersion of active material nanoparticles, resulting in the creation of hybrid electrodes for a wide range of rechargeable batteries including lithium-ion batteries (LIBs), Li-metal-air batteries, sodium-ion batteries (SIBs), zinc-ion batteries (AZIBs) and zinc-air batteries (ZABs), aluminum-ion batteries (AIBs) and aluminum-air batteries and other.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"331 ","pages":"Article 103249"},"PeriodicalIF":15.9,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polypeptides have shown an excellent potential in nanomedicine thanks to their biocompatibility, biodegradability, high functionality, and responsiveness to several stimuli. Polypeptides exhibit high propensity to organize at the supramolecular level; hence, they have been extensively considered as building blocks in the layer-by-layer (LbL) assembly. The LbL technique is a highly versatile methodology, which involves the sequential assembly of building blocks, mainly driven by electrostatic interactions, onto planar or colloidal templates to fabricate sophisticated multilayer nanoarchitectures. The simplicity and the mild conditions required in the LbL approach have led to the inclusion of biopolymers and bioactive molecules for the fabrication of a wide spectrum of biodegradable, biocompatible, and precisely engineered multilayer films for biomedical applications. This review focuses on those examples in which polypeptides have been used as building blocks of multilayer nanoarchitectures for tissue engineering and drug delivery applications, highlighting the characteristics of the polypeptides and the strategies adopted to increase the stability of the multilayer film. Cross-linking is presented as a powerful strategy to enhance the stability and stiffness of the multilayer network, which is a fundamental requirement for biomedical applications. For example, in tissue engineering, a stiff multilayer coating, the presence of adhesion promoters, and/or bioactive molecules boost the adhesion, growth, and differentiation of cells. On the contrary, antimicrobial coatings should repel and inhibit the growth of bacteria. In drug delivery applications, mainly focused on particles and capsules at the micro- and nano-meter scale, the stability of the multilayer film is crucial in terms of retention and controlled release of the payload. Recent advances have shown the key role of the polypeptides in the adsorption of genetic material with high loading efficiency, and in addressing different pathways of the particles/capsules during the intracellular uptake, paving the way for applications in personalized medicine. Although there are a few studies, the responsiveness of the polypeptides to the pH changes, together with the inclusion of stimuli-responsive entities into the multilayer network, represents a further key factor for the development of smart drug delivery systems to promote a sustained release of therapeutics. The degradability of polypeptides may be an obstacle in certain scenarios for the controlled intracellular release of a drug once an external stimulus is applied. Nowadays, the highly engineered design of biodegradable LbL particles/capsules is oriented on the development of theranostics that, limited to use of polypeptides, are still in their infancy.
{"title":"Polypeptide-based multilayer nanoarchitectures: Controlled assembly on planar and colloidal substrates for biomedical applications","authors":"Maria Angela Motta , Lucinda Mulko , Edurne Marin , Aitor Larrañaga , Marcelo Calderón","doi":"10.1016/j.cis.2024.103248","DOIUrl":"10.1016/j.cis.2024.103248","url":null,"abstract":"<div><p>Polypeptides have shown an excellent potential in nanomedicine thanks to their biocompatibility, biodegradability, high functionality, and responsiveness to several stimuli. Polypeptides exhibit high propensity to organize at the supramolecular level; hence, they have been extensively considered as building blocks in the layer-by-layer (LbL) assembly. The LbL technique is a highly versatile methodology, which involves the sequential assembly of building blocks, mainly driven by electrostatic interactions, onto planar or colloidal templates to fabricate sophisticated multilayer nanoarchitectures. The simplicity and the mild conditions required in the LbL approach have led to the inclusion of biopolymers and bioactive molecules for the fabrication of a wide spectrum of biodegradable, biocompatible, and precisely engineered multilayer films for biomedical applications. This review focuses on those examples in which polypeptides have been used as building blocks of multilayer nanoarchitectures for tissue engineering and drug delivery applications, highlighting the characteristics of the polypeptides and the strategies adopted to increase the stability of the multilayer film. Cross-linking is presented as a powerful strategy to enhance the stability and stiffness of the multilayer network, which is a fundamental requirement for biomedical applications. For example, in tissue engineering, a stiff multilayer coating, the presence of adhesion promoters, and/or bioactive molecules boost the adhesion, growth, and differentiation of cells. On the contrary, antimicrobial coatings should repel and inhibit the growth of bacteria. In drug delivery applications, mainly focused on particles and capsules at the micro- and nano-meter scale, the stability of the multilayer film is crucial in terms of retention and controlled release of the payload. Recent advances have shown the key role of the polypeptides in the adsorption of genetic material with high loading efficiency, and in addressing different pathways of the particles/capsules during the intracellular uptake, paving the way for applications in personalized medicine. Although there are a few studies, the responsiveness of the polypeptides to the pH changes, together with the inclusion of stimuli-responsive entities into the multilayer network, represents a further key factor for the development of smart drug delivery systems to promote a sustained release of therapeutics. The degradability of polypeptides may be an obstacle in certain scenarios for the controlled intracellular release of a drug once an external stimulus is applied. Nowadays, the highly engineered design of biodegradable LbL particles/capsules is oriented on the development of theranostics that, limited to use of polypeptides, are still in their infancy.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"331 ","pages":"Article 103248"},"PeriodicalIF":15.9,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001868624001714/pdfft?md5=236bfca7251047e5f32835965e464f0d&pid=1-s2.0-S0001868624001714-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141699001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-14DOI: 10.1016/j.cis.2024.103247
Ramakrishna Trovagunta , Ronald Marquez , Laura Tolosa , Nelson Barrios , Franklin Zambrano , Antonio Suarez , Lokendra Pal , Ronalds Gonzalez , Martin A. Hubbe
Physical chemistry aspects are emphasized in this comprehensive review of self-assembly phenomena involving lignin in various forms. Attention to this topic is justified by the very high availability, low cost, and renewable nature of lignin, together with opportunities to manufacture diverse products, for instance, polymers/resins, bioplastics, carbon fibers, bio-asphalt, sunscreen components, hydrophobic layers, and microcapsules. The colloidal lignin material, nanoparticles, and microstructures that can be formed as a result of changes in solvent properties, pH, or other adjustments to a suspending medium have been shown to depend on many factors. Such factors are examined in this work based on the concepts of self-assembly, which can be defined as an organizing principle dependent on specific attributes of the starting entities themselves. As a means to promote such concepts and to facilitate further development of nano-scale lignin products, this article draws upon evidence from a wide range of studies. These include investigations of many different plant sources of lignin, processes of delignification, solvent systems, anti-solvent systems or other means of achieving phase separation, and diverse means of achieving colloidal stability (if desired) of resulting self-assembled lignin structures. Knowledge of the self-organization behavior of lignin can provide significant structural information to optimize the use of lignin in value-added applications. Examples include chemical conditions and preparation procedures in which lignin-related compounds of particles organize themselves as spheres, hollow spheres, surface-bound layers, and a variety of other structures. Published articles show that such processes can be influenced by the selection of lignin type, pulping or extraction processes, functional groups such as phenolic, carboxyl, and sulfonate, chemical derivatization reactions, solvent applications, aqueous conditions, and physical processes, such as agitation. Precipitation from non-aqueous solutions represents a key focus of lignin self-assembly research. The review also considers stabilization mechanisms of self-assembled lignin-related structures.
{"title":"Lignin self-assembly phenomena and valorization strategies for pulping, biorefining, and materials development: Part 1. The physical chemistry of lignin self-assembly","authors":"Ramakrishna Trovagunta , Ronald Marquez , Laura Tolosa , Nelson Barrios , Franklin Zambrano , Antonio Suarez , Lokendra Pal , Ronalds Gonzalez , Martin A. Hubbe","doi":"10.1016/j.cis.2024.103247","DOIUrl":"10.1016/j.cis.2024.103247","url":null,"abstract":"<div><p>Physical chemistry aspects are emphasized in this comprehensive review of self-assembly phenomena involving lignin in various forms. Attention to this topic is justified by the very high availability, low cost, and renewable nature of lignin, together with opportunities to manufacture diverse products, for instance, polymers/resins, bioplastics, carbon fibers, bio-asphalt, sunscreen components, hydrophobic layers, and microcapsules. The colloidal lignin material, nanoparticles, and microstructures that can be formed as a result of changes in solvent properties, pH, or other adjustments to a suspending medium have been shown to depend on many factors. Such factors are examined in this work based on the concepts of self-assembly, which can be defined as an organizing principle dependent on specific attributes of the starting entities themselves. As a means to promote such concepts and to facilitate further development of nano-scale lignin products, this article draws upon evidence from a wide range of studies. These include investigations of many different plant sources of lignin, processes of delignification, solvent systems, anti-solvent systems or other means of achieving phase separation, and diverse means of achieving colloidal stability (if desired) of resulting self-assembled lignin structures. Knowledge of the self-organization behavior of lignin can provide significant structural information to optimize the use of lignin in value-added applications. Examples include chemical conditions and preparation procedures in which lignin-related compounds of particles organize themselves as spheres, hollow spheres, surface-bound layers, and a variety of other structures. Published articles show that such processes can be influenced by the selection of lignin type, pulping or extraction processes, functional groups such as phenolic, carboxyl, and sulfonate, chemical derivatization reactions, solvent applications, aqueous conditions, and physical processes, such as agitation. Precipitation from non-aqueous solutions represents a key focus of lignin self-assembly research. The review also considers stabilization mechanisms of self-assembled lignin-related structures.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"332 ","pages":"Article 103247"},"PeriodicalIF":15.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141707500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-05DOI: 10.1016/j.cis.2024.103246
Asli Can Karaca , Sareh Boostani , Elham Assadpour , Chen Tan , Fuyuan Zhang , Seid Mahdi Jafari
Pickering emulsions (PEs) can be used as efficient carriers for encapsulation and controlled release of different bioactive compounds. Recent research has revealed the potential of prolamins in development of nanoparticle- and emulsion-based carriers which can improve the stability and bioavailability of bioactive compounds. Prolamin-based particles have been effectively used as stabilizers of various PEs including single PEs, high internal phase PEs, multiple PEs, novel triphasic PEs, and PE gels due to their tunable self-assembly behaviors. Prolamin particles can be fabricated via different techniques including anti-solvent precipitation, dissolution followed by pH adjustment, heating, and ion induced aggregation. Particles fabricated from prolamins alone or in combination with other hydrocolloids or polyphenols have also been used for stabilization of different PEs which were shown to be effective carriers for food bioactives, providing improved stability and functionality. This article covers the recent advances in various PEs stabilized by prolamin particles as innovative carriers for bioactive ingredients. Strategies applied for fabrication of prolamin particles and prolamin-based carriers are discussed. Emerging techno-functional applications of prolamin-based PEs and possible challenges are also highlighted.
{"title":"Pickering emulsions stabilized by prolamin-based proteins as innovative carriers of bioactive compounds","authors":"Asli Can Karaca , Sareh Boostani , Elham Assadpour , Chen Tan , Fuyuan Zhang , Seid Mahdi Jafari","doi":"10.1016/j.cis.2024.103246","DOIUrl":"10.1016/j.cis.2024.103246","url":null,"abstract":"<div><p>Pickering emulsions (PEs) can be used as efficient carriers for encapsulation and controlled release of different bioactive compounds. Recent research has revealed the potential of prolamins in development of nanoparticle- and emulsion-based carriers which can improve the stability and bioavailability of bioactive compounds. Prolamin-based particles have been effectively used as stabilizers of various PEs including single PEs, high internal phase PEs, multiple PEs, novel triphasic PEs, and PE gels due to their tunable self-assembly behaviors. Prolamin particles can be fabricated via different techniques including anti-solvent precipitation, dissolution followed by pH adjustment, heating, and ion induced aggregation. Particles fabricated from prolamins alone or in combination with other hydrocolloids or polyphenols have also been used for stabilization of different PEs which were shown to be effective carriers for food bioactives, providing improved stability and functionality. This article covers the recent advances in various PEs stabilized by prolamin particles as innovative carriers for bioactive ingredients. Strategies applied for fabrication of prolamin particles and prolamin-based carriers are discussed. Emerging techno-functional applications of prolamin-based PEs and possible challenges are also highlighted.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"333 ","pages":"Article 103246"},"PeriodicalIF":15.9,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141691631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum dots (QDs), a novel category of semiconductor materials, exhibit extraordinary capabilities in tuning optical characteristics. Their emergence in biophotonics has been noteworthy, particularly in bio-imaging, biosensing, and theranostics applications. Although conventional QDs such as PbS, CdSe, CdS, and HgTe have garnered attention for their promising features, the presence of heavy metals in these QDs poses significant challenges for biological use. To address these concerns, the development of Ag chalcogenide QDs has gained prominence owing to their near-infrared emission and exceptionally low toxicity, rendering them suitable for biological applications. This review explores recent advancements in Ag chalcogenide QDs, focusing on their synthesis methodologies, surface chemistry modifications, and wide-ranging applications in biomedicine. Additionally, it identifies future directions in material science, highlighting the potential of these innovative QDs in revolutionizing the field.
{"title":"Synthesis and surface engineering of Ag chalcogenide quantum dots for near-infrared biophotonic applications","authors":"Shiva Kumar Arumugasamy , Gayathri Chellasamy , Nanthagopal Murugan , Saravanan Govindaraju , Kyusik Yun , Min-Jae Choi","doi":"10.1016/j.cis.2024.103245","DOIUrl":"10.1016/j.cis.2024.103245","url":null,"abstract":"<div><p>Quantum dots (QDs), a novel category of semiconductor materials, exhibit extraordinary capabilities in tuning optical characteristics. Their emergence in biophotonics has been noteworthy, particularly in bio-imaging, biosensing, and theranostics applications. Although conventional QDs such as PbS, CdSe, CdS, and HgTe have garnered attention for their promising features, the presence of heavy metals in these QDs poses significant challenges for biological use. To address these concerns, the development of Ag chalcogenide QDs has gained prominence owing to their near-infrared emission and exceptionally low toxicity, rendering them suitable for biological applications. This review explores recent advancements in Ag chalcogenide QDs, focusing on their synthesis methodologies, surface chemistry modifications, and wide-ranging applications in biomedicine. Additionally, it identifies future directions in material science, highlighting the potential of these innovative QDs in revolutionizing the field.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"331 ","pages":"Article 103245"},"PeriodicalIF":15.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141473409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1016/j.cis.2024.103244
Muzammil Kuddushi , Ben Bin Xu , Naved Malek , Xuehua Zhang
Ionic liquids (ILs) play a crucial role in the design of novel materials. The ionic nature of ILs provides numerous advantages in drug delivery, acting as a green solvent or active ingredient to enhance the solubility, permeability, and binding efficiency of drugs. They could also function as a structuring agent in the development of nano/micro particles for drug delivery, including micelles, vesicles, gels, emulsion, and more. This review summarize the ILs and IL-based gel structures with their advanced drug delivery applications. The first part of review focuses on the role of ILs in drug formulation and the applications of ILs in drug delivery. The second part of review offers a comprehensive overview of recent drug delivery applications of IL-based gel. It aims to offer new perspectives and attract more attention to open up new avenues in the biomedical applications of ILs and IL-based gels.
离子液体(ILs)在新型材料的设计中发挥着至关重要的作用。离子液体的离子性质为药物输送提供了众多优势,可作为绿色溶剂或活性成分,提高药物的溶解度、渗透性和结合效率。在开发纳米/微粒(包括胶束、囊泡、凝胶、乳液等)用于给药时,它们还可以作为一种结构剂。本综述总结了 ILs 和基于 IL 的凝胶结构及其先进的给药应用。综述的第一部分重点介绍了ILs在药物制剂中的作用以及ILs在药物递送中的应用。综述的第二部分全面概述了基于 IL 的凝胶的最新给药应用。综述旨在提供新的视角,吸引更多的关注,为 ILs 和 IL 基凝胶的生物医学应用开辟新的途径。
{"title":"Review of ionic liquid and ionogel-based biomaterials for advanced drug delivery","authors":"Muzammil Kuddushi , Ben Bin Xu , Naved Malek , Xuehua Zhang","doi":"10.1016/j.cis.2024.103244","DOIUrl":"10.1016/j.cis.2024.103244","url":null,"abstract":"<div><p>Ionic liquids (ILs) play a crucial role in the design of novel materials. The ionic nature of ILs provides numerous advantages in drug delivery, acting as a green solvent or active ingredient to enhance the solubility, permeability, and binding efficiency of drugs. They could also function as a structuring agent in the development of nano/micro particles for drug delivery, including micelles, vesicles, gels, emulsion, and more. This review summarize the ILs and IL-based gel structures with their advanced drug delivery applications. The first part of review focuses on the role of ILs in drug formulation and the applications of ILs in drug delivery. The second part of review offers a comprehensive overview of recent drug delivery applications of IL-based gel. It aims to offer new perspectives and attract more attention to open up new avenues in the biomedical applications of ILs and IL-based gels.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"331 ","pages":"Article 103244"},"PeriodicalIF":15.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001868624001672/pdfft?md5=5a42f537128d1b7b34d1fa11ef089706&pid=1-s2.0-S0001868624001672-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-24DOI: 10.1016/j.cis.2024.103243
Sangharatna M. Ramteke , Magdalena Walczak , Marco De Stefano , Alessandro Ruggiero , Andreas Rosenkranz , Max Marian
The recent rise of 2D materials has extended the opportunities of tuning a variety of properties. Tribo-corrosion, the complex synergy between mechanical wear and chemical corrosion, poses significant challenges across numerous industries where materials are subjected to both tribological stressing and corrosive environments. This intricate interplay often leads to accelerated material degradation and failure. This review critically assesses the current state of utilizing 2D nanomaterials to enhance tribo-corrosion and -oxidation behavior. The paper summarizes the fundamental knowledge about tribo-corrosion and -oxidation mechanisms before assessing the key contributions of 2D materials, including graphene, transition metal chalcogenides, hexagonal boron nitride, MXenes, and black phosphorous, regarding the resulting friction and wear behavior. The protective roles of these nanomaterials against corrosion and oxidation are investigated, highlighting their potential in mitigating material degradation. Furthermore, we delve into the nuanced interplay between mechanical and corrosive factors in the specific application of 2D materials for tribo-corrosion and -oxidation protection. The synthesis of key findings underscores the advancements achieved through integrating 2D nanomaterials. An outlook for future research directions is provided, identifying unexplored avenues, and proposing strategies to propel the field forward. This analysis aims at guiding future investigations and developments at the dynamic intersection of 2D nanomaterials, tribo-corrosion, and -oxidation protection.
{"title":"2D materials for Tribo-corrosion and -oxidation protection: A review","authors":"Sangharatna M. Ramteke , Magdalena Walczak , Marco De Stefano , Alessandro Ruggiero , Andreas Rosenkranz , Max Marian","doi":"10.1016/j.cis.2024.103243","DOIUrl":"10.1016/j.cis.2024.103243","url":null,"abstract":"<div><p>The recent rise of 2D materials has extended the opportunities of tuning a variety of properties. Tribo-corrosion, the complex synergy between mechanical wear and chemical corrosion, poses significant challenges across numerous industries where materials are subjected to both tribological stressing and corrosive environments. This intricate interplay often leads to accelerated material degradation and failure. This review critically assesses the current state of utilizing 2D nanomaterials to enhance tribo-corrosion and -oxidation behavior. The paper summarizes the fundamental knowledge about tribo-corrosion and -oxidation mechanisms before assessing the key contributions of 2D materials, including graphene, transition metal chalcogenides, hexagonal boron nitride, MXenes, and black phosphorous, regarding the resulting friction and wear behavior. The protective roles of these nanomaterials against corrosion and oxidation are investigated, highlighting their potential in mitigating material degradation. Furthermore, we delve into the nuanced interplay between mechanical and corrosive factors in the specific application of 2D materials for tribo-corrosion and -oxidation protection. The synthesis of key findings underscores the advancements achieved through integrating 2D nanomaterials. An outlook for future research directions is provided, identifying unexplored avenues, and proposing strategies to propel the field forward. This analysis aims at guiding future investigations and developments at the dynamic intersection of 2D nanomaterials, tribo-corrosion, and -oxidation protection.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"331 ","pages":"Article 103243"},"PeriodicalIF":15.9,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001868624001660/pdfft?md5=e68644785af59ffac300852f6aaa3fdc&pid=1-s2.0-S0001868624001660-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}