Carbon quantum dots (CQDs) with well-defined architectures offer highly fascinating properties such as excellent water-solubility, exceptional luminescence, large specific surface area, non-toxicity, biocompatibility and tuneable morphological, structural, and chemical features. This review comprehensively overviews recent breakthroughs and critical milestones in the green synthesis of CQDs from renewable sources and provides guidance for their sustainable development towards fulfilling the goals of green chemistry. It also discusses the interaction of CQDs with various biopolymers to improve the material performance and functionality. This paper also highlights the latest technological applications of CQDs in numerous fields, including sustainable packaging, biosensing, bioimaging, cancer therapy, drug delivery as well as water purification. Finally, it summarizes the main challenges and provides an outlook on the future directions of CQDs in packaging and biomedical fields. This review can act as a roadmap to guide researchers for tailoring the properties of CQDs for important composite and biomedical fields.
{"title":"Unlocking the potential of green-engineered carbon quantum dots for sustainable packaging biomedical applications and water purification","authors":"Yasaman Esmaeili , Farzad Toiserkani , Zeinab Qazanfarzadeh , Mehran Ghasemlou , Minoo Naebe , Colin J. Barrow , Wendy Timms , Shima Jafarzadeh","doi":"10.1016/j.cis.2025.103414","DOIUrl":"10.1016/j.cis.2025.103414","url":null,"abstract":"<div><div>Carbon quantum dots (CQDs) with well-defined architectures offer highly fascinating properties such as excellent water-solubility, exceptional luminescence, large specific surface area, non-toxicity, biocompatibility and tuneable morphological, structural, and chemical features. This review comprehensively overviews recent breakthroughs and critical milestones in the green synthesis of CQDs from renewable sources and provides guidance for their sustainable development towards fulfilling the goals of green chemistry. It also discusses the interaction of CQDs with various biopolymers to improve the material performance and functionality. This paper also highlights the latest technological applications of CQDs in numerous fields, including sustainable packaging, biosensing, bioimaging, cancer therapy, drug delivery as well as water purification. Finally, it summarizes the main challenges and provides an outlook on the future directions of CQDs in packaging and biomedical fields. This review can act as a roadmap to guide researchers for tailoring the properties of CQDs for important composite and biomedical fields.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"338 ","pages":"Article 103414"},"PeriodicalIF":15.9,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1016/j.cis.2025.103404
Manyan Qiu , Chaoxin Man , Qianyu Zhao , Xinyan Yang , Yu Zhang , Wei Zhang , Xianlong Zhang , Joseph Irudayaraj , Yujun Jiang
Nanozyme, a class of emerging enzyme mimics, is the nanomaterials with enzyme-mimicking activity, which has obtained significant and widespread applications in various fields. However, they still face many challenges in practical applications (e.g., instability and low biocompatibility in the physiological environments), which affect their widespread applications to a certain extent. Hydrogels with superior performances (e.g., the controllable degradability, good biocompatibility, hydrophilic properties, and adjustable physical properties) may provide a promising strategy to make up the existing deficiencies of nanozymes in practical applications. Thus, the sapiential combination of nanozymes with hydrogels endows nanozyme hydrogels with both characteristics of nanozymes and properties of hydrogels, making nanozyme hydrogels become novel multifunctional materials. In this review, we comprehensively summarizes the preparation, properties, and progressive applications of nanozyme hydrogels. First of all, the main design and preparation strategies of nanozyme hydrogels are considerately summarized. Then, the properties of different nanozyme hydrogels are introduced. In addition, sophisticated applications of nanozyme hydrogels in the fields of biosensing, biomedicine applications, and environmental are comprehensively summarized. Most importantly, future obstacles and chances in this emerging field are profoundly proposed. This review will provide a new horizon for the development and future applications of novel nanozyme hydrogels.
{"title":"Nanozymes meet hydrogels: Fabrication, progressive applications, and perspectives","authors":"Manyan Qiu , Chaoxin Man , Qianyu Zhao , Xinyan Yang , Yu Zhang , Wei Zhang , Xianlong Zhang , Joseph Irudayaraj , Yujun Jiang","doi":"10.1016/j.cis.2025.103404","DOIUrl":"10.1016/j.cis.2025.103404","url":null,"abstract":"<div><div>Nanozyme, a class of emerging enzyme mimics, is the nanomaterials with enzyme-mimicking activity, which has obtained significant and widespread applications in various fields. However, they still face many challenges in practical applications (e.g., instability and low biocompatibility in the physiological environments), which affect their widespread applications to a certain extent. Hydrogels with superior performances (e.g., the controllable degradability, good biocompatibility, hydrophilic properties, and adjustable physical properties) may provide a promising strategy to make up the existing deficiencies of nanozymes in practical applications. Thus, the sapiential combination of nanozymes with hydrogels endows nanozyme hydrogels with both characteristics of nanozymes and properties of hydrogels, making nanozyme hydrogels become novel multifunctional materials. In this review, we comprehensively summarizes the preparation, properties, and progressive applications of nanozyme hydrogels. First of all, the main design and preparation strategies of nanozyme hydrogels are considerately summarized. Then, the properties of different nanozyme hydrogels are introduced. In addition, sophisticated applications of nanozyme hydrogels in the fields of biosensing, biomedicine applications, and environmental are comprehensively summarized. Most importantly, future obstacles and chances in this emerging field are profoundly proposed. This review will provide a new horizon for the development and future applications of novel nanozyme hydrogels.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"338 ","pages":"Article 103404"},"PeriodicalIF":15.9,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-22DOI: 10.1016/j.cis.2025.103403
Hongrui Xiang , Zhihui Yang , Xiaoyun Liu , Feiyu Lu , Feiping Zhao , Liyuan Chai
Rare earth elements (REEs) are crucial metallic resources that play an essential role in national economies and industrial production. The reclaimation of REEs from wastewater stands as a significant supplementary strategy to bolster the REEs supply. Adsorption techniques are widely recognized as environmentally friendly and sustainable methods for the separation of REEs from wastewater. Despite the growing interest in adsorption-based REEs separation, comprehensive reviews of both traditional and novel adsorbents toward REEs recovery remain limited. This review aims to provide a thorough analysis of various adsorbents for the recovery of REEs. The types of adsorbents examined include activated carbons, functionalized silica nanoparticles, and microbial synthetic adsorbents, with a detailed evaluation of their adsorption capacities, selectivity, and regeneration potential. This study focuses on the mechanisms of REEs adsorption, including electrostatic interactions, ion exchange, surface complexation, and surface precipitation, highlighting how surface modifications can enhance REEs recovery efficiency. Future efforts in designing high-performance adsorbents should prioritize the optimization of the density of functional groups to enhance both selectivity and adsorption capacity, while also maintaining a balance between overall capacity, cost, and reusability. The incorporation of covalently bonded functional groups onto mechanically robust adsorbents can significantly strengthen chemical interactions with REEs and improve the structural stability of the adsorbents during reuse. Additionally, the development of materials with high specific surface areas and well-defined porous structures is benifitial to facilitating mass transfer of REEs and maximizing adsorption efficiency. Ultimately, the advancement of the design of efficient, highly selective and recyclable adsorbents is critical for addressing the growing demand for REEs across diverse industrial applications.
{"title":"Advancements in functional adsorbents for sustainable recovery of rare earth elements from wastewater: A comprehensive review of performance, mechanisms, and applications","authors":"Hongrui Xiang , Zhihui Yang , Xiaoyun Liu , Feiyu Lu , Feiping Zhao , Liyuan Chai","doi":"10.1016/j.cis.2025.103403","DOIUrl":"10.1016/j.cis.2025.103403","url":null,"abstract":"<div><div>Rare earth elements (REEs) are crucial metallic resources that play an essential role in national economies and industrial production. The reclaimation of REEs from wastewater stands as a significant supplementary strategy to bolster the REEs supply. Adsorption techniques are widely recognized as environmentally friendly and sustainable methods for the separation of REEs from wastewater. Despite the growing interest in adsorption-based REEs separation, comprehensive reviews of both traditional and novel adsorbents toward REEs recovery remain limited. This review aims to provide a thorough analysis of various adsorbents for the recovery of REEs. The types of adsorbents examined include activated carbons, functionalized silica nanoparticles, and microbial synthetic adsorbents, with a detailed evaluation of their adsorption capacities, selectivity, and regeneration potential. This study focuses on the mechanisms of REEs adsorption, including electrostatic interactions, ion exchange, surface complexation, and surface precipitation, highlighting how surface modifications can enhance REEs recovery efficiency. Future efforts in designing high-performance adsorbents should prioritize the optimization of the density of functional groups to enhance both selectivity and adsorption capacity, while also maintaining a balance between overall capacity, cost, and reusability. The incorporation of covalently bonded functional groups onto mechanically robust adsorbents can significantly strengthen chemical interactions with REEs and improve the structural stability of the adsorbents during reuse. Additionally, the development of materials with high specific surface areas and well-defined porous structures is benifitial to facilitating mass transfer of REEs and maximizing adsorption efficiency. Ultimately, the advancement of the design of efficient, highly selective and recyclable adsorbents is critical for addressing the growing demand for REEs across diverse industrial applications.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"338 ","pages":"Article 103403"},"PeriodicalIF":15.9,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143043899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-17DOI: 10.1016/j.cis.2025.103401
Barry W. Ninham , Nikolai Bunkin , Matthew Battye
The glycocalyx and its associated endothelial surface layer which lines all cell membranes and most tissues, dwarfs the phospholipid membrane of cells in extent. Its major components are sulphated polymers like heparan and chondroitin sulphates and hyaluronic acid. These form a fuzzy layer of unknown structure and function.
It has become increasingly clear that the ESL-GC complex must play many roles. We postulate it has a self-organised infrastructure that directs cell traffic, acts in defence against pathogens and other cells, and in diseases like diabetes, and heart disease, besides being a playground for a host of biochemical activity.
Based on an analogous sulphated polymeric system Nafion, the fuel cell polymer, we suggest a model for the structure of the ESL-GC complex and how it functions. Taken together with parallel developments in physical chemistry, in nanobubbles, their stability in physiological media, and reactivity, we believe the model may throw light on a variety of phenomena, diabetes and some other diseases.
{"title":"The endothelial surface layer-glycocalyx - Universal nano-infrastructure is fundamental to physiology, cell traffic and a complementary neural network","authors":"Barry W. Ninham , Nikolai Bunkin , Matthew Battye","doi":"10.1016/j.cis.2025.103401","DOIUrl":"10.1016/j.cis.2025.103401","url":null,"abstract":"<div><div>The glycocalyx and its associated endothelial surface layer which lines all cell membranes and most tissues, dwarfs the phospholipid membrane of cells in extent. Its major components are sulphated polymers like heparan and chondroitin sulphates and hyaluronic acid. These form a fuzzy layer of unknown structure and function.</div><div>It has become increasingly clear that the ESL-GC complex must play many roles. We postulate it has a self-organised infrastructure that directs cell traffic, acts in defence against pathogens and other cells, and in diseases like diabetes, and heart disease, besides being a playground for a host of biochemical activity.</div><div>Based on an analogous sulphated polymeric system Nafion, the fuel cell polymer, we suggest a model for the structure of the ESL-GC complex and how it functions. Taken together with parallel developments in physical chemistry, in nanobubbles, their stability in physiological media, and reactivity, we believe the model may throw light on a variety of phenomena, diabetes and some other diseases.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"338 ","pages":"Article 103401"},"PeriodicalIF":15.9,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143043902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-17DOI: 10.1016/j.cis.2025.103402
Rohan M. Shah , Snehal R. Jadhav , Gary Bryant , Indu Pal Kaur , Ian H. Harding
In the evolving landscape of nanotechnology and pharmaceuticals, lipid nanostructures have emerged as pivotal areas of research due to their unique ability to mimic biological membranes and encapsulate active molecules. These nanostructures offer promising avenues for drug delivery, vaccine development, and diagnostic applications. This comprehensive review explores the complex mechanisms underlying the formation and stability of various lipid nanostructures, including lipid liquid crystalline nanoparticles and solid lipid nanoparticles.
Drawing upon a wide array of studies, we integrate current knowledge on the physicochemical properties of lipids that contribute to nanostructure formation, such as lipid composition, charge, and the role of environmental factors such as pH and ionic strength. We further discuss the stabilisation mechanisms that preserve the integrity and functionality of these nanostructures in biological systems, highlighting the influence of surface modification, PEGylation, and the incorporation of stabilising agents.
Through a methodical examination of both classical theories and cutting-edge research, our review highlights the critical factors that dictate the self-assembly of lipids into nanostructures, the dynamics of their formation, and the interplay between different stabilising forces. The implications of these insights for the design of lipid-based delivery systems are vast, offering the potential to enhance the bioavailability of therapeutics, target specific tissues or cells, and minimise adverse effects.
The integration of lipid nanostructures in pharmaceutical nanotechnology not only stands to revolutionise the delivery of therapeutic agents but also paves the way for innovative applications in targeted therapy, personalised medicine, and vaccine adjuvant development. By bridging the gap between fundamental biophysical studies and applied research, this review contributes to the ongoing discourse on lipid nanostructures, advocating for a multidisciplinary approach to harness their full potential.
{"title":"On the formation and stability mechanisms of diverse lipid-based nanostructures for drug delivery","authors":"Rohan M. Shah , Snehal R. Jadhav , Gary Bryant , Indu Pal Kaur , Ian H. Harding","doi":"10.1016/j.cis.2025.103402","DOIUrl":"10.1016/j.cis.2025.103402","url":null,"abstract":"<div><div>In the evolving landscape of nanotechnology and pharmaceuticals, lipid nanostructures have emerged as pivotal areas of research due to their unique ability to mimic biological membranes and encapsulate active molecules. These nanostructures offer promising avenues for drug delivery, vaccine development, and diagnostic applications. This comprehensive review explores the complex mechanisms underlying the formation and stability of various lipid nanostructures, including lipid liquid crystalline nanoparticles and solid lipid nanoparticles.</div><div>Drawing upon a wide array of studies, we integrate current knowledge on the physicochemical properties of lipids that contribute to nanostructure formation, such as lipid composition, charge, and the role of environmental factors such as pH and ionic strength. We further discuss the stabilisation mechanisms that preserve the integrity and functionality of these nanostructures in biological systems, highlighting the influence of surface modification, PEGylation, and the incorporation of stabilising agents.</div><div>Through a methodical examination of both classical theories and cutting-edge research, our review highlights the critical factors that dictate the self-assembly of lipids into nanostructures, the dynamics of their formation, and the interplay between different stabilising forces. The implications of these insights for the design of lipid-based delivery systems are vast, offering the potential to enhance the bioavailability of therapeutics, target specific tissues or cells, and minimise adverse effects.</div><div>The integration of lipid nanostructures in pharmaceutical nanotechnology not only stands to revolutionise the delivery of therapeutic agents but also paves the way for innovative applications in targeted therapy, personalised medicine, and vaccine adjuvant development. By bridging the gap between fundamental biophysical studies and applied research, this review contributes to the ongoing discourse on lipid nanostructures, advocating for a multidisciplinary approach to harness their full potential.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"338 ","pages":"Article 103402"},"PeriodicalIF":15.9,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-12DOI: 10.1016/j.cis.2025.103400
Wali Inam , Rajendra Bhadane , Jiaqi Yan , Markus Peurla , Outi M.H. Salo-Ahen , Jessica M. Rosenholm , Hongbo Zhang
In the realm of hybrid nanomaterials, the construction of core/shell nanoparticles offer an effective strategy for encompassing a particle by a polymeric or other suitable material, leading to a nanocomposite with distinct features within its structure. The polymer shell can be formed via nanoprecipitation, optimized by manipulating fluid flow, fluid mixing, modulating device features in microfluidics. In addition to the process optimization, success of polymer assembly in encapsulation strongly lies upon the favorable molecular interactions originating from the diverse chemical environment shared between core and shell materials facilitating formation of core/shell nanostructure. Therefore, understanding particle surface related properties and interaction profile of core/shell, is pertinent to fully harness control over core/shell structure formation. In our study, employing microfluidics-assisted screening of diverse MSN cores with contrasting charged dextran derived polymers, we conducted detailed characterization using dynamic light scattering (DLS), transmission electron microscope (TEM) imaging, and molecular simulations (MD) for analyzing interaction energies and molecular interactions. Our findings reveal that self-assembly of a polymer around the MSN cores majorly proceeds among counter charged entities (core and shell). From molecular perspective, in addition to the electrostatic interactions, hydrogen bonded interactions also contribute to stabilizing polymer assembly. Contrarily, out data reveals that in case pi-cation and van der Waals interactions are dominant, encapsulation of MSN cores accomplishes regardless of particle surface charge. Therefore, by integrating morphological characterization and molecular insights from computational studies, we summarize the synthesis mechanism of core/shell nanostructures.
在杂化纳米材料领域,核/壳纳米粒子的结构提供了一种有效的策略,可以用聚合物或其他合适的材料包裹粒子,从而形成具有不同结构特征的纳米复合材料。聚合物外壳可以通过纳米沉淀形成,通过控制流体流动、流体混合、微流体调制装置等功能进行优化。除了工艺优化之外,聚合物封装的成功很大程度上取决于核壳材料之间不同的化学环境所产生的良好的分子相互作用,这些相互作用促进了核/壳纳米结构的形成。因此,了解颗粒表面相关性质和核壳相互作用特征,有助于全面控制核壳结构的形成。在我们的研究中,我们采用微流体辅助筛选不同的MSN核与不同的带电荷的葡聚糖衍生聚合物,我们使用动态光散射(DLS)、透射电子显微镜(TEM)成像和分子模拟(MD)来分析相互作用能和分子相互作用。我们的研究结果表明,聚合物在MSN核周围的自组装主要发生在反电荷实体(核和壳)之间。从分子的角度来看,除了静电相互作用外,氢键相互作用也有助于稳定聚合物的组装。相反,我们的数据表明,当π -cation和van der Waals相互作用占主导地位时,无论颗粒表面电荷如何,都可以完成对MSN核的封装。因此,通过结合形态学表征和计算研究的分子见解,我们总结了核/壳纳米结构的合成机制。
{"title":"Microfluidics-enabled core/shell nanostructure assembly: Understanding encapsulation processes via particle characterization and molecular dynamics","authors":"Wali Inam , Rajendra Bhadane , Jiaqi Yan , Markus Peurla , Outi M.H. Salo-Ahen , Jessica M. Rosenholm , Hongbo Zhang","doi":"10.1016/j.cis.2025.103400","DOIUrl":"10.1016/j.cis.2025.103400","url":null,"abstract":"<div><div>In the realm of hybrid nanomaterials, the construction of core/shell nanoparticles offer an effective strategy for encompassing a particle by a polymeric or other suitable material, leading to a nanocomposite with distinct features within its structure. The polymer shell can be formed via nanoprecipitation, optimized by manipulating fluid flow, fluid mixing, modulating device features in microfluidics. In addition to the process optimization, success of polymer assembly in encapsulation strongly lies upon the favorable molecular interactions originating from the diverse chemical environment shared between core and shell materials facilitating formation of core/shell nanostructure. Therefore, understanding particle surface related properties and interaction profile of core/shell, is pertinent to fully harness control over core/shell structure formation. In our study, employing microfluidics-assisted screening of diverse MSN cores with contrasting charged dextran derived polymers, we conducted detailed characterization using dynamic light scattering (DLS), transmission electron microscope (TEM) imaging, and molecular simulations (MD) for analyzing interaction energies and molecular interactions. Our findings reveal that self-assembly of a polymer around the MSN cores majorly proceeds among counter charged entities (core and shell). From molecular perspective, in addition to the electrostatic interactions, hydrogen bonded interactions also contribute to stabilizing polymer assembly. Contrarily, out data reveals that in case pi-cation and van der Waals interactions are dominant, encapsulation of MSN cores accomplishes regardless of particle surface charge. Therefore, by integrating morphological characterization and molecular insights from computational studies, we summarize the synthesis mechanism of core/shell nanostructures.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"338 ","pages":"Article 103400"},"PeriodicalIF":15.9,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143017986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10DOI: 10.1016/j.cis.2025.103399
Li Duan , Jinlong Fan , Zhiming Li , Pengju Qiu , Yi Jia , Junbai Li
Covalent organic frameworks (COFs) are a class of porous crystalline materials with high surface areas, tunable pore sizes, and customizable surface chemistry, making them ideal for selective metal ion separation. This review explores the nanoarchitectonics, mechanisms, and applications of COFs in metal ion separation. We highlight the diverse bonding types (e.g., imine, boronic ester) and topologies (2D and 3D) that enable precise separation for alkali, alkaline earth, transition, and precious metals. The influence of COFs' pore characteristics, such as surface area, pore size, and distribution, on their adsorption capacity and selectivity is discussed. Additionally, surface functionalization enhances ion adsorption through electrostatic, coordination, and polarity interactions. Despite significant progress, challenges remain, including optimizing functional design for complex metal systems, improving material stability, and developing cost-effective synthesis methods. COFs also show promise in energy material recovery, biomedical diagnostics, and environmental remediation. Combining COFs with other separation technologies can enhance performance, and integrating AI and robotics in COF design may address current limitations, enabling broader industrial and environmental applications.
{"title":"Covalent organic frameworks for metal ion separation: Nanoarchitectonics, mechanisms, applications, and future perspectives","authors":"Li Duan , Jinlong Fan , Zhiming Li , Pengju Qiu , Yi Jia , Junbai Li","doi":"10.1016/j.cis.2025.103399","DOIUrl":"10.1016/j.cis.2025.103399","url":null,"abstract":"<div><div>Covalent organic frameworks (COFs) are a class of porous crystalline materials with high surface areas, tunable pore sizes, and customizable surface chemistry, making them ideal for selective metal ion separation. This review explores the nanoarchitectonics, mechanisms, and applications of COFs in metal ion separation. We highlight the diverse bonding types (e.g., imine, boronic ester) and topologies (2D and 3D) that enable precise separation for alkali, alkaline earth, transition, and precious metals. The influence of COFs' pore characteristics, such as surface area, pore size, and distribution, on their adsorption capacity and selectivity is discussed. Additionally, surface functionalization enhances ion adsorption through electrostatic, coordination, and polarity interactions. Despite significant progress, challenges remain, including optimizing functional design for complex metal systems, improving material stability, and developing cost-effective synthesis methods. COFs also show promise in energy material recovery, biomedical diagnostics, and environmental remediation. Combining COFs with other separation technologies can enhance performance, and integrating AI and robotics in COF design may address current limitations, enabling broader industrial and environmental applications.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"338 ","pages":"Article 103399"},"PeriodicalIF":15.9,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143025819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-09DOI: 10.1016/j.cis.2025.103398
Xiaohui Mao , Yujie Liu , Chenyu Qiao , Yongxiang Sun , Ziqian Zhao , Jifang Liu , Liping Zhu , Hongbo Zeng
Biopolymers derived from natural resources are highly abundant, biodegradable, and biocompatible, making them promising candidates to replace non-renewable fossil fuels and mitigate environmental and health impacts. Nano-fibrous biopolymers possessing advantages of biopolymers entangle with each other through inter−/intra-molecular interactions, serving as ideal building blocks for gel construction. These biopolymer nanofibers often synergize with other nano-building blocks to enhance gels with desirable functions and eco-friendliness across various applications in biomedical, environmental, and energy sectors. The inter-/intra-molecular interactions directly affect the assembly of nano-building blocks, which determines the structure of gels, and the integrity of connected nano-building blocks, influencing the mechanical properties and the performance of gels in specific applications. This review focuses on four biopolymer nanofibers (cellulose, chitin, silk, collagen), commonly used in gel preparations, as representatives for polysaccharides and polypeptides. The covalent and non-covalent interactions between biopolymers and other materials have been categorized and discussed in relation to the resulting gel network structures and properties. Nanomechanical characterization techniques, such as surface forces apparatus (SFA) and atomic force microscopy (AFM), have been employed to precisely quantify the intermolecular interactions between biopolymers and other building blocks. The applications of these gels are classified and correlated to the functions of their building blocks. The inter−/intra-molecular interactions act as “sewing threads”, connecting all nano-building blocks to establish suitable network structures and functions. This review aims to provide a comprehensive understanding of the interactions involved in gel preparation and the design principles needed to achieve targeted functional gels.
{"title":"Nano-fibrous biopolymers as building blocks for gel networks: Interactions, characterization, and applications","authors":"Xiaohui Mao , Yujie Liu , Chenyu Qiao , Yongxiang Sun , Ziqian Zhao , Jifang Liu , Liping Zhu , Hongbo Zeng","doi":"10.1016/j.cis.2025.103398","DOIUrl":"10.1016/j.cis.2025.103398","url":null,"abstract":"<div><div>Biopolymers derived from natural resources are highly abundant, biodegradable, and biocompatible, making them promising candidates to replace non-renewable fossil fuels and mitigate environmental and health impacts. Nano-fibrous biopolymers possessing advantages of biopolymers entangle with each other through inter−/intra-molecular interactions, serving as ideal building blocks for gel construction. These biopolymer nanofibers often synergize with other nano-building blocks to enhance gels with desirable functions and eco-friendliness across various applications in biomedical, environmental, and energy sectors. The inter-/intra-molecular interactions directly affect the assembly of nano-building blocks, which determines the structure of gels, and the integrity of connected nano-building blocks, influencing the mechanical properties and the performance of gels in specific applications. This review focuses on four biopolymer nanofibers (cellulose, chitin, silk, collagen), commonly used in gel preparations, as representatives for polysaccharides and polypeptides. The covalent and non-covalent interactions between biopolymers and other materials have been categorized and discussed in relation to the resulting gel network structures and properties. Nanomechanical characterization techniques, such as surface forces apparatus (SFA) and atomic force microscopy (AFM), have been employed to precisely quantify the intermolecular interactions between biopolymers and other building blocks. The applications of these gels are classified and correlated to the functions of their building blocks. The inter−/intra-molecular interactions act as “sewing threads”, connecting all nano-building blocks to establish suitable network structures and functions. This review aims to provide a comprehensive understanding of the interactions involved in gel preparation and the design principles needed to achieve targeted functional gels.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"338 ","pages":"Article 103398"},"PeriodicalIF":15.9,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143017987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1016/j.cis.2024.103389
Manohar Kugaji , Suman Kumar Ray , Prachi Parvatikar , Anjanapura V. Raghu
Biosurfactants are biodegradable, non-toxic, and environmentally beneficial substances that are produced by microorganisms. Due to their chemical characteristics and stability in various environmental circumstances, biosurfactants are low-molecular-weight, surface-active molecules of great industrial importance. The choice of the producer microbe, kind of substrate, and purification technique determine the chemistry of a biosurfactant and its production cost. Biosurfactants' amphiphilic nature has proven to be quite advantageous, allowing them to disperse onto two immiscible surfaces while lowering the interfacial surface tension and boosting the solubility of hydrophobic substances. Microbial surfactants are replacing their chemical counterparts in research and usage because of their low or non-toxic nature, durability at higher temperatures, capacity to endure wide range of pH variations and degrade naturally. Biosurfactants are often used as anti-adhesives, emulsifying/de-emulsifying agents, spreading agents, foaming agents, and detergents that have significance in a range of industries such as agriculture, biomedical, bioremediation, the manufacturing industry, and cosmetic. Recent advancements in biosurfactant production have enhanced its usefulness and research interest in a circular economy framework. These advancements include the use of alternative substrates, including various forms of organic waste and solid-state fermentation. Here, we attempted a comprehensive review of biosurfactants, their usage, latest research, limitations, and future aspects.
{"title":"Biosurfactants: A review of different strategies for economical production, their applications and recent advancements","authors":"Manohar Kugaji , Suman Kumar Ray , Prachi Parvatikar , Anjanapura V. Raghu","doi":"10.1016/j.cis.2024.103389","DOIUrl":"10.1016/j.cis.2024.103389","url":null,"abstract":"<div><div>Biosurfactants are biodegradable, non-toxic, and environmentally beneficial substances that are produced by microorganisms. Due to their chemical characteristics and stability in various environmental circumstances, biosurfactants are low-molecular-weight, surface-active molecules of great industrial importance. The choice of the producer microbe, kind of substrate, and purification technique determine the chemistry of a biosurfactant and its production cost. Biosurfactants' amphiphilic nature has proven to be quite advantageous, allowing them to disperse onto two immiscible surfaces while lowering the interfacial surface tension and boosting the solubility of hydrophobic substances. Microbial surfactants are replacing their chemical counterparts in research and usage because of their low or non-toxic nature, durability at higher temperatures, capacity to endure wide range of <em>p</em>H variations and degrade naturally. Biosurfactants are often used as anti-adhesives, emulsifying/de-emulsifying agents, spreading agents, foaming agents, and detergents that have significance in a range of industries such as agriculture, biomedical, bioremediation, the manufacturing industry, and cosmetic. Recent advancements in biosurfactant production have enhanced its usefulness and research interest in a circular economy framework. These advancements include the use of alternative substrates, including various forms of organic waste and solid-state fermentation. Here, we attempted a comprehensive review of biosurfactants, their usage, latest research, limitations, and future aspects.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"337 ","pages":"Article 103389"},"PeriodicalIF":15.9,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-28DOI: 10.1016/j.cis.2024.103388
Di Cui , Na Kong , Wenrong Yang , Fuhua Yan
Two-dimensional (2D) nanoarchitectonics involve the creation of functional material assemblies and structures at the nanoscopic level by combining and organizing nanoscale components through various strategies, such as chemical and physical reforming, atomic and molecular manipulation, and self-assembly. Significant advancements have been made in the field, with the goal of producing functional materials from these nanoscale components. 2D nanomaterials, in particular, have gained substantial attention due to their large surface areas which are ideal for numerous surface-active applications. In this review article, nanoarchitectonics of 2D nanomaterials based biomedical applications are discussed. We aim to provide a concise overview of how nanoarchitectonics using 2D nanomaterials can be applied to dental healthcare, with an emphasis on biosensing and drug delivery. By offering a deeper understanding of nanoarchitectonics with programmable structures and predictable properties, we hope to inspire new innovations in the dental bioapplications of 2D nanomaterials.
{"title":"Recent advances in nanoarchitectonics of two-dimensional nanomaterials for dental biosensing and drug delivery","authors":"Di Cui , Na Kong , Wenrong Yang , Fuhua Yan","doi":"10.1016/j.cis.2024.103388","DOIUrl":"10.1016/j.cis.2024.103388","url":null,"abstract":"<div><div>Two-dimensional (2D) <strong>nanoarchitectonics</strong> involve the creation of functional material assemblies and structures at the nanoscopic level by combining and organizing nanoscale components through various strategies, such as chemical and physical reforming, atomic and molecular manipulation, and self-assembly. Significant advancements have been made in the field, with the goal of producing functional materials from these nanoscale components. 2D nanomaterials, in particular, have gained substantial attention due to their large surface areas which are ideal for numerous surface-active applications. In this review article, nanoarchitectonics of 2D nanomaterials based biomedical applications are discussed. We aim to provide a concise overview of how nanoarchitectonics using 2D nanomaterials can be applied to dental healthcare, with an emphasis on biosensing and drug delivery. By offering a deeper understanding of nanoarchitectonics with programmable structures and predictable properties, we hope to inspire new innovations in the dental bioapplications of 2D nanomaterials.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"337 ","pages":"Article 103388"},"PeriodicalIF":15.9,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}