Pub Date : 2025-02-01DOI: 10.1016/j.aquatox.2025.107242
Cuimei Gao , Baohong Xu , Zhongyuan Li , Zhuoman Wang , Siqi Huang , Zijian Jiang , Xiaomin Gong , Huilin Yang
The detrimental impact of emerging pollutants, specifically microplastics (MPs), on the ecological environment are receiving increasing attention. Freshwater ecosystems serve as both repositories for terrestrial microplastic (MP) sources and conduits for their subsequent entry into marine environments. Consequently, it is imperative to rigorously investigate the toxicological effects of MPs on freshwater ecosystems. This article provides a comprehensive analysis of the ecological toxicity effects of MP pollution, both in isolation and in combination with other pollutants, on freshwater aquatic organisms, including plankton, benthic organisms, and fish. The review elucidates potential mechanisms underlying these effects, which encompass oxidative stress, metabolic disorders, immune and inflammatory responses, dysbiosis of the gut microbiota, DNA damage, and cell apoptosis. This paper advocates for the integrated application of multi-omics technologies to investigate the molecular mechanisms underlying the toxicity of MPs to freshwater aquatic organisms from interdisciplinary and multifaceted perspectives. Additionally, it emphasizes the importance of enhancing research on the compounded pollution effects arising from various pollution modes, particularly in conjunction with other pollutants. This study aims to establish a foundation for assessing the ecological risks posed by MPs in freshwater ecosystem and offers valuable insights for the protection of aquatic biodiversity and ecosystem stability.
{"title":"From plankton to fish: The multifaceted threat of microplastics in freshwater environments","authors":"Cuimei Gao , Baohong Xu , Zhongyuan Li , Zhuoman Wang , Siqi Huang , Zijian Jiang , Xiaomin Gong , Huilin Yang","doi":"10.1016/j.aquatox.2025.107242","DOIUrl":"10.1016/j.aquatox.2025.107242","url":null,"abstract":"<div><div>The detrimental impact of emerging pollutants, specifically microplastics (MPs), on the ecological environment are receiving increasing attention. Freshwater ecosystems serve as both repositories for terrestrial microplastic (MP) sources and conduits for their subsequent entry into marine environments. Consequently, it is imperative to rigorously investigate the toxicological effects of MPs on freshwater ecosystems. This article provides a comprehensive analysis of the ecological toxicity effects of MP pollution, both in isolation and in combination with other pollutants, on freshwater aquatic organisms, including plankton, benthic organisms, and fish. The review elucidates potential mechanisms underlying these effects, which encompass oxidative stress, metabolic disorders, immune and inflammatory responses, dysbiosis of the gut microbiota, DNA damage, and cell apoptosis. This paper advocates for the integrated application of multi-omics technologies to investigate the molecular mechanisms underlying the toxicity of MPs to freshwater aquatic organisms from interdisciplinary and multifaceted perspectives. Additionally, it emphasizes the importance of enhancing research on the compounded pollution effects arising from various pollution modes, particularly in conjunction with other pollutants. This study aims to establish a foundation for assessing the ecological risks posed by MPs in freshwater ecosystem and offers valuable insights for the protection of aquatic biodiversity and ecosystem stability.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"Article 107242"},"PeriodicalIF":4.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.aquatox.2025.107241
Weili Yang , Ruijing Li , Xingxue Yan , Pengkai Fan , Weyland Cheng , Cuihua Liu , Yaodong Zhang , Jitong Li
Dimethyl phthalate (DMP) has been extensively utilized as a plasticizer on a global scale for many years. Its presence in the environment and its harmful effects on living organisms have raised concerns. This study aimed to examine its potential developmental neurotoxicity by utilizing zebrafish as a model. Zebrafish embryos were exposed to different concentrations of DMP (5–100 mg/L) from 4 to 120 h post-fertilization (hpf). The survival, hatching, and malformation rates were recorded for each group. Behavioral analysis was conducted on zebrafish larvae, and transgenic zebrafish Tg(elavl3:EGFP) were used to assess the impact of DMP on neuronal cells. The mRNA levels of key neurological marker genes were evaluated at 96 hpf of DMP exposure. The study revealed that exposure to DMP resulted in decreased survival and hatching rates in zebrafish. Embryos treated with 50 mg/L of DMP exhibited lower average survival rates (72.78–78.33%) between 24–96 hpf, while treatment with 25–50 mg/L of DMP resulted in reduced hatching rates (39.44% and 2.22%, respectively) at 48 hpf compared to the control group. Moreover, exposure to 25–50 mg/L of DMP caused an increase in malformations, such as tail curvature, spinal curvature, yolk sac edema and pericardial edema. Interestingly, at 24 hpf, DMP also resulted in an increase in spontaneous tail coiling in zebrafish embryos, as well as a decrease in their swimming distance at 120 hpf. Furthermore, treatment with 50 mg/L of DMP led to a decrease in the fluorescence intensity of transgenic zebrafish Tg(elavl3: EGFP). RT-qPCR analysis showed a significant down-regulation of marker genes (gap43, mbp, α1-tubulin, syn2a) associated with nervous system function in DMP-treated zebrafish. Overall, these findings offer a thorough understanding of the mechanisms underlying the neurotoxicity caused by DMP, highlighting the risk of DMP on developmental and neurotoxic effects in zebrafish. Therefore, strict supervision of DMP use and release is essential to safeguard ecological and aquatic organisms.
{"title":"Developmental and neurotoxic effects of dimethyl phthalate on zebrafish embryos and larvae","authors":"Weili Yang , Ruijing Li , Xingxue Yan , Pengkai Fan , Weyland Cheng , Cuihua Liu , Yaodong Zhang , Jitong Li","doi":"10.1016/j.aquatox.2025.107241","DOIUrl":"10.1016/j.aquatox.2025.107241","url":null,"abstract":"<div><div>Dimethyl phthalate (DMP) has been extensively utilized as a plasticizer on a global scale for many years. Its presence in the environment and its harmful effects on living organisms have raised concerns. This study aimed to examine its potential developmental neurotoxicity by utilizing zebrafish as a model. Zebrafish embryos were exposed to different concentrations of DMP (5–100 mg/L) from 4 to 120 h post-fertilization (hpf). The survival, hatching, and malformation rates were recorded for each group. Behavioral analysis was conducted on zebrafish larvae, and transgenic zebrafish Tg(<em>elavl3</em>:EGFP) were used to assess the impact of DMP on neuronal cells. The mRNA levels of key neurological marker genes were evaluated at 96 hpf of DMP exposure. The study revealed that exposure to DMP resulted in decreased survival and hatching rates in zebrafish. Embryos treated with 50 mg/L of DMP exhibited lower average survival rates (72.78–78.33%) between 24–96 hpf, while treatment with 25–50 mg/L of DMP resulted in reduced hatching rates (39.44% and 2.22%, respectively) at 48 hpf compared to the control group. Moreover, exposure to 25–50 mg/L of DMP caused an increase in malformations, such as tail curvature, spinal curvature, yolk sac edema and pericardial edema. Interestingly, at 24 hpf, DMP also resulted in an increase in spontaneous tail coiling in zebrafish embryos, as well as a decrease in their swimming distance at 120 hpf. Furthermore, treatment with 50 mg/L of DMP led to a decrease in the fluorescence intensity of transgenic zebrafish Tg(<em>elavl3</em>: EGFP). RT-qPCR analysis showed a significant down-regulation of marker genes (<em>gap43, mbp, α1-tubulin, syn2a</em>) associated with nervous system function in DMP-treated zebrafish. Overall, these findings offer a thorough understanding of the mechanisms underlying the neurotoxicity caused by DMP, highlighting the risk of DMP on developmental and neurotoxic effects in zebrafish. Therefore, strict supervision of DMP use and release is essential to safeguard ecological and aquatic organisms.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"Article 107241"},"PeriodicalIF":4.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.aquatox.2025.107245
Renan Castelhano Gebara , Cínthia Bruno de Abreu , Giseli Swerts Rocha , Adrislaine da Silva Mansano , Marcelo Assis , Ailton José Moreira , Mykaelli Andrade Santos , Thalles Maranesi Pereira , Luciano Sindra Virtuoso , Maria da Graça Gama Melão , Elson Longo
The semiconductor copper tungstate (CuWO4) may end up in aquatic ecosystems since it has the potential for water decontamination. The toxic effects of CuWO4 are totally unknown for eukaryotic organisms. In view of this, we aimed to evaluate the toxicity of CuWO4 particles (size of 161.5 nm) on the cosmopolitan green microalga Raphidocelis subcapitata (a standardized test-organism for ecotoxicological assays), analyzing the growth and multiple photosynthetic parameters obtained by pulse amplitude modulated (PAM) fluorometry. At 1.2 mg l-1, the growth was affected, and there was an increase in reactive oxygen species (ROS) after 72 h The effective efficiency (ɸM’) of photosystem II (PSII) was affected at 13.1 mg l-1, while the efficiency of the oxygen-evolving complex (OEC), responsible for the water-splitting process, decayed at 5.6 mg l-1. According to quenching parameters, energy allocated to photosynthetic processes (qP) decreased, indicating a malfunctioning of the PSII. We also observed a 50 % increase in the non-regulated energy dissipation by heat and fluorescence (Y(NO)), and a 50 % decrease in the regulated energy dissipation (NPQ), suggesting difficulties for algae to cope with light. Rapid light curves (RLC) were the second most sensitive parameter, as we observed a decay of the relative maximum electron transport rate (rETRmax) at 2.8 mg l-1. Therefore, since the microalga R. subcapitata was affected by concentrations up to 1.2 mg l-1 (0.01 mg l-1 dissolved Cu), it is important to evaluate carefully the use of CuWO4 to decontaminate natural waters, considering the protection of the aquatic biota.
{"title":"Harmful effects of the semiconductor copper tungstate (CuWO4) on multiple photosynthetic parameters of the green microalga Raphidocelis subcapitata","authors":"Renan Castelhano Gebara , Cínthia Bruno de Abreu , Giseli Swerts Rocha , Adrislaine da Silva Mansano , Marcelo Assis , Ailton José Moreira , Mykaelli Andrade Santos , Thalles Maranesi Pereira , Luciano Sindra Virtuoso , Maria da Graça Gama Melão , Elson Longo","doi":"10.1016/j.aquatox.2025.107245","DOIUrl":"10.1016/j.aquatox.2025.107245","url":null,"abstract":"<div><div>The semiconductor copper tungstate (CuWO<sub>4</sub>) may end up in aquatic ecosystems since it has the potential for water decontamination. The toxic effects of CuWO<sub>4</sub> are totally unknown for eukaryotic organisms. In view of this, we aimed to evaluate the toxicity of CuWO<sub>4</sub> particles (size of 161.5 nm) on the cosmopolitan green microalga <em>Raphidocelis subcapitata</em> (a standardized test-organism for ecotoxicological assays), analyzing the growth and multiple photosynthetic parameters obtained by pulse amplitude modulated (PAM) fluorometry. At 1.2 mg <span>l</span><sup>-1</sup>, the growth was affected, and there was an increase in reactive oxygen species (ROS) after 72 h The effective efficiency (ɸ<sub>M</sub>’) of photosystem II (PSII) was affected at 13.1 mg <span>l</span><sup>-1</sup>, while the efficiency of the oxygen-evolving complex (OEC), responsible for the water-splitting process, decayed at 5.6 mg <span>l</span><sup>-1</sup>. According to quenching parameters, energy allocated to photosynthetic processes (qP) decreased, indicating a malfunctioning of the PSII. We also observed a 50 % increase in the non-regulated energy dissipation by heat and fluorescence (Y(NO)), and a 50 % decrease in the regulated energy dissipation (NPQ), suggesting difficulties for algae to cope with light. Rapid light curves (RLC) were the second most sensitive parameter, as we observed a decay of the relative maximum electron transport rate (rETRmax) at 2.8 mg <span>l</span><sup>-1</sup>. Therefore, since the microalga <em>R. subcapitata</em> was affected by concentrations up to 1.2 mg <span>l</span><sup>-1</sup> (0.01 mg <span>l</span><sup>-1</sup> dissolved Cu), it is important to evaluate carefully the use of CuWO<sub>4</sub> to decontaminate natural waters, considering the protection of the aquatic biota.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"Article 107245"},"PeriodicalIF":4.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.aquatox.2024.107218
Selin Ertürk Gürkan , Mert Gürkan , Ece Büşra Yanik , Elif Kutlu , Volkan Saritunç , Berkay Güneş , Ezgi Can İbiş
The effectiveness of magnetic nanoparticles in removing pollutants during water treatment is well established, but their introduction into aquatic ecosystems raises significant toxicity concerns. This study investigates the histological and physiological effects of zinc ferrite magnetic nanoparticles (ZnFe2O4−MNPs) on the Mediterranean mussel (Mytilus galloprovincialis) and examines the impact of concurrent exposure to these nanoparticles and the insecticide thiomethoxam (TMX).
Mussels were exposed to nominal concentrations of ZnFe2O4−MNPs (1, 10, 100 mg/L) both individually and with TMX. Physiological assessments included measuring antioxidant enzyme levels (superoxide dismutase, catalase, glutathione S-transferase) and oxidative stress markers (malondialdehyde). Results showed that ZnFe2O4−MNPs increased antioxidant activity but also caused dose-dependent pathological changes. In contrast, combined exposure with TMX significantly (p < 0.05) reduced antioxidant defenses, indicated by lower superoxide dismutase (SOD) levels and higher malondialdehyde (MDA) concentrations, suggesting oxidative stress and potential cellular damage.
These findings highlight the need for comprehensive toxicity assessments of nanoparticles in aquatic environments and advocate for their complete removal from water sources post-treatment. Further research is crucial to define the toxicity profiles of spinel ferrites to ensure their safe application in environmental remediation.
{"title":"Assessing spinel zinc ferrite nanoparticles in aquatic ecosystems: Toxic threat or beneficial detoxifier for aquatic life?","authors":"Selin Ertürk Gürkan , Mert Gürkan , Ece Büşra Yanik , Elif Kutlu , Volkan Saritunç , Berkay Güneş , Ezgi Can İbiş","doi":"10.1016/j.aquatox.2024.107218","DOIUrl":"10.1016/j.aquatox.2024.107218","url":null,"abstract":"<div><div>The effectiveness of magnetic nanoparticles in removing pollutants during water treatment is well established, but their introduction into aquatic ecosystems raises significant toxicity concerns. This study investigates the histological and physiological effects of zinc ferrite magnetic nanoparticles (ZnFe<sub>2</sub>O<sub>4−</sub>MNPs) on the Mediterranean mussel (<em>Mytilus galloprovincialis</em>) and examines the impact of concurrent exposure to these nanoparticles and the insecticide thiomethoxam (TMX).</div><div>Mussels were exposed to nominal concentrations of ZnFe<sub>2</sub>O<sub>4−</sub>MNPs (1, 10, 100 mg/L) both individually and with TMX. Physiological assessments included measuring antioxidant enzyme levels (superoxide dismutase, catalase, glutathione <em>S</em>-transferase) and oxidative stress markers (malondialdehyde). Results showed that ZnFe<sub>2</sub>O<sub>4−</sub>MNPs increased antioxidant activity but also caused dose-dependent pathological changes. In contrast, combined exposure with TMX significantly (<em>p</em> < 0.05) reduced antioxidant defenses, indicated by lower superoxide dismutase (SOD) levels and higher malondialdehyde (MDA) concentrations, suggesting oxidative stress and potential cellular damage.</div><div>These findings highlight the need for comprehensive toxicity assessments of nanoparticles in aquatic environments and advocate for their complete removal from water sources post-treatment. Further research is crucial to define the toxicity profiles of spinel ferrites to ensure their safe application in environmental remediation.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"Article 107218"},"PeriodicalIF":4.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142989644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.aquatox.2025.107264
Bin Huang , Jie-Yu Chang , Bo-Wen Li , Lu He , Rui-Si Liang , Huan He , Ai-Jun Miao , Hui Li
Nanoparticles (NPs) can adsorb onto cell surfaces (i.e., extracellular NPs) and be internalized by cells (i.e., intracellular NPs), leading to their accumulation and potential toxicity. Therefore, distinguishing adsorbed and internalized NPs is crucial in studying their accumulation and toxicity. In this study, various washing agents (EDTA, sodium citrate, cysteine, and H+) were compared to differentiate internalized NPs from total accumulation in the protozoan Tetrahymena thermophila, by evaluating efficacies of extracting adsorbed NPs from cell surfaces. Key factors influencing the extraction procedures, including the type and concentration of washing agent, contact time, washing cycles, and effects of agents on the organism, were systematically optimized. Consequently, we identified an effective washing agent (i.e., a mixture of 3 mM EDTA, 10 mM sodium citrate, and 10 mM cysteine in Dryl's medium at pH 7) that efficiently extracted adsorbed metal NPs (Fe2O3-NPs, TiO2-NPs, SiO2-NPs, Ag-NPs, and Au-NPs modified by -COOH and -NH2) without causing growth inhibition or cell lysis. Further, a washing procedure was proposed, involving the extraction of samples with the mixture twice for 5 min each. Our study represents the first systematic optimization of a washing protocol for extracting adsorbed NPs across diverse NP types. The developed methodology demonstrates broad applicability, minimal impact on cellular function, and enhanced extraction efficiency compared to existing methods. It will facilitate further investigation into the underlying mechanisms of NP bioaccumulation (including uptake and efflux) and associated toxicity in protozoa, providing critical insights for environmental safety assessments and advancing nanotoxicology research.
{"title":"An effective method for distinguishing extracellular and intracellular nanoparticles through chemical extractions","authors":"Bin Huang , Jie-Yu Chang , Bo-Wen Li , Lu He , Rui-Si Liang , Huan He , Ai-Jun Miao , Hui Li","doi":"10.1016/j.aquatox.2025.107264","DOIUrl":"10.1016/j.aquatox.2025.107264","url":null,"abstract":"<div><div>Nanoparticles (NPs) can adsorb onto cell surfaces (<em>i.e.</em>, extracellular NPs) and be internalized by cells (<em>i.e.</em>, intracellular NPs), leading to their accumulation and potential toxicity. Therefore, distinguishing adsorbed and internalized NPs is crucial in studying their accumulation and toxicity. In this study, various washing agents (EDTA, sodium citrate, cysteine, and H<sup>+</sup>) were compared to differentiate internalized NPs from total accumulation in the protozoan <em>Tetrahymena thermophila</em>, by evaluating efficacies of extracting adsorbed NPs from cell surfaces. Key factors influencing the extraction procedures, including the type and concentration of washing agent, contact time, washing cycles, and effects of agents on the organism, were systematically optimized. Consequently, we identified an effective washing agent (<em>i.e.</em>, a mixture of 3 mM EDTA, 10 mM sodium citrate, and 10 mM cysteine in Dryl's medium at pH 7) that efficiently extracted adsorbed metal NPs (Fe<sub>2</sub>O<sub>3</sub>-NPs, TiO<sub>2</sub>-NPs, SiO<sub>2</sub>-NPs, Ag-NPs, and Au-NPs modified by -COOH and -NH<sub>2</sub>) without causing growth inhibition or cell lysis. Further, a washing procedure was proposed, involving the extraction of samples with the mixture twice for 5 min each. Our study represents the first systematic optimization of a washing protocol for extracting adsorbed NPs across diverse NP types. The developed methodology demonstrates broad applicability, minimal impact on cellular function, and enhanced extraction efficiency compared to existing methods. It will facilitate further investigation into the underlying mechanisms of NP bioaccumulation (including uptake and efflux) and associated toxicity in protozoa, providing critical insights for environmental safety assessments and advancing nanotoxicology research.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"Article 107264"},"PeriodicalIF":4.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143142727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.aquatox.2024.107204
Renata M.P. Freitas , Allan R. Pires , Federico F. Ferreira , Emerson F. Vilela , Filipe S. Azevedo , Mariáurea M. Sarandy , Reggiani V. Gonçalves , Jorge A. Dergam , Carlos F. Sperber , Mariella B. Freitas
Eight years after the tailings dam collapse in Mariana, MG, Brazil, several aspects of this massive disaster are yet to be elucidated. Our goal was to investigate the impact of the mud flow on 16 fish species collected across 15 points from the Doce River, addressing 12 metal concentrations, tissue oxidative status (antioxidant enzymes and stress biomarkers), and histopathological analyses. The species Trachelyopterus striatulus, Prochilodus vimboides, Loricariichthys castaneus, Lophiosilurus alexandri, Hypostomus affinis, Hoplias intermedius were shown to be the most affected regarding the gills tissue integrity; Hypostomus affinis, Oligosarcus acutirostris, Lophiosilurus alexandri, Pygocentrus nattereri, Hoplosternum littorale, and Loricariichthys castaneus showed the highest levels of liver health. Overall, H. affinis was the most affected species, showing high levels of oxidative and histopathological damage, associated with high arsenic (As) and mercury (Hg) concentrations. In fish sampled from impacted regions, As and Hg exhibited higher concentrations compared to fish from unaffected sites, surpassing all the other analyzed metals. These high metal concentrations might be associated to the tailings dam failure, and As and Hg concentrations were positively correlated with alterations in oxidative stress biomarkers and histopathologies. Our results may be used as baseline for monitoring the environmental challenges that the Doce River fish species are facing at the moment.
{"title":"Metal concentrations, oxidative status and histopathological evaluation of fish species from Doce River, Brazil, after the Fundao dam collapse","authors":"Renata M.P. Freitas , Allan R. Pires , Federico F. Ferreira , Emerson F. Vilela , Filipe S. Azevedo , Mariáurea M. Sarandy , Reggiani V. Gonçalves , Jorge A. Dergam , Carlos F. Sperber , Mariella B. Freitas","doi":"10.1016/j.aquatox.2024.107204","DOIUrl":"10.1016/j.aquatox.2024.107204","url":null,"abstract":"<div><div>Eight years after the tailings dam collapse in Mariana, MG, Brazil, several aspects of this massive disaster are yet to be elucidated. Our goal was to investigate the impact of the mud flow on 16 fish species collected across 15 points from the Doce River, addressing 12 metal concentrations, tissue oxidative status (antioxidant enzymes and stress biomarkers), and histopathological analyses. The species <em>Trachelyopterus striatulus, Prochilodus vimboides, Loricariichthys castaneus, Lophiosilurus alexandri, Hypostomus affinis, Hoplias intermedius</em> were shown to be the most affected regarding the gills tissue integrity; <em>Hypostomus affinis, Oligosarcus acutirostris, Lophiosilurus alexandri, Pygocentrus nattereri, Hoplosternum littorale,</em> and <em>Loricariichthys castaneus</em> showed the highest levels of liver health. Overall, <em>H. affinis</em> was the most affected species, showing high levels of oxidative and histopathological damage, associated with high arsenic (As) and mercury (Hg) concentrations. In fish sampled from impacted regions, As and Hg exhibited higher concentrations compared to fish from unaffected sites, surpassing all the other analyzed metals. These high metal concentrations might be associated to the tailings dam failure, and As and Hg concentrations were positively correlated with alterations in oxidative stress biomarkers and histopathologies. Our results may be used as baseline for monitoring the environmental challenges that the Doce River fish species are facing at the moment.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"Article 107204"},"PeriodicalIF":4.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.aquatox.2024.107212
Sarah Betz-Koch , Jörg Oehlmann , Matthias Oetken
Based on effect data, regulatory acceptable concentrations (RACs) are derived for surface waters to avoid unacceptable effects on the environment. RACs often relay on acute tests with single species, which may underestimate the effects under field conditions. Therefore, we applied a higher tier approach with artificial indoor streams (AIS). We exposed representatives of the benthic community in lotic surface waters to varying numbers (one to four times) of 12-hour deltamethrin pulses over a 35-day period with intervening recovery phases, to simulate multiple pesticide peak exposures caused by rain events or spray drift. The deltamethrin concentration of each pulse was equivalent to its RAC value of 0.64 ng/L and consequently should have no unacceptable effects on the tested species.
In contrast, we observed that the mortality of caddisfly larvae increased significantly with the number of pulses at the RAC. In addition, larval development was significantly delayed after four deltamethrin pulses, while the gammarids apparently benefited from the toxicity-induced mortality of the larvae.
This study underlines the importance of considering higher tier approaches that include species interactions and additional stressors in order to obtain more realistic effect data and optimise regulatory risk assessment. These are not considered in acute tests with single species, which usually leads to an underestimation of the effects. Based on the results of this study, we propose to lower the RAC value for aquatic environments due to the uncertainties mentioned above.
{"title":"Extremely low repeated pyrethroid pulses increase harmful effects on caddisfly larvae (Chaetopteryx villosa) and influence species interactions","authors":"Sarah Betz-Koch , Jörg Oehlmann , Matthias Oetken","doi":"10.1016/j.aquatox.2024.107212","DOIUrl":"10.1016/j.aquatox.2024.107212","url":null,"abstract":"<div><div>Based on effect data, regulatory acceptable concentrations (RACs) are derived for surface waters to avoid unacceptable effects on the environment. RACs often relay on acute tests with single species, which may underestimate the effects under field conditions. Therefore, we applied a higher tier approach with artificial indoor streams (AIS). We exposed representatives of the benthic community in lotic surface waters to varying numbers (one to four times) of 12-hour deltamethrin pulses over a 35-day period with intervening recovery phases, to simulate multiple pesticide peak exposures caused by rain events or spray drift. The deltamethrin concentration of each pulse was equivalent to its RAC value of 0.64 ng/L and consequently should have no unacceptable effects on the tested species.</div><div>In contrast, we observed that the mortality of caddisfly larvae increased significantly with the number of pulses at the RAC. In addition, larval development was significantly delayed after four deltamethrin pulses, while the gammarids apparently benefited from the toxicity-induced mortality of the larvae.</div><div>This study underlines the importance of considering higher tier approaches that include species interactions and additional stressors in order to obtain more realistic effect data and optimise regulatory risk assessment. These are not considered in acute tests with single species, which usually leads to an underestimation of the effects. Based on the results of this study, we propose to lower the RAC value for aquatic environments due to the uncertainties mentioned above.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"Article 107212"},"PeriodicalIF":4.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tetrabromobisphenol A (TBBPA) is an aquatic environment's prevalent pollutant, posing a great threat to the health of aquatic animals. The intestine is a key organ for nutrient absorption as well as an important barrier to prevent pollutants from invading the body of fish. Exploring the effects of pollutants on the intestine is of great significance for maintaining fish health. Therefore, the purpose of this study was to assess the toxic effects of TBBPA on the intestine of Cyprinus carpio L. (common carp) by establishing models of common carp and primary intestinal epithelial cells exposed to TBBPA. Histological observation revealed that TBBPA exposure led to damage in the intestinal mucosa and breakage of intestinal villi. Detection of oxidative stress levels showed that TBBPA increased the levels of ROS and MDA, and decreased the activity of SOD, CAT, GSH-PX, and T-AOC in intestinal tissue and cells. Observation of inflammatory factor levels revealed that TBBPA upregulated the mRNA levels of inflammatory factors (IL-6, TNF-α, IL-1β, NF-κB p65 and IκBα). ELISA and western blotting results were consistent with the mRNA results. Moreover, TBBPA induced cell death, as evidenced by TUNEL staining and flow cytometry and confirmed by increasing levels of Bax, Cas-3, Cyt C, RIP1, RIP3, and MLKL, together with decreasing the levels of Bcl-2. TBBPA also destroyed the intestinal tight junction by reducing the mRNA and protein levels of claudin-1, ZO-1, and occludin. In summary, this study reveals that TBBPA caused intestinal injuries, inducing oxidative stress, inflammation, cell death, and tight junction disruption via ROS/NF-κB signal in common carp.
{"title":"TBBPA caused multiple intestinal injuries via ROS/NF-κB signal in common carp","authors":"Man Qian, Yuan Geng, Jing-jing Wang, Hong-ru Wang, Ji-long Luo, Xue-jiao Gao","doi":"10.1016/j.aquatox.2024.107190","DOIUrl":"10.1016/j.aquatox.2024.107190","url":null,"abstract":"<div><div>Tetrabromobisphenol A (TBBPA) is an aquatic environment's prevalent pollutant, posing a great threat to the health of aquatic animals. The intestine is a key organ for nutrient absorption as well as an important barrier to prevent pollutants from invading the body of fish. Exploring the effects of pollutants on the intestine is of great significance for maintaining fish health. Therefore, the purpose of this study was to assess the toxic effects of TBBPA on the intestine of <em>Cyprinus carpio</em> L. (common carp) by establishing models of common carp and primary intestinal epithelial cells exposed to TBBPA. Histological observation revealed that TBBPA exposure led to damage in the intestinal mucosa and breakage of intestinal villi. Detection of oxidative stress levels showed that TBBPA increased the levels of ROS and MDA, and decreased the activity of SOD, CAT, GSH-PX, and T-AOC in intestinal tissue and cells. Observation of inflammatory factor levels revealed that TBBPA upregulated the mRNA levels of inflammatory factors (IL-6, TNF-α, IL-1β, NF-κB p65 and IκBα). ELISA and western blotting results were consistent with the mRNA results. Moreover, TBBPA induced cell death, as evidenced by TUNEL staining and flow cytometry and confirmed by increasing levels of Bax, Cas-3, Cyt C, RIP1, RIP3, and MLKL, together with decreasing the levels of Bcl-2. TBBPA also destroyed the intestinal tight junction by reducing the mRNA and protein levels of claudin-1, ZO-1, and occludin. In summary, this study reveals that TBBPA caused intestinal injuries, inducing oxidative stress, inflammation, cell death, and tight junction disruption via ROS/NF-κB signal in common carp.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"Article 107190"},"PeriodicalIF":4.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142764690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.aquatox.2024.107215
Yanan Xu , Ling Liu , Yuqing Ma , Cunlong Wang , Fengshang Duan , Jianxue Feng , Haiyang Yin , Le Sun , Zhihan Cao , Jinho Jung , Ping Li , Zhi-Hua Li
The growing body of scientific evidence suggests that micro- and nanoplastics (MPs/NPs) pose a significant threat to aquatic ecosystems and human health. These particles can enter organisms through ingestion, inhalation, dermal contact, and trophic transfer. Exposure can directly affect multiple organs and systems (respiratory, digestive, neurological, reproductive, urinary, cardiovascular) and activate extensive intracellular signaling, inducing cytotoxicity involving mechanisms such as membrane disruption, extracellular polymer degradation, reactive oxygen species (ROS) production, DNA damage, cellular pore blockage, lysosomal instability, and mitochondrial depolarization. This review focuses on current research examining the in vivo and in vitro toxic effects of MPs/NPs on aquatic organisms, particularly fish, in relation to particulate toxicity aspects (such as particle transport mechanisms and structural modifications). Meanwhile, from the perspectives of the food chain and environmental factors, it emphasizes the comprehensive threats of MPs/NPs to human health in terms of both direct and indirect toxicity. Additionally, future research needs and strategies are discussed to aid in mitigating the potential risks of particulate plastics as carriers of toxic trace elements to human health.
{"title":"Biotransport and toxic effects of micro- and nanoplastics in fish model and their potential risk to humans: A review","authors":"Yanan Xu , Ling Liu , Yuqing Ma , Cunlong Wang , Fengshang Duan , Jianxue Feng , Haiyang Yin , Le Sun , Zhihan Cao , Jinho Jung , Ping Li , Zhi-Hua Li","doi":"10.1016/j.aquatox.2024.107215","DOIUrl":"10.1016/j.aquatox.2024.107215","url":null,"abstract":"<div><div>The growing body of scientific evidence suggests that micro- and nanoplastics (MPs/NPs) pose a significant threat to aquatic ecosystems and human health. These particles can enter organisms through ingestion, inhalation, dermal contact, and trophic transfer. Exposure can directly affect multiple organs and systems (respiratory, digestive, neurological, reproductive, urinary, cardiovascular) and activate extensive intracellular signaling, inducing cytotoxicity involving mechanisms such as membrane disruption, extracellular polymer degradation, reactive oxygen species (ROS) production, DNA damage, cellular pore blockage, lysosomal instability, and mitochondrial depolarization. This review focuses on current research examining the in vivo and in vitro toxic effects of MPs/NPs on aquatic organisms, particularly fish, in relation to particulate toxicity aspects (such as particle transport mechanisms and structural modifications). Meanwhile, from the perspectives of the food chain and environmental factors, it emphasizes the comprehensive threats of MPs/NPs to human health in terms of both direct and indirect toxicity. Additionally, future research needs and strategies are discussed to aid in mitigating the potential risks of particulate plastics as carriers of toxic trace elements to human health.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"Article 107215"},"PeriodicalIF":4.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.aquatox.2024.107217
Binbin CAI , Laura GANDON , Clément BARATANGE , Oluwabunmi ELEYELE , Romaric MONCRIEFFE , Grégory MONTIEL , Abderrahmane KAMARI , Samuel BERTRAND , Marie-José DURAND , Laurence POIRIER , Paul DELERIS , Aurore ZALOUK-VERGNOUX
Improving the understanding of how chemicals affect on organisms and assessing the associated environmental risks is of major interest in environmental studies. This can be achieved by using complementary approaches based on the study of the molecular responses of organisms. Because of the known chemical pressures on the environment, regulations on the content of some chemicals, such as cadmium, have been mostly completed. In contrast, the environmental toxicity of rare earth elements (REEs), which are widely used in industry, has only recently begun to receive attention. Here, we investigated the effects of cadmium, and two REEs, samarium and gadolinium, on marine mussels under laboratory exposures. We found that after an 8-day exposure at 500 µg/L, the metals were bioaccumulated by the mussels. Furthermore, samarium and gadolinium affected two oxidative stress biomarkers, GST and SOD. Lipidomic analysis showed that lipid content was modulated by the REEs, but not by cadmium. Interestingly, several compounds belonging to the phosphoinositide metabolism were more abundant, suggesting a pro-mitotic or cell survival response, while a higher abundance of cardiolipins after samarium exposure suggested an alteration of mitochondrial activity. Moreover, depending on the tissue and the metal considered, transcriptional analyses revealed an effect on metallothionein, hsp70/90, energy metabolism enzymes, as well as pro-mitotic transcript accumulation. Thus, this study sheds a new light on metal toxicity and in particularl REEs by highlighting the accumulation and toxicity of cadmium, samarium and gadolinium at 500 µg/L at different molecular levels, from gene expression to the lipidome of blue mussels.
{"title":"Assessment of the effects of cadmium, samarium and gadolinium on the blue mussel (Mytilus edulis): A biochemical, transcriptomic and metabolomic approach","authors":"Binbin CAI , Laura GANDON , Clément BARATANGE , Oluwabunmi ELEYELE , Romaric MONCRIEFFE , Grégory MONTIEL , Abderrahmane KAMARI , Samuel BERTRAND , Marie-José DURAND , Laurence POIRIER , Paul DELERIS , Aurore ZALOUK-VERGNOUX","doi":"10.1016/j.aquatox.2024.107217","DOIUrl":"10.1016/j.aquatox.2024.107217","url":null,"abstract":"<div><div>Improving the understanding of how chemicals affect on organisms and assessing the associated environmental risks is of major interest in environmental studies. This can be achieved by using complementary approaches based on the study of the molecular responses of organisms. Because of the known chemical pressures on the environment, regulations on the content of some chemicals, such as cadmium, have been mostly completed. In contrast, the environmental toxicity of rare earth elements (REEs), which are widely used in industry, has only recently begun to receive attention. Here, we investigated the effects of cadmium, and two REEs, samarium and gadolinium, on marine mussels under laboratory exposures. We found that after an 8-day exposure at 500 µg/L, the metals were bioaccumulated by the mussels. Furthermore, samarium and gadolinium affected two oxidative stress biomarkers, GST and SOD. Lipidomic analysis showed that lipid content was modulated by the REEs, but not by cadmium. Interestingly, several compounds belonging to the phosphoinositide metabolism were more abundant, suggesting a pro-mitotic or cell survival response, while a higher abundance of cardiolipins after samarium exposure suggested an alteration of mitochondrial activity. Moreover, depending on the tissue and the metal considered, transcriptional analyses revealed an effect on metallothionein, <em>hsp70/90</em>, energy metabolism enzymes, as well as pro-mitotic transcript accumulation. Thus, this study sheds a new light on metal toxicity and in particularl REEs by highlighting the accumulation and toxicity of cadmium, samarium and gadolinium at 500 µg/L at different molecular levels, from gene expression to the lipidome of blue mussels.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"Article 107217"},"PeriodicalIF":4.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}