Pub Date : 2018-11-21DOI: 10.3997/2214-4609.201802949
S. Jackson, I. Mayachita, S. Krevor
We investigate the impact of small-scale heterogeneities (<10m) and gravity on large scale O(100m) lateral CO2 plume migration at varying capillary number, Nc and gravity number, Ngv. For isotopically correlated heterogeneities, plume migration was slowed signicantly at low Nc and high Ngv. For anisotropic cases akin to sedimentary geological structures, the plume speed was correspondingly enhanced, with breakthrough times reduced by up to 20% at large correlation lengths. Using relative measures, the capillary pressure was found to be the major control on plume migration as opposed to permeability, at low Nc. Using single, homogenized upscaled functions, we were able to capture the effects of small scale heterogeneities at low or high Nc and moderate Ngv. However, the relative enhancement of the impact of heterogeneities at high Ngv (and low Nc) could not be captured using single homogeneous functions for the entire domain. Without including enhanced gravity effects in the upscaling procedure, which generate anisotropic upscaled functions, the full effects of small-scale heterogeneities in gravity segregated flow could be signicantly underestimated in large scale models, leading to inaccurate plume migration estimates.
{"title":"High Resolution Modelling And Steady-State Upscaling Of Large Scale Gravity Currents In Heterogeneous Sandstone Reservoirs","authors":"S. Jackson, I. Mayachita, S. Krevor","doi":"10.3997/2214-4609.201802949","DOIUrl":"https://doi.org/10.3997/2214-4609.201802949","url":null,"abstract":"We investigate the impact of small-scale heterogeneities (<10m) and gravity on large scale O(100m) lateral CO2 plume migration at varying capillary number, Nc and gravity number, Ngv. For isotopically correlated heterogeneities, plume migration was slowed signicantly at low Nc and high Ngv. For anisotropic cases akin to sedimentary geological structures, the plume speed was correspondingly enhanced, with breakthrough times reduced by up to 20% at large correlation lengths. Using relative measures, the capillary pressure was found to be the major control on plume migration as opposed to permeability, at low Nc. Using single, homogenized upscaled functions, we were able to capture the effects of small scale heterogeneities at low or high Nc and moderate Ngv. However, the relative enhancement of the impact of heterogeneities at high Ngv (and low Nc) could not be captured using single homogeneous functions for the entire domain. Without including enhanced gravity effects in the upscaling procedure, which generate anisotropic upscaled functions, the full effects of small-scale heterogeneities in gravity segregated flow could be signicantly underestimated in large scale models, leading to inaccurate plume migration estimates.","PeriodicalId":254996,"journal":{"name":"Fifth CO2 Geological Storage Workshop","volume":"118 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114038389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-21DOI: 10.3997/2214-4609.201802992
D. Wehner, F. Borges, M. Landrø
Geophysical monitoring techniques are commonly used to image the subsurface and potential changes. These monitoring techniques are important for CO2 storage projects to ensure a safe operation. A detailed image of the subsurface can be achieved from borehole seismic where mostly transmitted and reflected waves are investigated. However, these measurements are time consuming and costly as receivers and sources need to be moved within the well during the acquisition. We investigate the monitoring potential of tube waves, which propagate along the interface between the well and geological formation. An experiment is conducted where the signal from a rotating metal pipe in a borehole is recorded in a nearby observation well. The tube wave velocity can be measured with a high precision, around ± 1.2 m/s, during the experiment, which is an important measure to evaluate the potential of the method. Therefore, it might be possible to use noise sources like CO2 injection phases to monitor changes of the formation surrounding the well. This would reduce the time and cost needed for borehole seismic as only receivers at a constant position are required. Further field test are needed to investigate the feasibility at larger scales and for real injection cases.
{"title":"Using Well Operation Noise To Estimate Shear Modulus Changes From Measured Tube Waves – A Feasibility Study","authors":"D. Wehner, F. Borges, M. Landrø","doi":"10.3997/2214-4609.201802992","DOIUrl":"https://doi.org/10.3997/2214-4609.201802992","url":null,"abstract":"Geophysical monitoring techniques are commonly used to image the subsurface and potential changes. These monitoring techniques are important for CO2 storage projects to ensure a safe operation. A detailed image of the subsurface can be achieved from borehole seismic where mostly transmitted and reflected waves are investigated. However, these measurements are time consuming and costly as receivers and sources need to be moved within the well during the acquisition. We investigate the monitoring potential of tube waves, which propagate along the interface between the well and geological formation. An experiment is conducted where the signal from a rotating metal pipe in a borehole is recorded in a nearby observation well. The tube wave velocity can be measured with a high precision, around ± 1.2 m/s, during the experiment, which is an important measure to evaluate the potential of the method. Therefore, it might be possible to use noise sources like CO2 injection phases to monitor changes of the formation surrounding the well. This would reduce the time and cost needed for borehole seismic as only receivers at a constant position are required. Further field test are needed to investigate the feasibility at larger scales and for real injection cases.","PeriodicalId":254996,"journal":{"name":"Fifth CO2 Geological Storage Workshop","volume":"170 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115114621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-21DOI: 10.3997/2214-4609.201802988
S. Fischer, L. Wolf, L. Fuhrmann, H. Gahre, H. Rütters
Impurities in CO2 streams influence the chemical reactivity in and mineral alterations of CO2 storage formations. Fluid-rock interactions have been investigated by means of reactive transport simulations using TOUGHREACT V3.0-OMG. A novel method has been established through which co-injection of SO2, NO2, O2 and H2 with temporally varying concentrations can be implemented in reactive transport model scenarios. The paper presents (i) model testing and validation against simulation results obtained by Xu et al. (2007), and (ii) results acquired from 1D-radial multiphase reactive transport simulations investigating two generic Bunter Sandstone reservoir formations. Results gained applying the novel hybrid approach show that modelling-based inaccuracies have largely been eliminated and inconsistencies are minimized. For the investigated generic Bunter Sandstone reservoir formations, two major geochemical processes are apparent. While the acidifying impurities SO2 and NO2 trigger carbonate dissolution coupled to anhydrite precipitation, presence of O2 leads to dissolution of iron-rich chlorite and subsequent goethite precipitation. Absolute changes of porosity for the two generic Bunter Sandstone formations are below 1 %. The total quantitative impact of SO2, NO2, O2 and H2 on mineral reactions is rather limited and their impacts on the petrophysical properties of the two investigated generic Bunter Sandstone formations are geotechnically negligible.
{"title":"Simulated Fluid-Rock Interactions During Storage Of Temporally Varying Impure CO2 Streams","authors":"S. Fischer, L. Wolf, L. Fuhrmann, H. Gahre, H. Rütters","doi":"10.3997/2214-4609.201802988","DOIUrl":"https://doi.org/10.3997/2214-4609.201802988","url":null,"abstract":"Impurities in CO2 streams influence the chemical reactivity in and mineral alterations of CO2 storage formations. Fluid-rock interactions have been investigated by means of reactive transport simulations using TOUGHREACT V3.0-OMG. A novel method has been established through which co-injection of SO2, NO2, O2 and H2 with temporally varying concentrations can be implemented in reactive transport model scenarios. The paper presents (i) model testing and validation against simulation results obtained by Xu et al. (2007), and (ii) results acquired from 1D-radial multiphase reactive transport simulations investigating two generic Bunter Sandstone reservoir formations. Results gained applying the novel hybrid approach show that modelling-based inaccuracies have largely been eliminated and inconsistencies are minimized. For the investigated generic Bunter Sandstone reservoir formations, two major geochemical processes are apparent. While the acidifying impurities SO2 and NO2 trigger carbonate dissolution coupled to anhydrite precipitation, presence of O2 leads to dissolution of iron-rich chlorite and subsequent goethite precipitation. Absolute changes of porosity for the two generic Bunter Sandstone formations are below 1 %. The total quantitative impact of SO2, NO2, O2 and H2 on mineral reactions is rather limited and their impacts on the petrophysical properties of the two investigated generic Bunter Sandstone formations are geotechnically negligible.","PeriodicalId":254996,"journal":{"name":"Fifth CO2 Geological Storage Workshop","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125288816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-21DOI: 10.3997/2214-4609.201802983
N. Opedal
{"title":"Ensuring Integrity Of CO2 Storage: An Overview Of Ongoing Experimental Activity","authors":"N. Opedal","doi":"10.3997/2214-4609.201802983","DOIUrl":"https://doi.org/10.3997/2214-4609.201802983","url":null,"abstract":"","PeriodicalId":254996,"journal":{"name":"Fifth CO2 Geological Storage Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131260548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-21DOI: 10.3997/2214-4609.201802951
N. Mondol, M. Fawad, Joonsang Park
This study focuses on petrophysical characterization and rock physics diagnostics of the reservoir sandstones of Sognefjord Formation in the Smeaheia area that penetrated by an exploration well 32/4-1. The large scale CO2 storage site “Smeaheia” is located east of the Troll field in the Stord Basin. The CO2 storage formation is identified within a fault block bounded by major faults to the north, east and west, where the faults system in the east is the Oygarden Fault Complex and the fault to the west and north is the Vette Fault. The storage formation has pinched out towards the south. Petrophysical analysis and rock physics diagnostics suggest that the reservoir sandstone is uncemented and has good to excellent reservoir quality. The reservoir sandstone can be subdivided into three zones where the lower unit (Zone-3) has an excellent reservoir quality (high porosity, high permeability and less clay content) compared to the upper unit (Zone-1 and Zone-2). The two carbonate stringers are present in Zone-3 interpreted as extremely high resistivity, high density, high Vp and low porosity/permeability units which could be flow barriers based on their lateral extent.
{"title":"Petrophysical Analysis And Rock Physics Diagnostics Of Sognefjord Formation In The Smeaheia Area, Northern North Sea","authors":"N. Mondol, M. Fawad, Joonsang Park","doi":"10.3997/2214-4609.201802951","DOIUrl":"https://doi.org/10.3997/2214-4609.201802951","url":null,"abstract":"This study focuses on petrophysical characterization and rock physics diagnostics of the reservoir sandstones of Sognefjord Formation in the Smeaheia area that penetrated by an exploration well 32/4-1. The large scale CO2 storage site “Smeaheia” is located east of the Troll field in the Stord Basin. The CO2 storage formation is identified within a fault block bounded by major faults to the north, east and west, where the faults system in the east is the Oygarden Fault Complex and the fault to the west and north is the Vette Fault. The storage formation has pinched out towards the south. Petrophysical analysis and rock physics diagnostics suggest that the reservoir sandstone is uncemented and has good to excellent reservoir quality. The reservoir sandstone can be subdivided into three zones where the lower unit (Zone-3) has an excellent reservoir quality (high porosity, high permeability and less clay content) compared to the upper unit (Zone-1 and Zone-2). The two carbonate stringers are present in Zone-3 interpreted as extremely high resistivity, high density, high Vp and low porosity/permeability units which could be flow barriers based on their lateral extent.","PeriodicalId":254996,"journal":{"name":"Fifth CO2 Geological Storage Workshop","volume":"834 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123290076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-21DOI: 10.3997/2214-4609.201802968
H. Vosper, J. White, C. Gent
Injection of CO2 into a reservoir increases the pressure above initial values, resulting in overpressure of a hydrostatically charged formation. Without careful monitoring and management, excessive pressure can lead to a number of serious complications for a CO2 storage operations. Using numerical simulations with four distinct porosity/permeability distributions to represent reservoirs with random and structured heterogeneity. We initially consider the impact heterogeneity has on pressure propagation from a CO2 injection well; in particular the effect of channels on the lateral extent of the region of increased pressure. Subsequently, we investigate how heterogeneity influences the efficacy of water production as a pressure management tool and the optimisation of well positioning. For a channelized reservoir the most effective production well, which reduces the area of high pressure by up to 88%. Even in a randomised reservoir with no structured distribution of porosity and permeability, water production can still reduce the high pressure footprint by 60-88%. The location of the production well relative to the heterogeneity has been shown have a significant effect. The most effective production well location may not always be close to the target, but should be connected to the target by relatively high permeability pathways.
{"title":"Control Of Pressure Propagation In A Heterogeneous CO2 Storage Reservoir Using Water Production","authors":"H. Vosper, J. White, C. Gent","doi":"10.3997/2214-4609.201802968","DOIUrl":"https://doi.org/10.3997/2214-4609.201802968","url":null,"abstract":"Injection of CO2 into a reservoir increases the pressure above initial values, resulting in overpressure of a hydrostatically charged formation. Without careful monitoring and management, excessive pressure can lead to a number of serious complications for a CO2 storage operations. Using numerical simulations with four distinct porosity/permeability distributions to represent reservoirs with random and structured heterogeneity. We initially consider the impact heterogeneity has on pressure propagation from a CO2 injection well; in particular the effect of channels on the lateral extent of the region of increased pressure. Subsequently, we investigate how heterogeneity influences the efficacy of water production as a pressure management tool and the optimisation of well positioning. For a channelized reservoir the most effective production well, which reduces the area of high pressure by up to 88%. Even in a randomised reservoir with no structured distribution of porosity and permeability, water production can still reduce the high pressure footprint by 60-88%. The location of the production well relative to the heterogeneity has been shown have a significant effect. The most effective production well location may not always be close to the target, but should be connected to the target by relatively high permeability pathways.","PeriodicalId":254996,"journal":{"name":"Fifth CO2 Geological Storage Workshop","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116299648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-21DOI: 10.3997/2214-4609.201802955
D. Guérillot, J. Bruyelle
Acidic fluid injection in rock formations may generate geochemical reactions that can modify the mineral assemblage of the rock and disturb thermodynamic equilibria. Numerical difficulties of reactive transport simulation are that geochemical reactions are at the pore scale, may appear in short time period and are very sensitive to the mesh size and/or time step. The classical approach for reservoir engineers consists in upscaling the high resolution petrophysical values to assign to a low-resolution model. For reactive transport modelling, the upscaling step will impact not only the mass fraction of each species but also the mineral dissolution and/or precipitation processes that highly depend on mass fractions. This paper recalls the Compositional Dual Mesh Method, an original algorithm for a compositional flow modelling in porous media with rock-fluid interactions using two different space and time discretization: one mesh, as usual for the pressure equation and a much finer one for the chemical reactions. The interest of this scheme is that the calculation of the flow on the high-resolution grid is done solving a local problem on each coarse cell. Two examples of CO2 injection in carbonate reservoirs illustrate this algorithm.
{"title":"Reactive Transport Modeling For CO2 Sequestration With A Dual Mesh Method","authors":"D. Guérillot, J. Bruyelle","doi":"10.3997/2214-4609.201802955","DOIUrl":"https://doi.org/10.3997/2214-4609.201802955","url":null,"abstract":"Acidic fluid injection in rock formations may generate geochemical reactions that can modify the mineral assemblage of the rock and disturb thermodynamic equilibria. Numerical difficulties of reactive transport simulation are that geochemical reactions are at the pore scale, may appear in short time period and are very sensitive to the mesh size and/or time step. The classical approach for reservoir engineers consists in upscaling the high resolution petrophysical values to assign to a low-resolution model. For reactive transport modelling, the upscaling step will impact not only the mass fraction of each species but also the mineral dissolution and/or precipitation processes that highly depend on mass fractions. This paper recalls the Compositional Dual Mesh Method, an original algorithm for a compositional flow modelling in porous media with rock-fluid interactions using two different space and time discretization: one mesh, as usual for the pressure equation and a much finer one for the chemical reactions. The interest of this scheme is that the calculation of the flow on the high-resolution grid is done solving a local problem on each coarse cell. Two examples of CO2 injection in carbonate reservoirs illustrate this algorithm.","PeriodicalId":254996,"journal":{"name":"Fifth CO2 Geological Storage Workshop","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122240808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-21DOI: 10.3997/2214-4609.201802952
A. Kassa, S. Gasda, K. Kumar, F. Radu
Summary In many applications, the wettability of the rock surface is assumed to be constant in time and uniform in space. However, many fluids are capable to alter the wettability of rock surfaces permanently and dynamically in time. We simulate the dynamic system using a bundle-of-tubes (BoT) approach, where an empirical model for contact angle change is introduced at the pore scale. The resulting capillary pressure curves are then used to correlate the time-dependent term to the upscaled version of the wettability model. This study shows the importance of time-dependent wettability for determining capillary pressure over timescales of weeks and months. The impact of wettability has implications for experimental methodology as well as macroscale simulation of wettability-altering fluids.
{"title":"Impact Of Time-Dependent Wettability Alteration On Dynamic Capillary Pressure","authors":"A. Kassa, S. Gasda, K. Kumar, F. Radu","doi":"10.3997/2214-4609.201802952","DOIUrl":"https://doi.org/10.3997/2214-4609.201802952","url":null,"abstract":"Summary In many applications, the wettability of the rock surface is assumed to be constant in time and uniform in space. However, many fluids are capable to alter the wettability of rock surfaces permanently and dynamically in time. We simulate the dynamic system using a bundle-of-tubes (BoT) approach, where an empirical model for contact angle change is introduced at the pore scale. The resulting capillary pressure curves are then used to correlate the time-dependent term to the upscaled version of the wettability model. This study shows the importance of time-dependent wettability for determining capillary pressure over timescales of weeks and months. The impact of wettability has implications for experimental methodology as well as macroscale simulation of wettability-altering fluids.","PeriodicalId":254996,"journal":{"name":"Fifth CO2 Geological Storage Workshop","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123176713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-21DOI: 10.3997/2214-4609.201802975
N. K. Jha, M. Ali, M. Sarmadivaleh, S. Iglauer, A. Barifcani, M. Lebedev, J. Sangwai
CO2 storage and its containment security are key concern of a large-scale CCS project. One of the most important parameters affecting the CO2 storage potential is CO2/brine interfacial tension. In this work, we use low salinity surfactant nanofluids to demonstrate its potential application for CO2 storage at high pressure and temperature conditions by significantly lowering CO2/brine interfacial tension. The present work gives novel insight on the use of nanoparticles in CO2 storage application. We use Sodium dodecylbenzenesulfonate (SDBS) surfactant and ZrO2 nanoparticles for our formulation. Determination of interfacial tension were carried out using pendent drop method at 20 MPa and 70 °C and drop shape analysis were carried out using pendant drop plugin of Image J software.
{"title":"Low Salinity Surfactant Nanofluids For Enhanced CO2 Storage Application At High Pressure And Temperature","authors":"N. K. Jha, M. Ali, M. Sarmadivaleh, S. Iglauer, A. Barifcani, M. Lebedev, J. Sangwai","doi":"10.3997/2214-4609.201802975","DOIUrl":"https://doi.org/10.3997/2214-4609.201802975","url":null,"abstract":"CO2 storage and its containment security are key concern of a large-scale CCS project. One of the most important parameters affecting the CO2 storage potential is CO2/brine interfacial tension. In this work, we use low salinity surfactant nanofluids to demonstrate its potential application for CO2 storage at high pressure and temperature conditions by significantly lowering CO2/brine interfacial tension. The present work gives novel insight on the use of nanoparticles in CO2 storage application. We use Sodium dodecylbenzenesulfonate (SDBS) surfactant and ZrO2 nanoparticles for our formulation. Determination of interfacial tension were carried out using pendent drop method at 20 MPa and 70 °C and drop shape analysis were carried out using pendant drop plugin of Image J software.","PeriodicalId":254996,"journal":{"name":"Fifth CO2 Geological Storage Workshop","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124426836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-21DOI: 10.3997/2214-4609.201802957
M. Mulrooney, J. Osmond, E. Skurtveit, L. Wu, A. Braathen
Smeaheia is a potential subsurface CO2 storage site located on the Horda platform in the Norwegian sector of the North Sea. The site is currently being investigated as part of the Norwegian CCS Research Centre, which envisages injection, and storage of CO2 into shallow-marine deposits comprising the Jurassic Viking Group. Two prospects, defined as fault-bound structural closures, have been identified, i) Alpha in the footwall of the Vette fault, and Beta in the Hanging wall of the Oygarden fault. In this contribution we present the fundamental structural framework of the Smeaheia site as derived from seismic interpretation of a high resolution 3D dataset. Qualitative and quantitative fault seal properties of the Vette fault are presented. Juxtaposition and shale gouge ratio analysis suggest the Vette fault has a high sealing probability for the Alpha closure. A relay zone to the south of the structure is more likely to be non-sealing and may facilitate pressure communication with a neighbouring fault block where hydrocarbon production has been ongoing. This communication may have resulted in Smeaheia being depleted. Risk of fault reactivation is assessed based on likely in-situ stress states, hydrostatic pressure regimes and the aforementioned depleted pressure regimes.
{"title":"Smeaheia, A Potential Northern North Sea CO2 Storage Site: Structural Description And De-Risking Strategies","authors":"M. Mulrooney, J. Osmond, E. Skurtveit, L. Wu, A. Braathen","doi":"10.3997/2214-4609.201802957","DOIUrl":"https://doi.org/10.3997/2214-4609.201802957","url":null,"abstract":"Smeaheia is a potential subsurface CO2 storage site located on the Horda platform in the Norwegian sector of the North Sea. The site is currently being investigated as part of the Norwegian CCS Research Centre, which envisages injection, and storage of CO2 into shallow-marine deposits comprising the Jurassic Viking Group. Two prospects, defined as fault-bound structural closures, have been identified, i) Alpha in the footwall of the Vette fault, and Beta in the Hanging wall of the Oygarden fault. In this contribution we present the fundamental structural framework of the Smeaheia site as derived from seismic interpretation of a high resolution 3D dataset. Qualitative and quantitative fault seal properties of the Vette fault are presented. Juxtaposition and shale gouge ratio analysis suggest the Vette fault has a high sealing probability for the Alpha closure. A relay zone to the south of the structure is more likely to be non-sealing and may facilitate pressure communication with a neighbouring fault block where hydrocarbon production has been ongoing. This communication may have resulted in Smeaheia being depleted. Risk of fault reactivation is assessed based on likely in-situ stress states, hydrostatic pressure regimes and the aforementioned depleted pressure regimes.","PeriodicalId":254996,"journal":{"name":"Fifth CO2 Geological Storage Workshop","volume":"135 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132590498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}