Pub Date : 2024-11-01DOI: 10.1016/j.cis.2024.103334
Sara Arabmofrad , Giuseppe Lazzara , Reinhard Miller , Seid Mahdi Jafari
Montmorillonite (Mt) is one of the eco-friendly and low-cost nano-adsorbents for water and wastewater treatment. Interactions of Mt. with various modifiers such as surfactants and polymers make it an ideal adsorbent with good selectivity for the removal of phenols, heavy metals and drug residues from water and wastewater. Surface modification can improve the adsorption potential of Mt. due to increasing the number of adsorption sites and functional groups to remove a wide variety of contaminants. This paper shows a general overview of the structure, adsorptive characteristics, and applications of Mt. and modified Mt. (m-Mt). Also, recent progress made in using of natural and modified bentonite and Mt. for removing phenols, heavy metals and pharmaceuticals from water and wastewater are explained. Furthermore, it discusses the strategies used to increase the adsorption capacity of Mt. by surface modification with cationic surfactants, acids, and polymers. This article delivers an exploration of the current uses of bentonite and Mt. for water and wastewater treatment and encouraging results obtained in this review could aid in the application Mt. and m-Mt for the recovery of high added value compounds and removal of contaminants from aquatic systems.
{"title":"Surface modification of bentonite and montmorillonite as novel nano-adsorbents for the removal of phenols, heavy metals and drug residues","authors":"Sara Arabmofrad , Giuseppe Lazzara , Reinhard Miller , Seid Mahdi Jafari","doi":"10.1016/j.cis.2024.103334","DOIUrl":"10.1016/j.cis.2024.103334","url":null,"abstract":"<div><div>Montmorillonite (Mt) is one of the eco-friendly and low-cost nano-adsorbents for water and wastewater treatment. Interactions of Mt. with various modifiers such as surfactants and polymers make it an ideal adsorbent with good selectivity for the removal of phenols, heavy metals and drug residues from water and wastewater. Surface modification can improve the adsorption potential of Mt. due to increasing the number of adsorption sites and functional groups to remove a wide variety of contaminants. This paper shows a general overview of the structure, adsorptive characteristics, and applications of Mt. and modified Mt. (m-Mt). Also, recent progress made in using of natural and modified bentonite and Mt. for removing phenols, heavy metals and pharmaceuticals from water and wastewater are explained. Furthermore, it discusses the strategies used to increase the adsorption capacity of Mt. by surface modification with cationic surfactants, acids, and polymers. This article delivers an exploration of the current uses of bentonite and Mt. for water and wastewater treatment and encouraging results obtained in this review could aid in the application Mt. and m-Mt for the recovery of high added value compounds and removal of contaminants from aquatic systems.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"334 ","pages":"Article 103334"},"PeriodicalIF":15.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cancer theranostic is the combination of diagnosis and therapeutic modalities for cancer treatment. It realizes a more flexible, precise and non-invasive treatment of patients. In this aspect, magnetic nanostructures (MNSs) have gained paramount importance and revolutionized the cancer management due to their unique physicochemical properties and inherent magnetic characteristics. MNSs have amazing theranostic ability starting from drug delivery to magnetic hyperthermia and magnetic resonance imaging to multimodal imaging in association with radioisotopes or fluorescent probes. Precise regulation over the synthetic process and their consequent surface functionalization makes them even more fascinating. The ultimate goal is to develop a platform that combines multiple diagnostic and therapeutic functionalities based on MNSs. This perspective has provided an overview of the state-of-art of theranostic applications of MNSs. Special emphasis has been dedicated towards the importance of synthetic approaches of MNSs as well as their subsequent surface engineering and integration with biological/therapeutic molecules that decide the final outcomes of the efficacy of MNSs in theranostic applications. Moreover, the recent advancements, opportunities and allied challenges towards clinical applications of MNSs in cancer management have been demonstrated.
{"title":"Recent progress and current status of surface engineered magnetic nanostructures in cancer theranostics","authors":"Bijaideep Dutta , K.C. Barick , P.A. Hassan , A.K. Tyagi","doi":"10.1016/j.cis.2024.103320","DOIUrl":"10.1016/j.cis.2024.103320","url":null,"abstract":"<div><div>Cancer theranostic is the combination of diagnosis and therapeutic modalities for cancer treatment. It realizes a more flexible, precise and non-invasive treatment of patients. In this aspect, magnetic nanostructures (MNSs) have gained paramount importance and revolutionized the cancer management due to their unique physicochemical properties and inherent magnetic characteristics. MNSs have amazing theranostic ability starting from drug delivery to magnetic hyperthermia and magnetic resonance imaging to multimodal imaging in association with radioisotopes or fluorescent probes. Precise regulation over the synthetic process and their consequent surface functionalization makes them even more fascinating. The ultimate goal is to develop a platform that combines multiple diagnostic and therapeutic functionalities based on MNSs. This perspective has provided an overview of the state-of-art of theranostic applications of MNSs. Special emphasis has been dedicated towards the importance of synthetic approaches of MNSs as well as their subsequent surface engineering and integration with biological/therapeutic molecules that decide the final outcomes of the efficacy of MNSs in theranostic applications. Moreover, the recent advancements, opportunities and allied challenges towards clinical applications of MNSs in cancer management have been demonstrated.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"334 ","pages":"Article 103320"},"PeriodicalIF":15.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-28DOI: 10.1016/j.cis.2024.103330
Weixuan Zhao , Ping Yin , Zulin Wang , Junnan Huang , Yiming Fu , Wenjihao Hu
Selective separation and precise control of the structure and surface characterization for two-dimensional (2D) membranes is the key technology that needs to be revealed for further development of the material in practical application. Current researches focus on the cross-linking and modification of single nanosheet to improve and manipulate the performance of 2D lamellar membranes. In this paper, the selectivity principles such as size exclusion, charge properties, and surface chemical affinity in the separation process of 2D membranes were comprehensively and systematically reviewed, as well as the preparation of hybrid membranes combining the advantages of various raw materials. We also analyzed the practical application of the separation principles in relevant researches and discussed the development directions of 2D membranes. These inductions have certain summary and guiding significance for the selective regulation and goal-oriented design of 2D membranes.
{"title":"Recent advances in regulation methods for selective separation and precise control of two-dimensional (2D) lamellar membranes","authors":"Weixuan Zhao , Ping Yin , Zulin Wang , Junnan Huang , Yiming Fu , Wenjihao Hu","doi":"10.1016/j.cis.2024.103330","DOIUrl":"10.1016/j.cis.2024.103330","url":null,"abstract":"<div><div>Selective separation and precise control of the structure and surface characterization for two-dimensional (2D) membranes is the key technology that needs to be revealed for further development of the material in practical application. Current researches focus on the cross-linking and modification of single nanosheet to improve and manipulate the performance of 2D lamellar membranes. In this paper, the selectivity principles such as size exclusion, charge properties, and surface chemical affinity in the separation process of 2D membranes were comprehensively and systematically reviewed, as well as the preparation of hybrid membranes combining the advantages of various raw materials. We also analyzed the practical application of the separation principles in relevant researches and discussed the development directions of 2D membranes. These inductions have certain summary and guiding significance for the selective regulation and goal-oriented design of 2D membranes.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"334 ","pages":"Article 103330"},"PeriodicalIF":15.9,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-26DOI: 10.1016/j.cis.2024.103322
Bianca Hazt , Daniel J. Read , Oliver G. Harlen , Wilson C.K. Poon , Adam O’Connell , Anwesha Sarkar
Mucoadhesion is a special case of bioadhesion in which a material adheres to soft mucosal tissues. This review elucidates our current understanding of mucoadhesion across length, time, and energy scales by focusing on relevant structural features of mucus. We highlight the importance of both covalent and non-covalent interactions that can be tailored to maximize mucoadhesive interactions, particularly concerning proteinaceous mucoadhesives, which have been explored only to a limited extent so far in the literature. In particular, we highlight the importance of thiol groups, hydrophobic moieties, and charged species inherent to proteins as key levers to fine tune mucoadhesive performance. Some aspects of protein surface modification by grafting specific functional groups or coupling with polysaccharides to influence mucoadhesive performance are examined. Insights from this review offer a physicochemical roadmap to inform the development of biocompatible, protein-based mucoadhesive systems that can fulfil dual roles for both adhesion and delivery of actives, enabling the fabrication of advanced biomedical, nutritional and allied soft material technologies.
{"title":"Mucoadhesion across scales: Towards the design of protein-based adhesives","authors":"Bianca Hazt , Daniel J. Read , Oliver G. Harlen , Wilson C.K. Poon , Adam O’Connell , Anwesha Sarkar","doi":"10.1016/j.cis.2024.103322","DOIUrl":"10.1016/j.cis.2024.103322","url":null,"abstract":"<div><div>Mucoadhesion is a special case of bioadhesion in which a material adheres to soft mucosal tissues. This review elucidates our current understanding of mucoadhesion across length, time, and energy scales by focusing on relevant structural features of mucus. We highlight the importance of both covalent and non-covalent interactions that can be tailored to maximize mucoadhesive interactions, particularly concerning proteinaceous mucoadhesives, which have been explored only to a limited extent so far in the literature. In particular, we highlight the importance of thiol groups, hydrophobic moieties, and charged species inherent to proteins as key levers to fine tune mucoadhesive performance. Some aspects of protein surface modification by grafting specific functional groups or coupling with polysaccharides to influence mucoadhesive performance are examined. Insights from this review offer a physicochemical roadmap to inform the development of biocompatible, protein-based mucoadhesive systems that can fulfil dual roles for both adhesion and delivery of actives, enabling the fabrication of advanced biomedical, nutritional and allied soft material technologies.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"334 ","pages":"Article 103322"},"PeriodicalIF":15.9,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.cis.2024.103321
Karin Schroën , Xuefeng Shen , Fathinah Islami Hasyyati , Siddharth Deshpande , Jasper van der Gucht
We noticed that in literature, the term Pickering emulsion (PE) is used as soon as ingredients contain particles, and in this review, we ask ourselves if that is done rightfully so. The basic behavior taking place in particle-stabilized emulsions leads to the conclusion that the desorption energy of particles is generally high making particles highly suited to physically stabilize emulsions. Exceptions are particles with extreme contact angles or systems with very low interfacial tension.
Particles used in food and biobased applications are soft, can deform when adsorbed, and most probably have molecules extending into both phases thus increasing desorption energy. Besides, surface-active components will be present either in the ingredients or generated by the emulsification process used, which will reduce the energy of desorption, either by reduced interfacial tension, or changes in the contact angle. In this paper, we describe the relative relevance of these aspects, and how to distinguish them in practice.
Practical food emulsions may derive part of their stability from the presence of particles, but most likely have mixed interfaces, and are thus not PEs. Especially when small particles are used to stabilize (sub)micrometer droplets, emulsions may become unstable upon receiving a heat treatment. Stability can be enhanced by connecting the particles or creating network that spans the product, albeit this goes beyond classical Pickering stabilization. Through the architecture of PEs, special functionalities can be created, such as reduction of lipid oxidation, and controlled release features.
{"title":"From theoretical aspects to practical food Pickering emulsions: Formation, stabilization, and complexities linked to the use of colloidal food particles","authors":"Karin Schroën , Xuefeng Shen , Fathinah Islami Hasyyati , Siddharth Deshpande , Jasper van der Gucht","doi":"10.1016/j.cis.2024.103321","DOIUrl":"10.1016/j.cis.2024.103321","url":null,"abstract":"<div><div>We noticed that in literature, the term <strong>Pickering emulsion</strong> (PE) is used as soon as ingredients contain particles, and in this review, we ask ourselves if that is done rightfully so. The basic behavior taking place in particle-stabilized emulsions leads to the conclusion that the <strong>desorption energy</strong> of particles is generally high making particles highly suited to physically stabilize emulsions. Exceptions are particles with extreme contact angles or systems with very low interfacial tension.</div><div>Particles used in food and biobased applications are soft, can <strong>deform</strong> when adsorbed, and most probably have molecules extending into both phases thus increasing desorption energy. Besides, <strong>surface-active components</strong> will be present either in the ingredients or generated by the emulsification process used, which will reduce the energy of desorption, either by reduced interfacial tension, or changes in the contact angle. In this paper, we describe the relative relevance of these aspects, and how to distinguish them in practice.</div><div>Practical food emulsions may derive part of their stability from the presence of particles, but most likely have <strong>mixed interfaces</strong>, and are thus not PEs. Especially when small particles are used to stabilize (sub)micrometer droplets, emulsions may become unstable upon receiving a heat treatment. Stability can be enhanced by connecting the particles or creating network that spans the product, albeit this goes beyond classical Pickering stabilization. Through the architecture of PEs, <strong>special functionalities</strong> can be created, such as reduction of lipid oxidation, and controlled release features.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"334 ","pages":"Article 103321"},"PeriodicalIF":15.9,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.1016/j.cis.2024.103314
T. Muthukumaran , John Philip
Magnetic nanoparticles (MNPs) have garnered significant attention from researchers due to their numerous technologically significant applications in diverse fields, including biomedicine, diagnostics, agriculture, optics, mechanics, electronics, sensing technology, catalysis, and environmental remediation. The superparamagnetic nature of MNP is exploited for many applications and remains fascinating to study many fundamental phenomena. The uniqueness of this review is that it gives an in-depth review of different synthesis approaches adopted for preparing magnetic nanoparticles and nanoparticle formation mechanisms, functionalizing them with different capping agents, and applying different functionalized magnetic nanoparticles. The important synthesis techniques covered include coprecipitation, microwave-assisted, sonochemical, sol-gel, microemulsion, hydrothermal/solvothermal, thermal decomposition, and mechano-chemical synthesis. Further, the advantages and disadvantages of each technique are discussed, and tables show important results of prepared particles. Other aspects covered in this review are the dispersion of magnetic nanoparticles in the continuous matrix, the influence of surface capping on high-temperature thermal stability, the long-term stability of ferrofluids, and applications of functionalized magnetic nanoparticles. For effective utilization of the ferrite nanoparticles, it is essential to formulate thermally and colloidally stable magnetic nanoparticles with desired magnetic properties. Capping enhances the phase transition temperature and long-term colloidal stability. Magnetic nanoparticles capped or functionalized with specific binding species, specific components like drugs, or other functional groups make them suitable for applications in biotechnology/biomedicine. Recent studies reveal the tremendous scope of MNPs in therapeutics and theranostics. The requirements for nanoparticle size, morphology, and physio-chemical properties, especially magnetic properties, functionalization, and stability, vary with applications. There are also challenges for precise size control and the cost-effective production of nanoparticles in large quantities. The review should be an ideal material for researchers working on magnetic nanomaterials and an excellent reference for freshers.
{"title":"A review on synthesis, capping and applications of superparamagnetic magnetic nanoparticles","authors":"T. Muthukumaran , John Philip","doi":"10.1016/j.cis.2024.103314","DOIUrl":"10.1016/j.cis.2024.103314","url":null,"abstract":"<div><div>Magnetic nanoparticles (MNPs) have garnered significant attention from researchers due to their numerous technologically significant applications in diverse fields, including biomedicine, diagnostics, agriculture, optics, mechanics, electronics, sensing technology, catalysis, and environmental remediation. The superparamagnetic nature of MNP is exploited for many applications and remains fascinating to study many fundamental phenomena. The uniqueness of this review is that it gives an in-depth review of different synthesis approaches adopted for preparing magnetic nanoparticles and nanoparticle formation mechanisms, functionalizing them with different capping agents, and applying different functionalized magnetic nanoparticles. The important synthesis techniques covered include coprecipitation, microwave-assisted, sonochemical, sol-gel, microemulsion, hydrothermal/solvothermal, thermal decomposition, and mechano-chemical synthesis. Further, the advantages and disadvantages of each technique are discussed, and tables show important results of prepared particles. Other aspects covered in this review are the dispersion of magnetic nanoparticles in the continuous matrix, the influence of surface capping on high-temperature thermal stability, the long-term stability of ferrofluids, and applications of functionalized magnetic nanoparticles. For effective utilization of the ferrite nanoparticles, it is essential to formulate thermally and colloidally stable magnetic nanoparticles with desired magnetic properties. Capping enhances the phase transition temperature and long-term colloidal stability. Magnetic nanoparticles capped or functionalized with specific binding species, specific components like drugs, or other functional groups make them suitable for applications in biotechnology/biomedicine. Recent studies reveal the tremendous scope of MNPs in therapeutics and theranostics. The requirements for nanoparticle size, morphology, and physio-chemical properties, especially magnetic properties, functionalization, and stability, vary with applications. There are also challenges for precise size control and the cost-effective production of nanoparticles in large quantities. The review should be an ideal material for researchers working on magnetic nanomaterials and an excellent reference for freshers.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"334 ","pages":"Article 103314"},"PeriodicalIF":15.9,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1016/j.cis.2024.103317
Taixia Wu , Han Wu , Qiubo Wang , Xiangqiong He , Pengbao Shi , Bing Yu , Hailin Cong , Youqing Shen
Polymer composite microspheres offer several advantages including highly designable structural properties, adjustable micro-nano particle size distribution, easy surface modification, large specific surface area, and high stability. These features make them valuable in various fields such as medicine, sensing, optics, and display technologies, with significant applications in clinical diagnostics, pathological imaging, and drug delivery in the medical field. Currently, microspheres are primarily used in biomedical research as long-acting controlled-release agents and targeted delivery systems, and are widely applied in bone tissue repair, cancer treatment, and wound healing. Different types of polymer microspheres offer distinct advantages and application prospects. Efforts are ongoing to transition successful experimental research to industrial production by expanding various fabrication technologies. This article provides an overview of materials used in microsphere manufacturing, different fabrication methods, modification techniques to enhance their properties and applications, and discusses the role of microspheres in drug delivery engineering.
{"title":"Current status and future developments of biopolymer microspheres in the field of pharmaceutical preparation","authors":"Taixia Wu , Han Wu , Qiubo Wang , Xiangqiong He , Pengbao Shi , Bing Yu , Hailin Cong , Youqing Shen","doi":"10.1016/j.cis.2024.103317","DOIUrl":"10.1016/j.cis.2024.103317","url":null,"abstract":"<div><div>Polymer composite microspheres offer several advantages including highly designable structural properties, adjustable micro-nano particle size distribution, easy surface modification, large specific surface area, and high stability. These features make them valuable in various fields such as medicine, sensing, optics, and display technologies, with significant applications in clinical diagnostics, pathological imaging, and drug delivery in the medical field. Currently, microspheres are primarily used in biomedical research as long-acting controlled-release agents and targeted delivery systems, and are widely applied in bone tissue repair, cancer treatment, and wound healing. Different types of polymer microspheres offer distinct advantages and application prospects. Efforts are ongoing to transition successful experimental research to industrial production by expanding various fabrication technologies. This article provides an overview of materials used in microsphere manufacturing, different fabrication methods, modification techniques to enhance their properties and applications, and discusses the role of microspheres in drug delivery engineering.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"334 ","pages":"Article 103317"},"PeriodicalIF":15.9,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.cis.2024.103319
Gary Bryant , Amani Alzahrani , Saffron J. Bryant , Reece Nixon-Luke , Jitendra Mata , Rohan Shah
Nanoparticles are vital to a broad range of applications including commercial formulations, sensing and advanced material synthesis. Nanoparticles can come in a variety of shapes including cubes, polyhedra, rods, and prisms, and recent literature has demonstrated the importance of nanoparticle shape to downstream function (such as cellular uptake). While researchers routinely characterise nanoparticle shape using electron microscopy techniques, this generally requires drying of the samples. Many particles (e.g. lipid nanoparticles or polymer particles) change with drying, so complementary solution based techniques are needed. Scattering techniques can be used to characterise such nanoparticles in suspension, overcoming many of the limitations of other techniques. Here we review the current state of the art in the characterisation of complex nanoparticles (non-spherical and multi-layered) using advanced scattering techniques including light, X-ray, and neutron scattering. Recent improvements in instrument availability and data analysis makes these techniques much more accessible to researchers. This review provides an introduction to these techniques aimed at all researchers working with nanoparticles, in the hope that full characterisation of nanoparticles in solution becomes standard practice.
{"title":"Advanced scattering techniques for characterisation of complex nanoparticles in solution","authors":"Gary Bryant , Amani Alzahrani , Saffron J. Bryant , Reece Nixon-Luke , Jitendra Mata , Rohan Shah","doi":"10.1016/j.cis.2024.103319","DOIUrl":"10.1016/j.cis.2024.103319","url":null,"abstract":"<div><div>Nanoparticles are vital to a broad range of applications including commercial formulations, sensing and advanced material synthesis. Nanoparticles can come in a variety of shapes including cubes, polyhedra, rods, and prisms, and recent literature has demonstrated the importance of nanoparticle shape to downstream function (such as cellular uptake). While researchers routinely characterise nanoparticle shape using electron microscopy techniques, this generally requires drying of the samples. Many particles (e.g. lipid nanoparticles or polymer particles) change with drying, so complementary solution based techniques are needed. Scattering techniques can be used to characterise such nanoparticles in suspension, overcoming many of the limitations of other techniques. Here we review the current state of the art in the characterisation of complex nanoparticles (non-spherical and multi-layered) using advanced scattering techniques including light, X-ray, and neutron scattering. Recent improvements in instrument availability and data analysis makes these techniques much more accessible to researchers. This review provides an introduction to these techniques aimed at all researchers working with nanoparticles, in the hope that full characterisation of nanoparticles in solution becomes standard practice.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"334 ","pages":"Article 103319"},"PeriodicalIF":15.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A hydrolyzed protein is a blend of peptides and amino acids which is the result of hydrolysis by enzymes, acids or alkalis. The Bioactive Peptides (BPs) show important biological roles including antioxidant, antimicrobial, anti-diabetic, anti-cancer, and anti-hypertensive effects, as well as positive effects on the immune, nervous, and digestive systems. Despite the benefits of BPs, challenges such as undesired organoleptic properties, solubility profile, chemical instability, and low bioavailability limit their use in functional food formulations and dietary supplements. Nanocarriers have emerged as a promising solution for overcoming these challenges by improving the stability, solubility, resistance to gastric digestion, and bioavailability, allowing for the targeted and controlled delivery, and reduction or masking of the undesirable flavor of BPs. This study reviews the recent scientific accomplishments concerning the loading of BPs into various nanocarriers including lipid, carbohydrate and protein based-nanocarriers. A special emphasis is given to their application in food formulations in accordance to the challenges associated with their use.
{"title":"Loading bioactive peptides within different nanocarriers to enhance their functionality and bioavailability; in vitro and in vivo studies","authors":"Narges Mazloomi , Barbod Safari , Asli Can Karaca , Laleh Karimzadeh , Shokufeh Moghadasi , Masoud Ghanbari , Elham Assadpour , Khashayar Sarabandi , Seid Mahdi Jafari","doi":"10.1016/j.cis.2024.103318","DOIUrl":"10.1016/j.cis.2024.103318","url":null,"abstract":"<div><div>A hydrolyzed protein is a blend of peptides and amino acids which is the result of hydrolysis by enzymes, acids or alkalis. The Bioactive Peptides (BPs) show important biological roles including antioxidant, antimicrobial, anti-diabetic, anti-cancer, and anti-hypertensive effects, as well as positive effects on the immune, nervous, and digestive systems. Despite the benefits of BPs, challenges such as undesired organoleptic properties, solubility profile, chemical instability, and low bioavailability limit their use in functional food formulations and dietary supplements. Nanocarriers have emerged as a promising solution for overcoming these challenges by improving the stability, solubility, resistance to gastric digestion, and bioavailability, allowing for the targeted and controlled delivery, and reduction or masking of the undesirable flavor of BPs. This study reviews the recent scientific accomplishments concerning the loading of BPs into various nanocarriers including lipid, carbohydrate and protein based-nanocarriers. A special emphasis is given to their application in food formulations in accordance to the challenges associated with their use.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"334 ","pages":"Article 103318"},"PeriodicalIF":15.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.1016/j.cis.2024.103313
Guoliang Jia , Huawen Zhang
Currently, various types of emulsions can be applied to a wide range of systems. Emulsions are thermodynamically unstable systems, and their crystallization can be affected by a variety of factors. The nucleation and growth processes of emulsion crystal networks are determined on the basis of reported theoretical and experimental methods. The issues addressed include changes in the apparent crystal morphology of samples, changes in thermal properties with respect to temperature, changes in boundary conditions, and changes in the various applications of emulsions as feedstocks or in processing and storage methods. Changes in a variety of common emulsions during constant-temperature storage and unavoidable temperature fluctuations (e.g., multiple freeze-thaw cycles) are considered. Different methods for controlling the crystalline stability of these colloidal systems are also discussed. This review outlines the crystallization mechanism of emulsions during their food processing and storage.
{"title":"Control of emulsion crystal growth in low-temperature environments","authors":"Guoliang Jia , Huawen Zhang","doi":"10.1016/j.cis.2024.103313","DOIUrl":"10.1016/j.cis.2024.103313","url":null,"abstract":"<div><div>Currently, various types of emulsions can be applied to a wide range of systems. Emulsions are thermodynamically unstable systems, and their crystallization can be affected by a variety of factors. The nucleation and growth processes of emulsion crystal networks are determined on the basis of reported theoretical and experimental methods. The issues addressed include changes in the apparent crystal morphology of samples, changes in thermal properties with respect to temperature, changes in boundary conditions, and changes in the various applications of emulsions as feedstocks or in processing and storage methods. Changes in a variety of common emulsions during constant-temperature storage and unavoidable temperature fluctuations (e.g., multiple freeze-thaw cycles) are considered. Different methods for controlling the crystalline stability of these colloidal systems are also discussed. This review outlines the crystallization mechanism of emulsions during their food processing and storage.</div></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"334 ","pages":"Article 103313"},"PeriodicalIF":15.9,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}