首页 > 最新文献

Biosensors and Bioelectronics: X最新文献

英文 中文
Magnetic beads-based nanozyme for portable colorimetric biosensing of Helicobacter pylori 基于磁珠的纳米酶用于幽门螺旋杆菌的便携式比色生物传感
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-07-20 DOI: 10.1016/j.biosx.2024.100517
Ghadeer A.R.Y. Suaifan , Mayadah B. Shehadeh , Rula M. Darwish , Manar Alterify , Ward Abu Jbara , Fahid Abu Jbara , Nader Alaridah , Mohammed Zourob

Cancer continues to be a significant global health issue with one in six deaths linked to the disease despite advancements in cancer detection and treatment. Recently, Helicobacter pylori (H. pylori) was identified as a risk factor for cancer development. This gram-negative bacterium is associated with gastric conditions, including stomach cancer. Although the exact transmission methods of this bacterium are still unclear, studies suggest that waterborne transmission is possible. This study focuses on the development of a colorimetric nanomaterial-based paper biosensor for specific H. pylori detection using H. pylori extracellular proteases as biomarkers. The biosensor utilizes a unique substrate labeled with magnetic nanobeads and bound to a gold sensing platform. The biosensor's limit of detection (LOD) of 100 CFU/mL, selectivity, stability, and ability to detect H. pylori in clinical specimens were evaluated, demonstrating promising results in terms of sensitivity and specificity. In comparison to traditional methods, this biosensor offers advantages in simplicity and ease of use, making it appropriate for on-site detection in both environmental and clinical settings.

尽管癌症检测和治疗技术不断进步,但癌症仍然是一个重大的全球健康问题,每六例死亡中就有一例与癌症有关。最近,幽门螺旋杆菌(H. pylori)被确认为癌症发病的一个风险因素。这种革兰氏阴性细菌与胃病(包括胃癌)有关。虽然这种细菌的确切传播方式尚不清楚,但研究表明,水传播是可能的。本研究的重点是开发一种基于纳米材料的比色纸生物传感器,利用幽门螺杆菌胞外蛋白酶作为生物标记物,对幽门螺杆菌进行特异性检测。该生物传感器采用了一种独特的底物,用磁性纳米吸附剂标记,并与金传感平台结合。对该生物传感器的检测限(LOD)(100 CFU/mL)、选择性、稳定性以及检测临床样本中幽门螺杆菌的能力进行了评估,结果表明其灵敏度和特异性都很不错。与传统方法相比,这种生物传感器具有简便易用的优势,适合在环境和临床环境中进行现场检测。
{"title":"Magnetic beads-based nanozyme for portable colorimetric biosensing of Helicobacter pylori","authors":"Ghadeer A.R.Y. Suaifan ,&nbsp;Mayadah B. Shehadeh ,&nbsp;Rula M. Darwish ,&nbsp;Manar Alterify ,&nbsp;Ward Abu Jbara ,&nbsp;Fahid Abu Jbara ,&nbsp;Nader Alaridah ,&nbsp;Mohammed Zourob","doi":"10.1016/j.biosx.2024.100517","DOIUrl":"10.1016/j.biosx.2024.100517","url":null,"abstract":"<div><p>Cancer continues to be a significant global health issue with one in six deaths linked to the disease despite advancements in cancer detection and treatment. Recently, <em>Helicobacter pylori</em> (<em>H. pylori</em>) was identified as a risk factor for cancer development. This gram-negative bacterium is associated with gastric conditions, including stomach cancer. Although the exact transmission methods of this bacterium are still unclear, studies suggest that waterborne transmission is possible. This study focuses on the development of a colorimetric nanomaterial-based paper biosensor for specific <em>H. pylori</em> detection using <em>H. pylori</em> extracellular proteases as biomarkers. The biosensor utilizes a unique substrate labeled with magnetic nanobeads and bound to a gold sensing platform. The biosensor's limit of detection (LOD) of 100 CFU/mL, selectivity, stability, and ability to detect <em>H. pylori</em> in clinical specimens were evaluated, demonstrating promising results in terms of sensitivity and specificity. In comparison to traditional methods, this biosensor offers advantages in simplicity and ease of use, making it appropriate for on-site detection in both environmental and clinical settings.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"20 ","pages":"Article 100517"},"PeriodicalIF":10.61,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000815/pdfft?md5=2e76196d184154565915a1ec306f80c1&pid=1-s2.0-S2590137024000815-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141840777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel and ultrasensitive high-surface porous carbon-based electrochemical biosensor for early detection of dengue virus 用于早期检测登革热病毒的新型超灵敏高表面多孔碳电化学生物传感器
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-07-20 DOI: 10.1016/j.biosx.2024.100525
Shreeganesh Subraya Hegde , Shivakumar , Badekai Ramachandra Bhat , Praveen Mishra , Udayakumar Dalimba , Minhaz Uddin Ahmed , Gil Nonato Santos

Dengue fever, a mosquito-borne viral infection, poses a significant global health threat, and early diagnosis is crucial for effective disease management. The utilization of advanced materials in the design ensures an improved surface area, facilitating a heightened interaction between the sensor and the target. In this study, the incorporation of biomass-derived high-surface porous carbon-based materials not only contributed to the sensor's sensitivity but also ensured a cost-effective and scalable manufacturing process. The electrochemical nature of the biosensor added a layer of precision to the detection process and offered a reliable, rapid method for identifying the infection of the dengue virus. The enhanced sensitivity of the biosensor allowed the detection of even trace amounts of the NS1 protein, enabling early diagnosis in the initial stages of dengue infection. The system exhibited a high sensitivity with a wide linear range between 1 pg/mL and 100 μg/mL, and the extremely low detection limit of 0.665 pg/mL ranks this as one of the most efficient biosensors for the detection of dengue virus NS1 protein. Selectivity studies, coupled with computational insights, showcased the biosensor's prowess in distinguishing NS1 protein from potential interfering substances, laying the foundation for reliable diagnostics in complex biological matrices. Real sample analysis using human serum spiked with NS1 protein offers a tantalizing glimpse into the transformative potential of biosensors in real-world scenarios. This innovative biosensor holds great promise for addressing the pressing need for early detection of dengue virus infections.

登革热是一种由蚊子传播的病毒感染,对全球健康构成严重威胁,而早期诊断对于有效控制疾病至关重要。在设计中使用先进材料可确保提高表面积,促进传感器与目标之间的相互作用。在这项研究中,生物质衍生的高表面多孔碳基材料不仅提高了传感器的灵敏度,还确保了制造过程的成本效益和可扩展性。生物传感器的电化学特性为检测过程增添了一层精确性,为识别登革热病毒感染提供了一种可靠、快速的方法。生物传感器的灵敏度提高了,即使是痕量的 NS1 蛋白也能检测到,从而能够在登革热感染的初期阶段进行早期诊断。该系统灵敏度高,线性范围广,介于 1 pg/mL 和 100 μg/mL 之间,检测限极低,仅为 0.665 pg/mL,是检测登革热病毒 NS1 蛋白最有效的生物传感器之一。选择性研究与计算研究相结合,展示了该生物传感器在区分 NS1 蛋白与潜在干扰物质方面的能力,为在复杂生物基质中进行可靠诊断奠定了基础。利用添加了 NS1 蛋白质的人血清进行的真实样本分析,让我们看到了生物传感器在现实世界中的变革潜力。这种创新型生物传感器有望满足早期检测登革热病毒感染的迫切需要。
{"title":"A novel and ultrasensitive high-surface porous carbon-based electrochemical biosensor for early detection of dengue virus","authors":"Shreeganesh Subraya Hegde ,&nbsp;Shivakumar ,&nbsp;Badekai Ramachandra Bhat ,&nbsp;Praveen Mishra ,&nbsp;Udayakumar Dalimba ,&nbsp;Minhaz Uddin Ahmed ,&nbsp;Gil Nonato Santos","doi":"10.1016/j.biosx.2024.100525","DOIUrl":"10.1016/j.biosx.2024.100525","url":null,"abstract":"<div><p>Dengue fever, a mosquito-borne viral infection, poses a significant global health threat, and early diagnosis is crucial for effective disease management. The utilization of advanced materials in the design ensures an improved surface area, facilitating a heightened interaction between the sensor and the target. In this study, the incorporation of biomass-derived high-surface porous carbon-based materials not only contributed to the sensor's sensitivity but also ensured a cost-effective and scalable manufacturing process. The electrochemical nature of the biosensor added a layer of precision to the detection process and offered a reliable, rapid method for identifying the infection of the dengue virus. The enhanced sensitivity of the biosensor allowed the detection of even trace amounts of the NS1 protein, enabling early diagnosis in the initial stages of dengue infection. The system exhibited a high sensitivity with a wide linear range between 1 pg/mL and 100 μg/mL, and the extremely low detection limit of 0.665 pg/mL ranks this as one of the most efficient biosensors for the detection of dengue virus NS1 protein. Selectivity studies, coupled with computational insights, showcased the biosensor's prowess in distinguishing NS1 protein from potential interfering substances, laying the foundation for reliable diagnostics in complex biological matrices. Real sample analysis using human serum spiked with NS1 protein offers a tantalizing glimpse into the transformative potential of biosensors in real-world scenarios. This innovative biosensor holds great promise for addressing the pressing need for early detection of dengue virus infections.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"20 ","pages":"Article 100525"},"PeriodicalIF":10.61,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259013702400089X/pdfft?md5=c4b4552e9a7c162c83850a58b49c49dd&pid=1-s2.0-S259013702400089X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141852247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A cell targeting and sorting approach based on the magnetophoretic capturing for early prognostics of metastatic cervical cancer cells 基于磁泳捕捉的细胞靶向和分选方法,用于转移性宫颈癌细胞的早期预后分析
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-07-17 DOI: 10.1016/j.biosx.2024.100516
Mirza Muhammad Faran Ashraf Baig , Jinwei Ma , Hongkai Wu , Wai Tong Chien , Sek Ying Chair

HeLa cervical cancer cells are immortal with telomerase activity and metastatic characteristics similar to circulating tumor cells (CTCs). Here, we report aptamer-modified multilayered magnetic beads (Apt@MBs) that efficiently targeted and captured HeLa cells up to a low concentration of freshly prepared cell suspension (500 cells/mL). Apt@MBs were functionalized with fluorophore-conjugated AS1411-aptamer on an outer layer made up of molybdenum disulfide (MoS2) to target nucleolin on the cell surface of captured HeLa cells. Moreover, this outer MoS2 layer of MBs was nanoporous and could load anticancer drugs inside its porous cavities with the possibility of killing the captured and metastatic CTCs in vivo. An internal core layer of Apt@MBs consisting of Ag–Fe3O4 magnetic particles (MPs) was designed for magnetic manifestations and cell sorting with the possibility of screening CTCs (in the patient's blood samples) for early diagnosis of metastatic cancers. The Apt@MBs after cell capture gave rise to the heavier HeLa-MBs composites to get settled down under gravitational/inertial forces to the bottom of the tube quicker than the free cells (within 10 min). The gravitational settling of HeLa-MBs was further coupled with exposing a magnetic field to effectively capture and enrich the cells at the bottom of the tube (from 91 to 98 % cells). While the fluid containing dead, non-cancerous, or uncaptured cells in the supernatant layers were easily removed by pipetting. The HeLa-MBs after sorting out were resuspended into a fresh culture medium for further incubation or cellular analysis. Moreover, both cisplatin (CP) and epirubicin (EP) loaded Apt@MBs showed the killing of about 50 % of the captured cells. Therefore, we are confident that Apt@MBs can contribute to enumerating patients' blood samples for screening CTCs to timely and efficiently detect metastatic cancers along with the ability to effectively perform prognosis, and treatment of metastatic cancers.

HeLa宫颈癌细胞具有端粒酶活性和转移特性,与循环肿瘤细胞(CTC)相似。在此,我们报告了灵媒修饰的多层磁珠(Apt@MBs),这种磁珠能有效靶向捕获HeLa细胞,捕获浓度可达新鲜制备的低浓度细胞悬液(500 cells/mL)。Apt@MBs 的外层由二硫化钼(MoS2)组成,上面是功能化的荧光团连接的 AS1411-aptamer,可靶向捕获的 HeLa 细胞表面的核素蛋白。此外,MBs 的二硫化钼外层是纳米多孔的,可以在其多孔腔内装载抗癌药物,从而有可能杀死体内捕获的转移性 CTCs。由 Ag-Fe3O4 磁性颗粒(MPs)组成的 Apt@MBs 内核层是为磁性表现和细胞分拣而设计的,可以筛选(患者血液样本中的)CTC,用于早期诊断转移性癌症。细胞捕获后的 Apt@MBs 会产生较重的 HeLa-MBs 复合物,在重力/惯性力的作用下比游离细胞更快(10 分钟内)沉降到试管底部。HeLa-MBs 的重力沉降与磁场的暴露进一步结合,有效地捕获并富集了管底的细胞(从 91% 到 98%)。而上清液层中含有死细胞、非癌细胞或未捕获细胞的液体则很容易通过移液管去除。分类后的 HeLa-MB 重悬于新鲜的培养基中,用于进一步培养或细胞分析。此外,顺铂(CP)和表柔比星(EP)负载的 Apt@MBs 都能杀死约 50% 的捕获细胞。因此,我们相信,Apt@MBs 有助于对患者血液样本中的 CTCs 进行计数筛查,从而及时有效地检测出转移性癌症,并能有效地对转移性癌症进行预后分析和治疗。
{"title":"A cell targeting and sorting approach based on the magnetophoretic capturing for early prognostics of metastatic cervical cancer cells","authors":"Mirza Muhammad Faran Ashraf Baig ,&nbsp;Jinwei Ma ,&nbsp;Hongkai Wu ,&nbsp;Wai Tong Chien ,&nbsp;Sek Ying Chair","doi":"10.1016/j.biosx.2024.100516","DOIUrl":"10.1016/j.biosx.2024.100516","url":null,"abstract":"<div><p>HeLa cervical cancer cells are immortal with telomerase activity and metastatic characteristics similar to circulating tumor cells (CTCs). Here, we report aptamer-modified multilayered magnetic beads (Apt@MBs) that efficiently targeted and captured HeLa cells up to a low concentration of freshly prepared cell suspension (500 cells/mL). Apt@MBs were functionalized with fluorophore-conjugated AS1411-aptamer on an outer layer made up of molybdenum disulfide (MoS<sub>2</sub>) to target nucleolin on the cell surface of captured HeLa cells. Moreover, this outer MoS<sub>2</sub> layer of MBs was nanoporous and could load anticancer drugs inside its porous cavities with the possibility of killing the captured and metastatic CTCs <em>in vivo</em>. An internal core layer of Apt@MBs consisting of Ag–Fe<sub>3</sub>O<sub>4</sub> magnetic particles (MPs) was designed for magnetic manifestations and cell sorting with the possibility of screening CTCs (in the patient's blood samples) for early diagnosis of metastatic cancers. The Apt@MBs after cell capture gave rise to the heavier HeLa-MBs composites to get settled down under gravitational/inertial forces to the bottom of the tube quicker than the free cells (within 10 min). The gravitational settling of HeLa-MBs was further coupled with exposing a magnetic field to effectively capture and enrich the cells at the bottom of the tube (from 91 to 98 % cells). While the fluid containing dead, non-cancerous, or uncaptured cells in the supernatant layers were easily removed by pipetting. The HeLa-MBs after sorting out were resuspended into a fresh culture medium for further incubation or cellular analysis. Moreover, both cisplatin (CP) and epirubicin (EP) loaded Apt@MBs showed the killing of about 50 % of the captured cells. Therefore, we are confident that Apt@MBs can contribute to enumerating patients' blood samples for screening CTCs to timely and efficiently detect metastatic cancers along with the ability to effectively perform prognosis, and treatment of metastatic cancers.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"20 ","pages":"Article 100516"},"PeriodicalIF":10.61,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000803/pdfft?md5=bbe2c8cdad9186ff5178f216df440ef8&pid=1-s2.0-S2590137024000803-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141736755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alzheimer's diagnosis beyond cerebrospinal fluid: Probe-Free Detection of Tau Proteins using MXene based redox systems and molecularly imprinted polymers 脑脊液之外的阿尔茨海默氏症诊断:使用基于 MXene 的氧化还原系统和分子印迹聚合物对 Tau 蛋白进行无探针检测
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-07-06 DOI: 10.1016/j.biosx.2024.100513
Ajith Mohan Arjun , Sudhaunsh Deshpande , Tom Dunlop , Beth Norman , Daniela Oliviera , Georgeta Vulpe , Felismina Moreira , Sanjiv Sharma

Phosphorylated Tau proteins are promising biomarkers for the diagnosis and prognosis of Alzheimer's disease. This study presents a novel voltametric sensor using a vanadium MXene polydopamine (VxPDA) redox active composite and a Tau-441-specific polyaniline molecularly imprinted polymer (PANI MIP) for the sensitive detection of Tau-441 in interstitial fluid (ISF) and plasma. The VxPDA/PANI MIP sensor demonstrates a broad detection range of 5 fg/mL to 5 ng/mL (122 aM/L to 122 pM/L) in ISF without the use of redox mediators, with a lower limit of detection (LOD) of 2.3 fg/mL (60 aM/L). Furthermore, a handheld device utilizing this technology successfully detects Tau-441 in artificial serum with high sensitivity (5 fg/mL to 150 fg/mL (122 aM/L to 366 aM/L)) and specificity within a clinically relevant range. The rapid detection time (∼32 min) and low cost (∼£20/device) of this sensor highlight its potential for minimally invasive, early AD diagnosis in clinical settings. This advancement aims to facilitate a transition away from invasive cerebrospinal fluid (CSF)-based diagnostic techniques for AD.

磷酸化 Tau 蛋白是诊断和预后阿尔茨海默病的有前途的生物标志物。本研究介绍了一种新型伏安传感器,它采用了氧化亚钒多巴胺(VxPDA)氧化还原活性复合材料和 Tau-441 特异性聚苯胺分子印迹聚合物(PANI MIP),用于灵敏检测组织间液(ISF)和血浆中的 Tau-441。VxPDA/PANI MIP 传感器无需使用氧化还原介质,即可在 ISF 中实现 5 fg/mL 至 5 ng/mL(122 aM/L 至 122 pM/L)的宽检测范围,检测下限 (LOD) 为 2.3 fg/mL(60 aM/L)。此外,利用该技术的手持设备成功检测了人工血清中的 Tau-441,灵敏度高(5 fg/mL 至 150 fg/mL(122 aM/L 至 366 aM/L)),特异性在临床相关范围内。该传感器检测时间短(32 分钟),成本低(20 英镑/装置),具有在临床环境中进行微创、早期急性心肌梗死诊断的潜力。这项技术的进步旨在促进从基于侵入性脑脊液(CSF)的注意力缺失症诊断技术的过渡。
{"title":"Alzheimer's diagnosis beyond cerebrospinal fluid: Probe-Free Detection of Tau Proteins using MXene based redox systems and molecularly imprinted polymers","authors":"Ajith Mohan Arjun ,&nbsp;Sudhaunsh Deshpande ,&nbsp;Tom Dunlop ,&nbsp;Beth Norman ,&nbsp;Daniela Oliviera ,&nbsp;Georgeta Vulpe ,&nbsp;Felismina Moreira ,&nbsp;Sanjiv Sharma","doi":"10.1016/j.biosx.2024.100513","DOIUrl":"10.1016/j.biosx.2024.100513","url":null,"abstract":"<div><p>Phosphorylated Tau proteins are promising biomarkers for the diagnosis and prognosis of Alzheimer's disease. This study presents a novel voltametric sensor using a vanadium MXene polydopamine (V<sub>x</sub>PDA) redox active composite and a Tau-441-specific polyaniline molecularly imprinted polymer (PANI MIP) for the sensitive detection of Tau-441 in interstitial fluid (ISF) and plasma. The V<sub>x</sub>PDA/PANI MIP sensor demonstrates a broad detection range of 5 fg/mL to 5 ng/mL (122 aM/L to 122 pM/L) in ISF without the use of redox mediators, with a lower limit of detection (LOD) of 2.3 fg/mL (60 aM/L). Furthermore, a handheld device utilizing this technology successfully detects Tau-441 in artificial serum with high sensitivity (5 fg/mL to 150 fg/mL (122 aM/L to 366 aM/L)) and specificity within a clinically relevant range. The rapid detection time (∼32 min) and low cost (∼£20/device) of this sensor highlight its potential for minimally invasive, early AD diagnosis in clinical settings. This advancement aims to facilitate a transition away from invasive cerebrospinal fluid (CSF)-based diagnostic techniques for AD.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"20 ","pages":"Article 100513"},"PeriodicalIF":10.61,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000773/pdfft?md5=2f8024043d8800e923c8446001146708&pid=1-s2.0-S2590137024000773-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141714796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AuNPs/CaHF NPs/N-GDY as bifunctional nanozyme breaking pH limitation for miRNA-21 sensitive detection at physiological pH 作为双功能纳米酶的 AuNPs/CaHF NPs/N-GDY 打破 pH 限制,在生理 pH 值下灵敏检测 miRNA-21
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-07-05 DOI: 10.1016/j.biosx.2024.100514
Yujing Wang , Xiaoxing Xu , Lan Gu , Rongqi Zhang , Ying Peng , Xiaoyong Jin , Beibei Kou

Nanozyme cascade have garnered substantial interest in recent years due to their distinctive properties. However, the conventional stepwise cascade reaction undergoes tedious two-step operation process owing to the incompatibility of reaction conditions. Moreover, most of reported nanozymes exhibit favorable catalytic performance only in acidic medium, which greatly restricts their usage especially in biochemical analysis. To address above challenges, we developed gold nanoparticles/calcium hexacyanoferrate (Ⅲ)/nitrogen-doped graphitic alkyne (AuNPs/CaHF NPs/N-GDY) nanozyme with superior cascade catalytic activity at neutral pH comparable to that of acidic. Specifically, AuNPs/CaHF NPs/N-GDY simultaneously possessed glucose oxidase-like (GOx) and peroxidase-like (HRP) activities, which could induce one-step cascade reaction in the presence of glucose, resulting in 5-fold enhancement in catalytic efficiency compared with conventional two-step cascade reaction. Besides, tripedal DNA walker was equipped with sufficient walking legs to walk on directional and highly controllable stepped track, reducing the possibility of derailment and boosting walking efficiency. As a proof of concept, a novel electrochemical biosensor was constructed for miRNA-21 sensitive detection at physiological pH, and successfully applied in human serum samples as well as practical intracellular analysis, offering great potential in biomedical research and clinical diagnosis.

近年来,纳米酶级联反应因其独特的性能而备受关注。然而,由于反应条件的不相容性,传统的分步级联反应需要经过繁琐的两步操作过程。此外,大多数已报道的纳米酶只在酸性介质中表现出良好的催化性能,这极大地限制了它们的应用,尤其是在生化分析中。针对上述挑战,我们开发了纳米金颗粒/六氰合铁酸钙(Ⅲ)/掺氮石墨炔(AuNPs/CaHF NPs/N-GDY)纳米酶,其在中性 pH 下的级联催化活性与酸性相当。具体来说,AuNPs/CaHF NPs/N-GDY 同时具有葡萄糖氧化酶样(GOx)和过氧化物酶样(HRP)活性,可在葡萄糖存在下诱导一步级联反应,与传统的两步级联反应相比,催化效率提高了 5 倍。此外,三足 DNA 步行器配备了足够的步行腿,可在定向和高度可控的阶梯轨道上行走,降低了脱轨的可能性,提高了行走效率。作为概念验证,该研究构建了一种新型电化学生物传感器,可在生理pH条件下灵敏检测miRNA-21,并成功应用于人血清样本和实际细胞内分析,在生物医学研究和临床诊断方面具有巨大潜力。
{"title":"AuNPs/CaHF NPs/N-GDY as bifunctional nanozyme breaking pH limitation for miRNA-21 sensitive detection at physiological pH","authors":"Yujing Wang ,&nbsp;Xiaoxing Xu ,&nbsp;Lan Gu ,&nbsp;Rongqi Zhang ,&nbsp;Ying Peng ,&nbsp;Xiaoyong Jin ,&nbsp;Beibei Kou","doi":"10.1016/j.biosx.2024.100514","DOIUrl":"https://doi.org/10.1016/j.biosx.2024.100514","url":null,"abstract":"<div><p>Nanozyme cascade have garnered substantial interest in recent years due to their distinctive properties. However, the conventional stepwise cascade reaction undergoes tedious two-step operation process owing to the incompatibility of reaction conditions. Moreover, most of reported nanozymes exhibit favorable catalytic performance only in acidic medium, which greatly restricts their usage especially in biochemical analysis. To address above challenges, we developed gold nanoparticles/calcium hexacyanoferrate (Ⅲ)/nitrogen-doped graphitic alkyne (AuNPs/CaHF NPs/N-GDY) nanozyme with superior cascade catalytic activity at neutral pH comparable to that of acidic. Specifically, AuNPs/CaHF NPs/N-GDY simultaneously possessed glucose oxidase-like (GOx) and peroxidase-like (HRP) activities, which could induce one-step cascade reaction in the presence of glucose, resulting in 5-fold enhancement in catalytic efficiency compared with conventional two-step cascade reaction. Besides, tripedal DNA walker was equipped with sufficient walking legs to walk on directional and highly controllable stepped track, reducing the possibility of derailment and boosting walking efficiency. As a proof of concept, a novel electrochemical biosensor was constructed for miRNA-21 sensitive detection <span>at physiological pH</span><svg><path></path></svg>, and successfully applied in human serum samples as well as practical intracellular analysis, offering great potential in biomedical research and clinical diagnosis.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"19 ","pages":"Article 100514"},"PeriodicalIF":10.61,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000785/pdfft?md5=c78a3b6724c1f7fd4dc33bbd19b1635c&pid=1-s2.0-S2590137024000785-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141582126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanozyme-based sensors for cancer diagnosis 基于纳米酶的癌症诊断传感器
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-07-02 DOI: 10.1016/j.biosx.2024.100512
Olga Guliy, Lev Dykman

Many biosensor technologies that can precisely and sensitively identify biomarkers reflecting disease status are being developed to help with early cancer detection and anticancer treatment monitoring. The creation of sensors based on nanozymes is one of the novel approaches in the intricate diagnosis and treatment of cancers. Because natural enzyme sensors can be unstable and expensive, the use of nanozymes in biosensors offers a great substitute for this type of study. Nanozymes have a stable shelf life, great operational reliability, cheap cost, and outstanding catalytic activity. The technological approaches to generating nanozymes and their use in sensors are briefly described in the paper. A summary of the many kinds of biosensors based on diverse kinds of nanomaterials for the identification of cancer biomarkers is provided, along with a discussion of the latest developments and challenges in the field of nanozyme biosensors for use in cancer diagnosis.

目前正在开发许多生物传感器技术,以帮助早期癌症检测和抗癌治疗监测,这些技术能够精确、灵敏地识别反映疾病状态的生物标志物。基于纳米酶的传感器是癌症复杂诊断和治疗的新方法之一。由于天然酶传感器既不稳定又昂贵,在生物传感器中使用纳米酶为这类研究提供了一个很好的替代品。纳米酶具有稳定的保存期、极高的操作可靠性、低廉的成本和出色的催化活性。本文简要介绍了生成纳米酶的技术方法及其在传感器中的应用。本文概述了基于各种纳米材料的多种生物传感器,用于识别癌症生物标志物,并讨论了用于癌症诊断的纳米酶生物传感器领域的最新发展和挑战。
{"title":"Nanozyme-based sensors for cancer diagnosis","authors":"Olga Guliy,&nbsp;Lev Dykman","doi":"10.1016/j.biosx.2024.100512","DOIUrl":"https://doi.org/10.1016/j.biosx.2024.100512","url":null,"abstract":"<div><p>Many biosensor technologies that can precisely and sensitively identify biomarkers reflecting disease status are being developed to help with early cancer detection and anticancer treatment monitoring. The creation of sensors based on nanozymes is one of the novel approaches in the intricate diagnosis and treatment of cancers. Because natural enzyme sensors can be unstable and expensive, the use of nanozymes in biosensors offers a great substitute for this type of study. Nanozymes have a stable shelf life, great operational reliability, cheap cost, and outstanding catalytic activity. The technological approaches to generating nanozymes and their use in sensors are briefly described in the paper. A summary of the many kinds of biosensors based on diverse kinds of nanomaterials for the identification of cancer biomarkers is provided, along with a discussion of the latest developments and challenges in the field of nanozyme biosensors for use in cancer diagnosis.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"19 ","pages":"Article 100512"},"PeriodicalIF":10.61,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000761/pdfft?md5=c564e41c482200bbd63670b988b5dd3d&pid=1-s2.0-S2590137024000761-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141582125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of bindarit, a CCL2 chemokine synthesis inhibitor, on macrophage-based biofouling and continuous glucose monitoring in vivo CCL2趋化因子合成抑制剂 bindarit 对基于巨噬细胞的生物污损和体内连续葡萄糖监测的影响
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-06-21 DOI: 10.1016/j.biosx.2024.100511
Roshanak Sharafieh , Yi Qiao , Izabela Godlewski , Caroline Czajkowski , Rong Wu , Geneva R. Hargis , Don Kreutzer , Ulrike Klueh

Continuous glucose monitoring (CGM) using implantable glucose sensors is a critical tool in the management of diabetes. Unfortunately, current commercial glucose sensors have limited performance and lifespans in vivo, considered to be due to sensor-induced tissue reactions (inflammation, fibrosis, and vessel regression). Previously, our laboratory utilized monocyte/macrophage (Mo/MQ) deficient and depleted mice to establish a causal relationship between Mo/MQ accumulation and inflammation in glucose sensor performance in vivo. Using C–C chemokine ligand-2 (CCL2) and C–C chemokine receptor-2 (CCR2) knockout mice, we next established that deletion of this Mo/MQ chemokine family, suppressed inflammation at the sensor-tissue interface in these mice, while improving sensor performance over a 4-week post-sensor implantation, compared to normal mice. These studies underscore the importance of the CCL2 family of chemokines and receptors in Mo/MQ recruitment/activation, and sensor performance in vivo. In the present study, we systemically administered Bindarit, a CCL2 synthesis inhibitor, to assess the role of CCL2 chemokines, Mo/MQ recruitment and inflammation at sensor implantation sites, on CGM performance in vivo. These studies demonstrate that systemic administration of Bindarit substantially reduced sensor-induced inflammation, particularly MQ recruitment, preventing sensor biofouling in our CGM mouse model. These results not only confirm the major role monocytes/macrophages play, but directly demonstrate that CCL2 drives Mo/MQ recruitment and biofouling of glucose sensors in vivo. These findings support future studies incorporating Mo/MQ migration/chemotaxis inhibitors, like CCL2, on sensor coatings to improve glucose sensor accuracy and lifespan in vivo.

使用植入式葡萄糖传感器进行连续葡萄糖监测(CGM)是糖尿病管理的重要工具。遗憾的是,目前的商用葡萄糖传感器在体内的性能和寿命有限,这被认为是由于传感器引起的组织反应(炎症、纤维化和血管退化)造成的。此前,我们的实验室利用单核细胞/巨噬细胞(Mo/MQ)缺乏和耗竭的小鼠,确定了 Mo/MQ 积累与炎症在体内葡萄糖传感器性能中的因果关系。利用 C-C 趋化因子配体-2(CCL2)和 C-C 趋化因子受体-2(CCR2)基因敲除小鼠,我们接下来确定,与正常小鼠相比,Mo/MQ 趋化因子家族的缺失抑制了这些小鼠传感器-组织界面的炎症,同时改善了传感器植入后 4 周内的传感器性能。这些研究强调了 CCL2 趋化因子家族和受体在 Mo/MQ 招募/激活和体内传感器性能中的重要性。在本研究中,我们通过全身给药 CCL2 合成抑制剂 Bindarit 来评估 CCL2 趋化因子、Mo/MQ 招募和传感器植入部位的炎症对 CGM 体内性能的影响。这些研究表明,在我们的 CGM 小鼠模型中,Bindarit 的全身给药大大减少了传感器诱发的炎症,尤其是 MQ 募集,从而防止了传感器的生物污损。这些结果不仅证实了单核细胞/巨噬细胞所起的主要作用,而且直接证明了 CCL2 在体内驱动了 Mo/MQ 的招募和葡萄糖传感器的生物污垢。这些发现支持了未来的研究,即在传感器涂层上加入单核细胞/巨噬细胞迁移/趋化抑制剂(如 CCL2),以提高葡萄糖传感器的准确性并延长其在体内的使用寿命。
{"title":"Impact of bindarit, a CCL2 chemokine synthesis inhibitor, on macrophage-based biofouling and continuous glucose monitoring in vivo","authors":"Roshanak Sharafieh ,&nbsp;Yi Qiao ,&nbsp;Izabela Godlewski ,&nbsp;Caroline Czajkowski ,&nbsp;Rong Wu ,&nbsp;Geneva R. Hargis ,&nbsp;Don Kreutzer ,&nbsp;Ulrike Klueh","doi":"10.1016/j.biosx.2024.100511","DOIUrl":"https://doi.org/10.1016/j.biosx.2024.100511","url":null,"abstract":"<div><p>Continuous glucose monitoring (CGM) using implantable glucose sensors is a critical tool in the management of diabetes. Unfortunately, current commercial glucose sensors have limited performance and lifespans <em>in vivo</em>, considered to be due to sensor-induced tissue reactions (inflammation, fibrosis, and vessel regression). Previously, our laboratory utilized monocyte/macrophage (Mo/MQ) deficient and depleted mice to establish a causal relationship between Mo/MQ accumulation and inflammation in glucose sensor performance <em>in vivo</em>. Using C–C chemokine ligand-2 (CCL2) and C–C chemokine receptor-2 (CCR2) knockout mice, we next established that deletion of this Mo/MQ chemokine family, suppressed inflammation at the sensor-tissue interface in these mice, while improving sensor performance over a 4-week post-sensor implantation, compared to normal mice. These studies underscore the importance of the CCL2 family of chemokines and receptors in Mo/MQ recruitment/activation, and sensor performance <em>in vivo</em>. In the present study, we systemically administered Bindarit, a CCL2 synthesis inhibitor, to assess the role of CCL2 chemokines, Mo/MQ recruitment and inflammation at sensor implantation sites, on CGM performance <em>in vivo</em>. These studies demonstrate that systemic administration of Bindarit substantially reduced sensor-induced inflammation, particularly MQ recruitment, preventing sensor biofouling in our CGM mouse model. These results not only confirm the major role monocytes/macrophages play, but directly demonstrate that CCL2 drives Mo/MQ recruitment and biofouling of glucose sensors <em>in vivo</em>. These findings support future studies incorporating Mo/MQ migration/chemotaxis inhibitors, like CCL2, on sensor coatings to improve glucose sensor accuracy and lifespan <em>in vivo.</em></p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"19 ","pages":"Article 100511"},"PeriodicalIF":10.61,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259013702400075X/pdfft?md5=084f5b4055d4c4072fca4d52c73183a0&pid=1-s2.0-S259013702400075X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141485960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water-soluble organic fluorescence-based probes for biomolecule sensing and labeling 用于生物大分子传感和标记的水溶性有机荧光探针
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-06-13 DOI: 10.1016/j.biosx.2024.100510
Aayushi Joshi , Nandini Mukherjee , Manoj Pandey

Fluorescence-based probes have been the key interest of researchers working at the intersection of chemistry and biology. Such probes are crucial for strengthening our understanding about biochemical processes, drug delivery, and fluorescence-guided surgery. A challenge in this regard is optimizing the probe's aqueous solubility while maintaining its lipophilicity to allow cell membrane permeation. This review summarizes the recent progress in water-soluble fluorescence-based probes for different types of biomolecules including carbohydrates, proteins, enzymes, amino acids, neurotransmitters and biologically relevant reactive species. A comprehensive overview of the crucial parameters for such probes' design, potential sensing mechanism for specific analytes, and experimental conditions for sensing has been provided. Incorporation of hydrophilic functional groups, ionic charge(s), absorption-emission characteristics and pH-stability in biological window are pivotal to develop optimized probes with high sensitivity for target biomarkers. We further underline the limitations of the probes that hinder their translation to clinical research and also indicate major research gap in optimizing any single probe for a certain biomarker.

基于荧光的探针一直是化学和生物学交叉领域研究人员的主要兴趣所在。这类探针对于加强我们对生化过程、药物输送和荧光引导手术的了解至关重要。这方面的一个挑战是优化探针的水溶性,同时保持其亲油性,以实现细胞膜渗透。本综述总结了针对不同类型生物大分子(包括碳水化合物、蛋白质、酶、氨基酸、神经递质和生物相关活性物种)的水溶性荧光探针的最新进展。本文全面概述了此类探针设计的关键参数、特定分析物的潜在传感机制以及传感的实验条件。在生物窗口中加入亲水官能团、离子电荷、吸收-发射特性和 pH 稳定性对于开发针对目标生物标记物的高灵敏度优化探针至关重要。我们进一步强调了这些探针的局限性,这些局限性阻碍了它们在临床研究中的应用,同时也指出了在针对特定生物标记物优化任何单一探针方面存在的主要研究空白。
{"title":"Water-soluble organic fluorescence-based probes for biomolecule sensing and labeling","authors":"Aayushi Joshi ,&nbsp;Nandini Mukherjee ,&nbsp;Manoj Pandey","doi":"10.1016/j.biosx.2024.100510","DOIUrl":"https://doi.org/10.1016/j.biosx.2024.100510","url":null,"abstract":"<div><p>Fluorescence-based probes have been the key interest of researchers working at the intersection of chemistry and biology. Such probes are crucial for strengthening our understanding about biochemical processes, drug delivery, and fluorescence-guided surgery. A challenge in this regard is optimizing the probe's aqueous solubility while maintaining its lipophilicity to allow cell membrane permeation. This review summarizes the recent progress in water-soluble fluorescence-based probes for different types of biomolecules including carbohydrates, proteins, enzymes, amino acids, neurotransmitters and biologically relevant reactive species. A comprehensive overview of the crucial parameters for such probes' design, potential sensing mechanism for specific analytes, and experimental conditions for sensing has been provided. Incorporation of hydrophilic functional groups, ionic charge(s), absorption-emission characteristics and pH-stability in biological window are pivotal to develop optimized probes with high sensitivity for target biomarkers. We further underline the limitations of the probes that hinder their translation to clinical research and also indicate major research gap in optimizing any single probe for a certain biomarker.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"19 ","pages":"Article 100510"},"PeriodicalIF":10.61,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000748/pdfft?md5=e975c4e3ac51ad99d600a1707114ee43&pid=1-s2.0-S2590137024000748-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141322671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wearable ion-selective sensors with rapid conditioning and extended stability achieved through modulation of water and ion transport 通过调节水和离子传输实现快速调节和延长稳定性的可穿戴离子选择性传感器
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-06-13 DOI: 10.1016/j.biosx.2024.100509
Yue Guo, Chaoqi Wang, Ge Han, Hnin Yin Yin Nyein

Solid-contact (SC) ion-selective electrodes (ISEs) are often employed in wearables for electrolytes detection owing to their simplicity and ease of miniaturization. However, to mitigate their inherently unstable open circuit potential signal, ISEs require long hours of conditioning and frequent calibration prior to and during operation, limiting their practicality in wearable applications. Inspired by strategies to address water crossover and flooding in polyelectrolyte fuel cells, we demonstrated a SCISE with minimal conditioning time and long-term stability by modulating the rate-limiting step between mass transfer of water and hydrated ions and redox kinetics in the conducting polymer (CP). Our strategy comprised a wearable ISE with a superhydrophobic CP, PEDOT:TFPB, which reduced water and ion fluxes within the ISE, resulting in a stable and less-swollen CP and diminished water layer formation while maintaining CP's high capacitance. Our PEDOT:TFPB based ISEs functioned after a short conditioning time of 30 min and exhibited extended stability with a reduced signal deviation of only 0.16 % per hour (0.02 mV h−1) during 48 h of continuous measurement. Through systematic studies, we showed that ISE performance could be further tuned by tailoring the thickness of the ion-selective membrane as well as the hydrophobicity and polymerization charges of the CP. Without the need for recurrent calibration, our ISEs sustain high accuracy and prolonged stability upon integration into a wearable format for on-body perspiration analysis. Our strategy allows wearable ion-selective sensors with minimal maintenance at the user-end for long-term continuous monitoring, unveiling their potential in sports, healthcare, and diagnosis fields.

固体接触式(SC)离子选择电极(ISE)因其简单和易于微型化的特点,经常被用于可穿戴设备的电解质检测。然而,为了缓解其固有的不稳定开路电位信号,ISE 需要在运行前和运行期间进行长时间的调节和频繁校准,这限制了其在可穿戴设备应用中的实用性。受解决聚电解质燃料电池中水交叉和水浸问题的策略启发,我们通过调节水和水合离子的质量转移与导电聚合物(CP)中氧化还原动力学之间的限速步骤,展示了一种调节时间最短、长期稳定的 SCISE。我们的策略包括采用超疏水 CP PEDOT:TFPB 的可穿戴 ISE,它能减少 ISE 内的水和离子通量,从而在保持 CP 高电容的同时,使 CP 更加稳定,减少膨胀,并减少水层的形成。我们基于 PEDOT:TFPB 的 ISE 在经过 30 分钟的短时间调节后即可正常工作,并在 48 小时的连续测量中表现出更高的稳定性,每小时的信号偏差仅为 0.16 %(0.02 mV h-1)。通过系统研究,我们发现可以通过调整离子选择膜的厚度以及 CP 的疏水性和聚合电荷来进一步调整 ISE 性能。我们的 ISE 无需反复校准,在集成到可穿戴设备中用于人体汗液分析时,仍能保持高精度和长期稳定性。我们的策略使可穿戴离子选择性传感器在用户端只需最少的维护即可实现长期连续监测,从而挖掘出其在运动、医疗保健和诊断领域的潜力。
{"title":"Wearable ion-selective sensors with rapid conditioning and extended stability achieved through modulation of water and ion transport","authors":"Yue Guo,&nbsp;Chaoqi Wang,&nbsp;Ge Han,&nbsp;Hnin Yin Yin Nyein","doi":"10.1016/j.biosx.2024.100509","DOIUrl":"https://doi.org/10.1016/j.biosx.2024.100509","url":null,"abstract":"<div><p>Solid-contact (SC) ion-selective electrodes (ISEs) are often employed in wearables for electrolytes detection owing to their simplicity and ease of miniaturization. However, to mitigate their inherently unstable open circuit potential signal, ISEs require long hours of conditioning and frequent calibration prior to and during operation, limiting their practicality in wearable applications. Inspired by strategies to address water crossover and flooding in polyelectrolyte fuel cells, we demonstrated a SCISE with minimal conditioning time and long-term stability by modulating the rate-limiting step between mass transfer of water and hydrated ions and redox kinetics in the conducting polymer (CP). Our strategy comprised a wearable ISE with a superhydrophobic CP, PEDOT:TFPB, which reduced water and ion fluxes within the ISE, resulting in a stable and less-swollen CP and diminished water layer formation while maintaining CP's high capacitance. Our PEDOT:TFPB based ISEs functioned after a short conditioning time of 30 min and exhibited extended stability with a reduced signal deviation of only 0.16 % per hour (0.02 mV h<sup>−1</sup>) during 48 h of continuous measurement. Through systematic studies, we showed that ISE performance could be further tuned by tailoring the thickness of the ion-selective membrane as well as the hydrophobicity and polymerization charges of the CP. Without the need for recurrent calibration, our ISEs sustain high accuracy and prolonged stability upon integration into a wearable format for on-body perspiration analysis. Our strategy allows wearable ion-selective sensors with minimal maintenance at the user-end for long-term continuous monitoring, unveiling their potential in sports, healthcare, and diagnosis fields.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"19 ","pages":"Article 100509"},"PeriodicalIF":10.61,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000736/pdfft?md5=721972bb729c054e5c8e04be25ebb11e&pid=1-s2.0-S2590137024000736-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141329221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study and characterization of BaFe12O19/PVDF composites as electrode materials for supercapacitors 作为超级电容器电极材料的 BaFe12O19/PVDF 复合材料的研究与表征
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-06-12 DOI: 10.1016/j.biosx.2024.100507
Syahrul Humaidi , Muhammadin Hamid , Hadi Wijoyo

Supercapacitors are an interesting energy storage technology to be studied. This research uses mesoporous BaFe12O19 particles and synthesized Polyvinylidene fluoride (PVDF) polymers as materials to obtain high performance supercapacitors. Composites were synthesized by facile one-step method using BaFe12O19 which was prepared through co-precipitation chemical method with a calcination process at 200 °C along with PVDF with variations in sample composition of BaFe12O19, BaFe12O19 20%, BaFe12O19 30%, BaFe12O19 40%, and BaFe12O19 60%. And finally the fabrication of supercapacitor electrodes is carried out. The result of the synthesized material is distributed grains with the average particle size of each sample ranging from 180 to 185 nm. Then it has the highest peak in crystals with a miller index (114). Furthermore, it has the main functional group, Ba–O with a wave number of 1632 cm−1. Furthermore, the best supercapacitor electrode is BaFe12O19/PVDF 60% which produces an area of 0.51 mVA where the greater the surface area, the higher the capacitance obtained. Then at BaFe12O19/PVDF 60% has the highest power density value at 12.36 Wh/kg and the highest power density value at 299.14 Wh/kg. It is expected that the results obtained can be a reference for further electrode material research.

超级电容器是一种值得研究的储能技术。本研究使用介孔 BaFe12O19 颗粒和合成的聚偏二氟乙烯(PVDF)聚合物作为材料,以获得高性能的超级电容器。通过共沉淀化学方法制备的 BaFe12O19 与聚偏二氟乙烯(PVDF)在 200 °C 煅烧过程中,一步法合成了复合材料,样品成分分别为 BaFe12O19、BaFe12O19 20%、BaFe12O19 30%、BaFe12O19 40%和 BaFe12O19 60%。最后进行了超级电容器电极的制造。合成的材料呈颗粒状分布,每个样品的平均粒径为 180 至 185 nm。此外,它还具有最高的晶体峰值,其摩尔指数为 114。此外,它还具有波数为 1632 cm-1 的主官能团 Ba-O。此外,最好的超级电容器电极是 BaFe12O19/PVDF 60%,其产生的面积为 0.51 mVA,表面积越大,电容越高。BaFe12O19/PVDF 60% 的最高功率密度值为 12.36 Wh/kg,最高功率密度值为 299.14 Wh/kg。预计所获得的结果可为进一步的电极材料研究提供参考。
{"title":"Study and characterization of BaFe12O19/PVDF composites as electrode materials for supercapacitors","authors":"Syahrul Humaidi ,&nbsp;Muhammadin Hamid ,&nbsp;Hadi Wijoyo","doi":"10.1016/j.biosx.2024.100507","DOIUrl":"10.1016/j.biosx.2024.100507","url":null,"abstract":"<div><p>Supercapacitors are an interesting energy storage technology to be studied. This research uses mesoporous BaFe<sub>12</sub>O<sub>19</sub> particles and synthesized Polyvinylidene fluoride (PVDF) polymers as materials to obtain high performance supercapacitors. Composites were synthesized by facile one-step method using BaFe<sub>12</sub>O<sub>19</sub> which was prepared through co-precipitation chemical method with a calcination process at 200 °C along with PVDF with variations in sample composition of BaFe<sub>12</sub>O<sub>19</sub>, BaFe<sub>12</sub>O<sub>19</sub> 20%, BaFe<sub>12</sub>O<sub>19</sub> 30%, BaFe<sub>12</sub>O<sub>19</sub> 40%, and BaFe<sub>12</sub>O<sub>19</sub> 60%. And finally the fabrication of supercapacitor electrodes is carried out. The result of the synthesized material is distributed grains with the average particle size of each sample ranging from 180 to 185 nm. Then it has the highest peak in crystals with a miller index (114). Furthermore, it has the main functional group, Ba–O with a wave number of 1632 cm<sup>−1</sup>. Furthermore, the best supercapacitor electrode is BaFe<sub>12</sub>O<sub>19</sub>/PVDF 60% which produces an area of 0.51 mVA where the greater the surface area, the higher the capacitance obtained. Then at BaFe<sub>12</sub>O<sub>19</sub>/PVDF 60% has the highest power density value at 12.36 Wh/kg and the highest power density value at 299.14 Wh/kg. It is expected that the results obtained can be a reference for further electrode material research.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"19 ","pages":"Article 100507"},"PeriodicalIF":10.61,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000712/pdfft?md5=5aaa737e5018664571ad5c6b1ffd01de&pid=1-s2.0-S2590137024000712-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141415526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biosensors and Bioelectronics: X
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1