Aminoglycoside antibiotics (AGs) are commonly utilized in both human and veterinary medicine to treat and manage a range of infections. These antibiotics are recognized for their narrow therapeutic window, with an overdose potentially resulting in severe side effects like kidney and ear damage. Hence, the implementation of a quick, precise, and on-the-spot testing method is crucial in clinical settings. In the present investigation, we designed an innovative indirect lateral flow assay (LFA) utilizing aptamers to detect kanamycin, a type of aminoglycoside antibiotics. We prepared mesoporous silica nanoparticles (MSNs) functionalized with amino groups, loaded them with morphine (MOP), and then sealed them with aminoglycoside aptamers (Apt). The complex of gated-MSNs@Apt was tested using the MOP LFA in the presence or absence of kanamycin antibiotics.
Results
The indirect LFA system displayed a single colored line in the test line for positive samples, whereas it exhibited double colored lines in both the control line and test line for negative samples. Our custom-designed LFA biosensors demonstrated two linear ranges, from 10 nM to 350 nM and 500 nM–1500 nM, with a limit of detection (LOD) of 5 nM in serum media under optimized conditions. The introduced indirect LFA biosensor was effectively utilized to detect kanamycin, achieving a satisfactory recovery rate of 92.9–109.9 % with RSD of 1.68–7.73 % in serum samples.
Significance
In general, the created LFA system offers a portable, straightforward, and affordable approach for point-of-care (POC) identification of kanamycin and other AGs.
{"title":"An innovative biosensor utilizing aptamer-gated mesoporous silica nanoparticles for determination of aminoglycoside antibiotics through indirect-lateral flow","authors":"Reza Ghaffari , Reza Moradi , NoorMohammad Danesh , Mohammad Ramezani , Mona Alibolandi , Khalil Abnous , Seyed Mohammad Taghdisi","doi":"10.1016/j.aca.2024.343413","DOIUrl":"10.1016/j.aca.2024.343413","url":null,"abstract":"<div><h3>Background</h3><div>Aminoglycoside antibiotics (AGs) are commonly utilized in both human and veterinary medicine to treat and manage a range of infections. These antibiotics are recognized for their narrow therapeutic window, with an overdose potentially resulting in severe side effects like kidney and ear damage. Hence, the implementation of a quick, precise, and on-the-spot testing method is crucial in clinical settings. In the present investigation, we designed an innovative indirect lateral flow assay (LFA) utilizing aptamers to detect kanamycin, a type of aminoglycoside antibiotics. We prepared mesoporous silica nanoparticles (MSNs) functionalized with amino groups, loaded them with morphine (MOP), and then sealed them with aminoglycoside aptamers (Apt). The complex of gated-MSNs@Apt was tested using the MOP LFA in the presence or absence of kanamycin antibiotics.</div></div><div><h3>Results</h3><div>The indirect LFA system displayed a single colored line in the test line for positive samples, whereas it exhibited double colored lines in both the control line and test line for negative samples. Our custom-designed LFA biosensors demonstrated two linear ranges, from 10 nM to 350 nM and 500 nM–1500 nM, with a limit of detection (LOD) of 5 nM in serum media under optimized conditions. The introduced indirect LFA biosensor was effectively utilized to detect kanamycin, achieving a satisfactory recovery rate of 92.9–109.9 % with RSD of 1.68–7.73 % in serum samples.</div></div><div><h3>Significance</h3><div>In general, the created LFA system offers a portable, straightforward, and affordable approach for point-of-care (POC) identification of kanamycin and other AGs.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1334 ","pages":"Article 343413"},"PeriodicalIF":5.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1016/j.aca.2024.343412
Rosa Peñalver, María Dolores Pérez-Álvarez, Natalia Campillo, Natalia Arroyo-Manzanares, Pilar Viñas
Background
The excessive increase in the production of plastics worldwide and their mismanagement have turned these materials into a threat to the environment and living organisms. Plastics undergo erosion and degradation processes releasing additives, monomers of their formulation, and even generating one of the most worrying emerging pollutants: microplastics. These contaminants have been found in both aquatic and terrestrial ecosystems, so it is clear the need to develop a methodology to determine the accumulation of these pollutants and their associated compounds in living organisms.
Results
This work presents a new combination of static headspace with gas chromatography coupled to mass spectrometry (SHS-GC-MS) for the determination of volatile organic compounds (VOCs) associated with microplastic materials in animal tissue samples. A total of 48 samples were analysed, corresponding to different organs (brain, heart, fat, liver, muscle, lung, kidney) of lamb, pig, rabbit, turkey, chicken, and beef, and 60 VOCs related to the presence of plastics were tentatively identified. Moreover, the identity of 25 VOCs was confirmed and they were also quantified, with contents in the 1.12–920 ng g−1 range. The application of chemometric tools allowed to evaluate the relationship between the type of animal organ and the presence of contaminants associated with microplastics, showing a tendency towards a greater accumulation in kidney and liver. Verification of the origin of the VOCs found was carried out by means of a thermogravimetric analysis - mass spectrometry study.
Significance
The developed analytical approach generates useful and valuable information to better understand the exposure pathways of microplastics and their associated compounds, as well as the related migration and accumulation processes may happen in animal organs. This methodology has demonstrated high sensitivity, precision, robustness, and automation, as well as minimal sample handling.
{"title":"Static headspace-gas chromatography with mass spectrometry for the assessment of the bioaccumulation of volatile organic compounds associated with microplastics in animal tissues","authors":"Rosa Peñalver, María Dolores Pérez-Álvarez, Natalia Campillo, Natalia Arroyo-Manzanares, Pilar Viñas","doi":"10.1016/j.aca.2024.343412","DOIUrl":"10.1016/j.aca.2024.343412","url":null,"abstract":"<div><h3>Background</h3><div>The excessive increase in the production of plastics worldwide and their mismanagement have turned these materials into a threat to the environment and living organisms. Plastics undergo erosion and degradation processes releasing additives, monomers of their formulation, and even generating one of the most worrying emerging pollutants: microplastics. These contaminants have been found in both aquatic and terrestrial ecosystems, so it is clear the need to develop a methodology to determine the accumulation of these pollutants and their associated compounds in living organisms.</div></div><div><h3>Results</h3><div>This work presents a new combination of static headspace with gas chromatography coupled to mass spectrometry (SHS-GC-MS) for the determination of volatile organic compounds (VOCs) associated with microplastic materials in animal tissue samples. A total of 48 samples were analysed, corresponding to different organs (brain, heart, fat, liver, muscle, lung, kidney) of lamb, pig, rabbit, turkey, chicken, and beef, and 60 VOCs related to the presence of plastics were tentatively identified. Moreover, the identity of 25 VOCs was confirmed and they were also quantified, with contents in the 1.12–920 ng g<sup>−1</sup> range. The application of chemometric tools allowed to evaluate the relationship between the type of animal organ and the presence of contaminants associated with microplastics, showing a tendency towards a greater accumulation in kidney and liver. Verification of the origin of the VOCs found was carried out by means of a thermogravimetric analysis - mass spectrometry study.</div></div><div><h3>Significance</h3><div>The developed analytical approach generates useful and valuable information to better understand the exposure pathways of microplastics and their associated compounds, as well as the related migration and accumulation processes may happen in animal organs. This methodology has demonstrated high sensitivity, precision, robustness, and automation, as well as minimal sample handling.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1333 ","pages":"Article 343412"},"PeriodicalIF":5.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1016/j.aca.2024.343388
Yaxuan Qian , Zhihua Wang
Backgroud
Recently, optical nanomaterials have attracted much attention in the field of electrochemiluminescence (ECL). Nanostructured ceria possessed unique optical properties, and it's always used for constructing ECL sensor as catalyst for improving sensing performance, while the ECL property of ceria is rarely studied. In fact, it could be the potential candidate for applying in ECL sensors based on size and shape dependency optical property caused by the quantum scale effects. Therefore, new simple and efficient ceria nanomaterial used as luminophor for constructing the ECL sensor have aroused more research interest and motivation. (91 words).
Results
In the work, three kinds of nanostructured ceria, ceria nano-cube (CeO2-NC), ceria nano-rods (CeO2-NR) and ceria nano-particle (CeO2-NP), have been prepared by hydrothermal method, and CeO2-NC with the less oxygen vacancy has the highest ECL signal. Moreover, how the shape affects the ECL property was investigated in detail, especially the oxygen vacancy on the surface of the ceria. The less of oxygen vacancy content of CeO2 nanomaterials is more favorable the ECL reaction. Furthermore, a novel ECL sensor was constructed based on reduced graphene oxide (rGO), Au nano-particle (AuNPs) and CeO2-NC for Tyrosine (Tyr) determination owing to the electron transform between the luminous of ceria and Tyr resulting in the cathodic ECL intensity quenched correspondingly, and it has possessed excellent sensing performance with a linear range of 0.005–20 nmol/L and the limit of detection (LOD) value of 1.7 fmol/L (141 words)
Significance and novelty
The proposed method demonstrated excellent selectivity and ultra-sensitivity toward Tyr, which had been used for the determination of Tyr in human serum successfully, possessing outstanding analytical performance. Therefore, nanostructured ceria is a new category of efficient and promising luminophore, which would open new avenues for the potential application in the field of ECL sensing for clinical diagnosis. (57 words).
{"title":"An electrochemiluminescence sensor for ultrasensitive determination of tyrosine based on ceria nanomaterial as a novel luminophor","authors":"Yaxuan Qian , Zhihua Wang","doi":"10.1016/j.aca.2024.343388","DOIUrl":"10.1016/j.aca.2024.343388","url":null,"abstract":"<div><h3>Backgroud</h3><div>Recently, optical nanomaterials have attracted much attention in the field of electrochemiluminescence (ECL). Nanostructured ceria possessed unique optical properties, and it's always used for constructing ECL sensor as catalyst for improving sensing performance, while the ECL property of ceria is rarely studied. In fact, it could be the potential candidate for applying in ECL sensors based on size and shape dependency optical property caused by the quantum scale effects. <strong>Therefore, new simple and efficient ceria nanomaterial used as luminophor for constructing the ECL sensor have aroused more research interest and motivation.</strong> (91 words).</div></div><div><h3>Results</h3><div>In the work, three kinds of nanostructured ceria, ceria nano-cube (CeO<sub>2</sub>-NC), ceria nano-rods (CeO<sub>2</sub>-NR) and ceria nano-particle (CeO<sub>2</sub>-NP), have been prepared by hydrothermal method, and CeO<sub>2</sub>-NC with the less oxygen vacancy has the highest ECL signal. Moreover, how the shape affects the ECL property was investigated in detail, especially the oxygen vacancy on the surface of the ceria. The less of oxygen vacancy content of CeO<sub>2</sub> nanomaterials is more favorable the ECL reaction. Furthermore, a novel ECL sensor was constructed based on reduced graphene oxide (rGO), Au nano-particle (AuNPs) and CeO<sub>2</sub>-NC for Tyrosine (Tyr) determination owing to the electron transform between the luminous of ceria and Tyr resulting in the cathodic ECL intensity quenched correspondingly, and it has possessed excellent sensing performance with a linear range of 0.005–20 nmol/L and the limit of detection (LOD) value of 1.7 fmol/L (141 words)</div></div><div><h3>Significance and novelty</h3><div>The proposed method demonstrated excellent selectivity and ultra-sensitivity toward Tyr, which had been used for the determination of Tyr in human serum successfully, possessing outstanding analytical performance. Therefore, nanostructured ceria is a new category of efficient and promising luminophore, which would open new avenues for the potential application in the field of ECL sensing for clinical diagnosis. (57 words).</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1333 ","pages":"Article 343388"},"PeriodicalIF":5.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1016/j.aca.2024.343384
Jinling Cui , Anning Tian , Haoran Wang , Yanan Yu , Jingwen Hao , Lei Wang , Chao Shi , Cuiping Ma
Background
The gastrointestinal diseases caused by Helicobacter pylori (H. pylori) infection made the accurate detection of H. pylori infection more important. Non-invasive methods, such as molecular diagnostic methods, had become a promising method for detection of H. pylori. Stool samples combined with loop-mediated isothermal amplification (LAMP), showed potential practicability for real-time detection. However, complex nucleic acid extraction steps were required to remove the large numbers of amplification inhibitors in stool samples before LAMP reaction. And the limited number of H. pylori made the detection with long reaction time and low sensitivity. The problems mentioned above were urgently to be solved.
Results
In this study, we proposed a strategy for ultra-rapid sensitive detection of H. pylori in stool samples by hydrogel LAMP (hLAMP) without extraction. The hydrogel was combined with stool samples after simple thermal cracking, and amplification spaces were formed in its nanopore structures by nano-localization. The LAMP reaction was accelerated by nano space-localization. Besides, this method based on hLAMP could specifically and sensitively detect as low as 100 CFU/mL H. pylori within 40 min from sampling to result due to good anti-inhibition effect on complex samples of hydrogel. The whole process involved sample simple disposal for 10 min and LAMP reaction for 30 min. Furthermore, the excellent anti-inhibition mechanism of hydrogel was discussed, and the mechanism of hydrogel accelerating LAMP was explored.
Significance
This is the first application of that hydrogel and LAMP systematically combined to detect H. pylori in stool samples. The developed method had been verified in actual clinical applications that the accuracy rate reached 88.9 % compared with routine histopathology. And it also provided a potential idea for the diagnosis and prevention of H. pylori.
{"title":"Hydrogel loop-mediated isothermal amplification for ultra-fast diagnosis of Helicobacter pylori in stool samples without nucleic acid extraction","authors":"Jinling Cui , Anning Tian , Haoran Wang , Yanan Yu , Jingwen Hao , Lei Wang , Chao Shi , Cuiping Ma","doi":"10.1016/j.aca.2024.343384","DOIUrl":"10.1016/j.aca.2024.343384","url":null,"abstract":"<div><h3>Background</h3><div>The gastrointestinal diseases caused by <em>Helicobacter pylori</em> (<em>H. pylori</em>) infection made the accurate detection of <em>H. pylori</em> infection more important. Non-invasive methods, such as molecular diagnostic methods, had become a promising method for detection of <em>H. pylori</em>. Stool samples combined with loop-mediated isothermal amplification (LAMP), showed potential practicability for real-time detection. However, complex nucleic acid extraction steps were required to remove the large numbers of amplification inhibitors in stool samples before LAMP reaction. And the limited number of <em>H. pylori</em> made the detection with long reaction time and low sensitivity. The problems mentioned above were urgently to be solved.</div></div><div><h3>Results</h3><div>In this study, we proposed a strategy for ultra-rapid sensitive detection of <em>H. pylori</em> in stool samples by hydrogel LAMP (hLAMP) without extraction. The hydrogel was combined with stool samples after simple thermal cracking, and amplification spaces were formed in its nanopore structures by nano-localization. The LAMP reaction was accelerated by nano space-localization. Besides, this method based on hLAMP could specifically and sensitively detect as low as 100 CFU/mL <em>H. pylori</em> within 40 min from sampling to result due to good anti-inhibition effect on complex samples of hydrogel. The whole process involved sample simple disposal for 10 min and LAMP reaction for 30 min. Furthermore, the excellent anti-inhibition mechanism of hydrogel was discussed, and the mechanism of hydrogel accelerating LAMP was explored.</div></div><div><h3>Significance</h3><div>This is the first application of that hydrogel and LAMP systematically combined to detect <em>H. pylori</em> in stool samples. The developed method had been verified in actual clinical applications that the accuracy rate reached 88.9 % compared with routine histopathology. And it also provided a potential idea for the diagnosis and prevention of <em>H. pylori</em>.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1333 ","pages":"Article 343384"},"PeriodicalIF":5.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1016/j.aca.2024.343399
Daniela Oliveira , Pedro Oliveira , Ana Xu , Eduarda Rodrigues , Susana G. Guerreiro , Rafael C. Castro , David S.M. Ribeiro , João L.M. Santos , Ana Margarida L. Piloto
This study introduces a fluorescent immunosensor colour panel with antibody-conjugated quantum dots for detecting CA19-9 in human serum. The immunosensors presented decreasing fluorescence with increasing CA19-9 concentrations, with a linear detection range from 0.01 to 501.87 U mL−1 and detection limits of 1.66 × 10⁻⁴, 2.71 × 10⁻⁴, and 5.45 × 10⁻⁴ U mL−1 for the green-, orange-, and red-emitting conjugates in human serum. These limits are well below the 37 U mL−1 cutoff for early pancreatic cancer risk. The immunosensor panel is simple, sensitive, and specific, offering a visual colour readout for rapid CA19-9 detection, making it ideal for point-of-care applications. The results highlight the potential of the developed conjugates as a sensitive fluorescence colour panel for detecting CA19-9 across a wide range in human serum, both below and above the pancreatic cancer cutoff. With just 200 μL of sample and a single pre-filtration step, the assay delivers results in under 15 min, offering a cost-effective and efficient platform for point-of-care use.
{"title":"Optical immunosensor panel using quantum dot-antibody conjugates for highly sensitive detection of carbohydrate antigen 19–9 (CA19-9)","authors":"Daniela Oliveira , Pedro Oliveira , Ana Xu , Eduarda Rodrigues , Susana G. Guerreiro , Rafael C. Castro , David S.M. Ribeiro , João L.M. Santos , Ana Margarida L. Piloto","doi":"10.1016/j.aca.2024.343399","DOIUrl":"10.1016/j.aca.2024.343399","url":null,"abstract":"<div><div>This study introduces a fluorescent immunosensor colour panel with antibody-conjugated quantum dots for detecting CA19-9 in human serum. The immunosensors presented decreasing fluorescence with increasing CA19-9 concentrations, with a linear detection range from 0.01 to 501.87 U mL<sup>−1</sup> and detection limits of 1.66 × 10⁻⁴, 2.71 × 10⁻⁴, and 5.45 × 10⁻⁴ U mL<sup>−1</sup> for the green-, orange-, and red-emitting conjugates in human serum. These limits are well below the 37 U mL<sup>−1</sup> cutoff for early pancreatic cancer risk. The immunosensor panel is simple, sensitive, and specific, offering a visual colour readout for rapid CA19-9 detection, making it ideal for point-of-care applications. The results highlight the potential of the developed conjugates as a sensitive fluorescence colour panel for detecting CA19-9 across a wide range in human serum, both below and above the pancreatic cancer cutoff. With just 200 μL of sample and a single pre-filtration step, the assay delivers results in under 15 min, offering a cost-effective and efficient platform for point-of-care use.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1333 ","pages":"Article 343399"},"PeriodicalIF":5.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.aca.2024.343408
Zhiying Shao , Kezuo Di , Lijun Ding , Fuheng You , Cunhao Fan , Kun Wang
Background
Heavy metal pollution is a global environmental problem. Self-reduction strategy has garnered attention in adsorption and electrochemical detection of heavy metal ions due to their operational simplicity and elimination of the need for external electrodeposition steps. Therefore, it is crucial to integrate self-reduction-based adsorption with electrochemical detection. Metal-Organic Frameworks (MOFs) have demonstrated successful applications in adsorption and electrochemical detection. Moreover, owing to the presence of organic ligands featuring amino and electron-rich aromatic ring moieties, MOFs possess reducing capabilities towards metal ions.
Results
Herein, 2,4,6-triaminopyrimidine, characterized by its abundance of amino and electron-rich aromatic ring constituents, was selected as the organic ligand for the synthesis of Zn-MOFs, showcasing their efficacy in self-reduction-based adsorption and electrochemical detection of heavy metal ions. The Zn-MOFs exhibited swift uptake of heavy metal ions, boasting a remarkable adsorption capacity (4624 mg/g for Cu(II), 4261 mg/g for Hg(II), and 4874 mg/g for Pb(II)), while also exhibiting low detection limits (0.17 μg/L for Cu(II), 0.25 μg/L for Hg(II), and 0.22 μg/L for Pb(II)) in the electrochemical detection of heavy metal ions.
Significance
In this work, amino-rich Zn-MOFs were prepared for self-reducing adsorption and electrochemical detection of heavy metal ions, providing promising material for the detection and removal of heavy metal ions, offering a new method for the effective elimination and rapid detection of heavy metal ions, and pointing out a promising path for the treatment and monitoring of environmental issues.
{"title":"Amino-enriched Zn-MOFs with self-reduction for energy-free simultaneous removal and electrochemical detection of heavy metal ions in the aquatic environment","authors":"Zhiying Shao , Kezuo Di , Lijun Ding , Fuheng You , Cunhao Fan , Kun Wang","doi":"10.1016/j.aca.2024.343408","DOIUrl":"10.1016/j.aca.2024.343408","url":null,"abstract":"<div><h3>Background</h3><div>Heavy metal pollution is a global environmental problem. Self-reduction strategy has garnered attention in adsorption and electrochemical detection of heavy metal ions due to their operational simplicity and elimination of the need for external electrodeposition steps. Therefore, it is crucial to integrate self-reduction-based adsorption with electrochemical detection. Metal-Organic Frameworks (MOFs) have demonstrated successful applications in adsorption and electrochemical detection. Moreover, owing to the presence of organic ligands featuring amino and electron-rich aromatic ring moieties, MOFs possess reducing capabilities towards metal ions.</div></div><div><h3>Results</h3><div>Herein, 2,4,6-triaminopyrimidine, characterized by its abundance of amino and electron-rich aromatic ring constituents, was selected as the organic ligand for the synthesis of Zn-MOFs, showcasing their efficacy in self-reduction-based adsorption and electrochemical detection of heavy metal ions. The Zn-MOFs exhibited swift uptake of heavy metal ions, boasting a remarkable adsorption capacity (4624 mg/g for Cu(II), 4261 mg/g for Hg(II), and 4874 mg/g for Pb(II)), while also exhibiting low detection limits (0.17 μg/L for Cu(II), 0.25 μg/L for Hg(II), and 0.22 μg/L for Pb(II)) in the electrochemical detection of heavy metal ions.</div></div><div><h3>Significance</h3><div>In this work, amino-rich Zn-MOFs were prepared for self-reducing adsorption and electrochemical detection of heavy metal ions, providing promising material for the detection and removal of heavy metal ions, offering a new method for the effective elimination and rapid detection of heavy metal ions, and pointing out a promising path for the treatment and monitoring of environmental issues.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1333 ","pages":"Article 343408"},"PeriodicalIF":5.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.aca.2024.343409
Jiawei Zhou , Lili Zhao , Yuee Zhong , Peipei Li , Xiaohua Zhu , Shu Huang , Youyu Zhang , Meiling Liu
Human immunoglobulin (HIgG) has gained recognition as a crucial biomarker diagnosing and treating various diseases, particularly in identifying elevated serum levels in conditions like measles and pneumococcal disease. Traditional detection methods, however, are often hindered by inefficiencies, high costs, and potential inaccuracies, underscoring the urgent need for more sensitive, efficient, accurate, and self-calibration methods for HIgG. Here, a novel ZnIn2S4/SnO2 composites was synthesized, featuring uniformly dispersed SnO2 nanoparticles on the flower-like ZnIn2S4 structure, resulting in a type II heterojunction that promotes the separation and transfer of photogenerated carriers. Under optimized conditions, this composite demonstrated remarkable photocurrent enhancements 52 and 195 times greater than that of the individual ZnIn2S4 or SnO2, respectively. A novel dual-mode biosensing platform was subsequently developed, employing the ZnIn2S4/SnO2 composites as both as the photoelectrochemical (PEC) signal generator and antibody carrier. This system utilizes multifunctional CuO NPs with ascorbic acid oxidase-like properties, serving as a secondary antibody label. Upon specific binding to HIgG, a notable decrease in the PEC response occurs due to the catalytic activity of CuO NPs and the antigen-antibody interactions. The introduction of o-phenylenediamine (OPD) further enhances detection by facilitating the formation of a fluorescent substance DHAA. This dual-signal approach yielded excellent linear correlations between both PEC and fluorescence signals and HIgG concentration, achieving low detection limits of 22.5 pg/mL or 8.6 pg/mL. These two signals originated from the same PEC electrode with continuous detection in the absence and presence of OPD, simplifying experimental procedures and enhancing the reliability of detection. The non-toxic, chemically stable ZnIn2S4/SnO2 composites ensures reliable and sensitive detection through photocurrent output after incubation with biomolecules. The integration of nanozyme catalysis, biospecific reactions, and in situ fluorescent products generation promise high selectivity across diverse immunosensing applications.
{"title":"Dual-mode detection of human immunoglobulin via copper oxide nanozyme catalysis fluorescent species generation and photoelectrochemical alteration in ZnIn2S4/SnO2-based system","authors":"Jiawei Zhou , Lili Zhao , Yuee Zhong , Peipei Li , Xiaohua Zhu , Shu Huang , Youyu Zhang , Meiling Liu","doi":"10.1016/j.aca.2024.343409","DOIUrl":"10.1016/j.aca.2024.343409","url":null,"abstract":"<div><div>Human immunoglobulin (HIgG) has gained recognition as a crucial biomarker diagnosing and treating various diseases, particularly in identifying elevated serum levels in conditions like measles and pneumococcal disease. Traditional detection methods, however, are often hindered by inefficiencies, high costs, and potential inaccuracies, underscoring the urgent need for more sensitive, efficient, accurate, and self-calibration methods for HIgG. Here, a novel ZnIn<sub>2</sub>S<sub>4</sub>/SnO<sub>2</sub> composites was synthesized, featuring uniformly dispersed SnO<sub>2</sub> nanoparticles on the flower-like ZnIn<sub>2</sub>S<sub>4</sub> structure, resulting in a type II heterojunction that promotes the separation and transfer of photogenerated carriers. Under optimized conditions, this composite demonstrated remarkable photocurrent enhancements 52 and 195 times greater than that of the individual ZnIn<sub>2</sub>S<sub>4</sub> or SnO<sub>2</sub>, respectively. A novel dual-mode biosensing platform was subsequently developed, employing the ZnIn<sub>2</sub>S<sub>4</sub>/SnO<sub>2</sub> composites as both as the photoelectrochemical (PEC) signal generator and antibody carrier. This system utilizes multifunctional CuO NPs with ascorbic acid oxidase-like properties, serving as a secondary antibody label. Upon specific binding to HIgG, a notable decrease in the PEC response occurs due to the catalytic activity of CuO NPs and the antigen-antibody interactions. The introduction of <em>o</em>-phenylenediamine (OPD) further enhances detection by facilitating the formation of a fluorescent substance DHAA. This dual-signal approach yielded excellent linear correlations between both PEC and fluorescence signals and HIgG concentration, achieving low detection limits of 22.5 pg/mL or 8.6 pg/mL. These two signals originated from the same PEC electrode with continuous detection in the absence and presence of OPD, simplifying experimental procedures and enhancing the reliability of detection. The non-toxic, chemically stable ZnIn<sub>2</sub>S<sub>4</sub>/SnO<sub>2</sub> composites ensures reliable and sensitive detection through photocurrent output after incubation with biomolecules. The integration of nanozyme catalysis, biospecific reactions, and in situ fluorescent products generation promise high selectivity across diverse immunosensing applications.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1333 ","pages":"Article 343409"},"PeriodicalIF":5.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.aca.2024.343400
Abi Legesse, Negussie Megersa, Bhagwan Singh Chandravanshi
Background
The widespread use of pesticides for the protection of fruits has resulted in the presence of pesticide residue levels beyond their limit in fruits. This ensures their transfer to processed products, such as juices, posing a threat to human health. Therefore, an efficient and selective method is required for monitoring pesticide residues in fruit juices. Hence, an effervescence-assisted dispersive liquid-liquid microextraction based on surface floating organic droplets was developed for the simultaneous extraction of five pesticide residues of different classes. An environmentally green low-density organic solvent, 1-undecanol, was used as extraction solvent.
Results
The developed method was optimized and validated for quantitative extraction of multiclass pesticide residues at trace levels from fruit juice samples, including apple, pineapple, guava and orange samples. The method showed good linearity in the range of 0.8–300 ng mL−1 for all pesticide residues with a regression coefficient ranging from 0.9979 to 0.9997 under the optimized conditions. The LOD and LOQ of the method ranged between 0.03 and 0.16 ng mL−1 and 0.11–0.52 ng mL−1, respectively, indicating the high sensitivity of the proposed method. Repeatability and reproducibility, in terms of %RSD, were obtained in the range of 1.16–5.50 % and 3.12–7.72 %, respectively.
Significance
The developed method exhibited acceptable mean recoveries (%R) in the range of 73.77–113.34 % with %RSDs (n = 3) ranging from 1.25 to 7.74 % for all the analytes studied. Therefore, the developed method can be used as a selective, sensitive and efficient extraction method for the extraction of multiclass pesticides from fruit juice samples.
背景为保护水果而广泛使用杀虫剂,导致水果中的杀虫剂残留水平超过了其极限。这确保了它们转移到果汁等加工产品中,对人类健康构成威胁。因此,需要一种高效且具有选择性的方法来监测果汁中的农药残留。因此,本研究开发了一种基于浮动有机液滴固化的泡腾法辅助分散液液微萃取方法,用于同时萃取五种不同类别的农药残留。萃取溶剂为绿色环保的低密度有机溶剂 1-十一醇。(94)结果所建立的方法对果汁样品(包括苹果、菠萝、番石榴和橙子样品)中痕量多类农药残留的定量萃取进行了优化和验证。在优化条件下,所有农药残留在 0.8 至 300 ng mL-1 范围内线性关系良好,回归系数为 0.9979 至 0.9997。方法的检出限和定量限分别为0.03~0.16 ng mL-1 和0.11~0.52 ng mL-1,表明该方法的灵敏度较高。方法的重复性和重现性分别为1.16%~5.50%和3.12%~7.72%。(101) 重要意义所建立的方法在 73.77-113.34% 的平均回收率(%R)和 1.25-7.74% 的%RSD(n=3)范围内对所有研究的分析物均显示了可接受的平均回收率(%R)。因此,所建立的方法可作为一种选择性强、灵敏度高且高效的萃取方法用于果汁样品中多类农药的萃取。(52)
{"title":"Effervescence-assisted dispersive liquid-liquid microextraction for the extraction and preconcentration of pesticide residues in fruit juice samples","authors":"Abi Legesse, Negussie Megersa, Bhagwan Singh Chandravanshi","doi":"10.1016/j.aca.2024.343400","DOIUrl":"10.1016/j.aca.2024.343400","url":null,"abstract":"<div><h3>Background</h3><div>The widespread use of pesticides for the protection of fruits has resulted in the presence of pesticide residue levels beyond their limit in fruits. This ensures their transfer to processed products, such as juices, posing a threat to human health. Therefore, an efficient and selective method is required for monitoring pesticide residues in fruit juices. Hence, an effervescence-assisted dispersive liquid-liquid microextraction based on surface floating organic droplets was developed for the simultaneous extraction of five pesticide residues of different classes. An environmentally green low-density organic solvent, 1-undecanol, was used as extraction solvent.</div></div><div><h3>Results</h3><div>The developed method was optimized and validated for quantitative extraction of multiclass pesticide residues at trace levels from fruit juice samples, including apple, pineapple, guava and orange samples. The method showed good linearity in the range of 0.8–300 ng mL<sup>−1</sup> for all pesticide residues with a regression coefficient ranging from 0.9979 to 0.9997 under the optimized conditions. The LOD and LOQ of the method ranged between 0.03 and 0.16 ng mL<sup>−1</sup> and 0.11–0.52 ng mL<sup>−1</sup>, respectively, indicating the high sensitivity of the proposed method. Repeatability and reproducibility, in terms of %RSD, were obtained in the range of 1.16–5.50 % and 3.12–7.72 %, respectively.</div></div><div><h3>Significance</h3><div>The developed method exhibited acceptable mean recoveries (%R) in the range of 73.77–113.34 % with %RSDs (n = 3) ranging from 1.25 to 7.74 % for all the analytes studied. Therefore, the developed method can be used as a selective, sensitive and efficient extraction method for the extraction of multiclass pesticides from fruit juice samples.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1333 ","pages":"Article 343400"},"PeriodicalIF":5.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.aca.2024.343397
Yueran Ren , Bingqian Zhou , Minghui Yu , Yangyang Xue , Weijun Kong , Rui Yang
Background
Cancer has become one of the main causes of death globally. The level of tumor markers in serum is correlated with the occurrence of cancer. Carcinoembryonic antigen (CEA) is the most commonly utilized tumor marker for cancer detection. Recently, various analytical technologies have been reported to detect biomarkers. However, developing a simple, sensitive, and noninvasive approach for CEA detection remains challenging in cancer diagnosis. Consequently, there is an urgent need for researchers to carry out innovative approaches for CEA detection.
Result
In this work, copper ferrite nanoparticles (CuFe2O4 NPs) with excellent dispersity and fascinating magnetism have been successfully synthesized. To get CuFe2O4@ABEI-GNPs, ABEI-gold NPs (ABEI-GNPs) were generated on the surface of CuFe2O4 NPs by using N-(4-Aminobutyl)-N-ethylisoluminol (ABEI) as a mild reduction reagent to reduce chloroauric acid tetrahydrate (HAuCl4·4H2O). The CuFe2O4@ABEI-GNPs exhibited a superior chemiluminescence (CL) performance compared with CuFe2O4@ABEI NPs, which was attributed to the synergistic catalysis effects of CuFe2O4 NPs and GNPs. Interestingly, two unique CL emission peaks were observed in the kinetic curve of CuFe2O4@ABEI-GNPs. Furthermore, it was found that the kinetic curve could be regulated by the pH of hydrogen peroxide (H2O2) and a possible CL mechanism was proposed. Owing to the favorable CL properties of CuFe2O4@ABEI-GNPs, a label-free differential immunosensor was fabricated for CEA monitoring using the intensity difference between CL-1 and CL-2. The developed immunosensor exhibited a wide linear range from 0.1 to 5000 pg/mL, and a low detection limit of 0.05 pg/mL.
Significance and novelty
The immunosensor was capable of determining CEA in real samples with simple operation, high accuracy, and good sensitivity. This study introduces a novel approach for developing CL functionalized materials, which have broad application potential in bioassays. The proposed differential method could serve as a novel tool for determining CEA in the diagnosis of clinical cancer.
{"title":"Label-free differential chemiluminescent immunosensor based on magnetic nanoparticles CuFe2O4@ABEI-GNPs with dual catalytic sites","authors":"Yueran Ren , Bingqian Zhou , Minghui Yu , Yangyang Xue , Weijun Kong , Rui Yang","doi":"10.1016/j.aca.2024.343397","DOIUrl":"10.1016/j.aca.2024.343397","url":null,"abstract":"<div><h3>Background</h3><div>Cancer has become one of the main causes of death globally. The level of tumor markers in serum is correlated with the occurrence of cancer. Carcinoembryonic antigen (CEA) is the most commonly utilized tumor marker for cancer detection. Recently, various analytical technologies have been reported to detect biomarkers. However, developing a simple, sensitive, and noninvasive approach for CEA detection remains challenging in cancer diagnosis. Consequently, there is an urgent need for researchers to carry out innovative approaches for CEA detection.</div></div><div><h3>Result</h3><div>In this work, copper ferrite nanoparticles (CuFe<sub>2</sub>O<sub>4</sub> NPs) with excellent dispersity and fascinating magnetism have been successfully synthesized. To get CuFe<sub>2</sub>O<sub>4</sub>@ABEI-GNPs, ABEI-gold NPs (ABEI-GNPs) were generated on the surface of CuFe<sub>2</sub>O<sub>4</sub> NPs by using N-(4-Aminobutyl)-N-ethylisoluminol (ABEI) as a mild reduction reagent to reduce chloroauric acid tetrahydrate (HAuCl<sub>4</sub>·4H<sub>2</sub>O). The CuFe<sub>2</sub>O<sub>4</sub>@ABEI-GNPs exhibited a superior chemiluminescence (CL) performance compared with CuFe<sub>2</sub>O<sub>4</sub>@ABEI NPs, which was attributed to the synergistic catalysis effects of CuFe<sub>2</sub>O<sub>4</sub> NPs and GNPs. Interestingly, two unique CL emission peaks were observed in the kinetic curve of CuFe<sub>2</sub>O<sub>4</sub>@ABEI-GNPs. Furthermore, it was found that the kinetic curve could be regulated by the pH of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and a possible CL mechanism was proposed. Owing to the favorable CL properties of CuFe<sub>2</sub>O<sub>4</sub>@ABEI-GNPs, a label-free differential immunosensor was fabricated for CEA monitoring using the intensity difference between CL-1 and CL-2. The developed immunosensor exhibited a wide linear range from 0.1 to 5000 pg/mL, and a low detection limit of 0.05 pg/mL.</div></div><div><h3>Significance and novelty</h3><div>The immunosensor was capable of determining CEA in real samples with simple operation, high accuracy, and good sensitivity. This study introduces a novel approach for developing CL functionalized materials, which have broad application potential in bioassays. The proposed differential method could serve as a novel tool for determining CEA in the diagnosis of clinical cancer.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1333 ","pages":"Article 343397"},"PeriodicalIF":5.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemiluminescence (CL) analysis, characterized by its simple instrumentation, high signal-to-noise ratio, wide linear range, and minimal background interference, has garnered increasing attention from researchers. Nanomaterials (NMs) have been explored to enhance CL intensity. Notably, sub-1 nanometer scale NMs are considered to hold significant untapped potential due to their size effects. The application of these sub-1 nanometer NMs in enhancing CL is anticipated to yield favorable results. Additionally, the low water solubility and bioavailability of quercetin glycosides lead to their presence in bodily fluids at only trace levels, highlighting the urgent need for efficient and rapid detection methods.
Results
In this work, phosphomolybdic acid (PMA) was incorporated into CuO to synthesize sub-1 nanometer CuO-PMA nanosheets (SNSs) using a cluster-core co-assembly strategy. Conformational and structural characterization confirmed the successful synthesis of these nanosheets. The CuO-PMA SNSs were employed to enhance the CL emission of the luminol-H2O2 system, resulting in an increase of over 1000 times. The catalytic properties of CuO-PMA SNSs significantly facilitated the decomposition of H2O2, leading to an enhanced production of reactive oxygen species, which in turn induced the CL enhancement. Given that the antioxidant effect of quercetin would consume the reactive oxygen species generated during the catalysis, a decrease in CL intensity was anticipated. A CL sensor for quercetin detection was developed based on the CuO-PMA SNSs-luminol-H2O2 system, demonstrating a strong linear relationship (R2 = 0.9969) and a low detection limit of 0.31 nM.
Significance
This research provides a strategy to enhance the CL intensity of the luminol-H2O2 system by using CuO-PMA SNSs, offering a highly sensitive assay for detecting quercetin concentrations. The method is characterized as a simple and cost-effective analytical strategy making CL analysis very attractive for chemical analysts.
{"title":"Enhanced chemiluminescence with sub-1 nanometer CuO-PMA nanosheets for the sensitive detection of quercetin","authors":"Kuangjun Li , Chunxia Huang , Tianyou Chen, Suxing Jiao, Jing Wu","doi":"10.1016/j.aca.2024.343395","DOIUrl":"10.1016/j.aca.2024.343395","url":null,"abstract":"<div><h3>Background</h3><div>Chemiluminescence (CL) analysis, characterized by its simple instrumentation, high signal-to-noise ratio, wide linear range, and minimal background interference, has garnered increasing attention from researchers. Nanomaterials (NMs) have been explored to enhance CL intensity. Notably, sub-1 nanometer scale NMs are considered to hold significant untapped potential due to their size effects. The application of these sub-1 nanometer NMs in enhancing CL is anticipated to yield favorable results. Additionally, the low water solubility and bioavailability of quercetin glycosides lead to their presence in bodily fluids at only trace levels, highlighting the urgent need for efficient and rapid detection methods.</div></div><div><h3>Results</h3><div>In this work, phosphomolybdic acid (PMA) was incorporated into CuO to synthesize sub-1 nanometer CuO-PMA nanosheets (SNSs) using a cluster-core co-assembly strategy. Conformational and structural characterization confirmed the successful synthesis of these nanosheets. The CuO-PMA SNSs were employed to enhance the CL emission of the luminol-H<sub>2</sub>O<sub>2</sub> system, resulting in an increase of over 1000 times. The catalytic properties of CuO-PMA SNSs significantly facilitated the decomposition of H<sub>2</sub>O<sub>2</sub>, leading to an enhanced production of reactive oxygen species, which in turn induced the CL enhancement. Given that the antioxidant effect of quercetin would consume the reactive oxygen species generated during the catalysis, a decrease in CL intensity was anticipated. A CL sensor for quercetin detection was developed based on the CuO-PMA SNSs-luminol-H<sub>2</sub>O<sub>2</sub> system, demonstrating a strong linear relationship (R<sup>2</sup> = 0.9969) and a low detection limit of 0.31 nM.</div></div><div><h3>Significance</h3><div>This research provides a strategy to enhance the CL intensity of the luminol-H<sub>2</sub>O<sub>2</sub> system by using CuO-PMA SNSs, offering a highly sensitive assay for detecting quercetin concentrations. The method is characterized as a simple and cost-effective analytical strategy making CL analysis very attractive for chemical analysts.</div></div>","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"1333 ","pages":"Article 343395"},"PeriodicalIF":5.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}