首页 > 最新文献

Cell Chemical Biology最新文献

英文 中文
Discovery of antibacterial diketones against gram-positive bacteria. 发现针对革兰氏阳性细菌的抗菌二酮。
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-31 DOI: 10.1016/j.chembiol.2024.06.017
Qian Li, Hanzhong Feng, Qiong Tian, Yun Xiang, Xiaolei Wang, Yong-Xing He, Kui Zhu

The rapid rise of antibiotic resistance calls for the discovery of new antibiotics with distinct antibacterial mechanisms. New target mining is indispensable for developing antibiotics. Plant-microbial antibiotics are appealing to underexplored sources due to a dearth of comprehensive understanding of antibacterial activity and the excavation of new targets. Here, a series of phloroglucinol derivatives of plant-root-associated Pseudomonas fluorescens were synthesized for structure-activity relationship analysis. Notably, 2,4-diproylphloroglucinol (DPPG) displayed efficient bactericidal activity against a wide range of gram-positive bacteria. Importantly, mechanistic study exhibits that DPPG binds to type II NADH dehydrogenase (NDH-2), an essential enzyme catalyzing the transfer of electrons from NADH to quinones in the electron transport chain (ETC), blocking electron transfer in S. aureus. Last, we validated the efficacy of DPPG in vivo through animal infection models. Our findings not only provide a distinct antibiotic lead to treat multidrug resistant pathogens but also identify a promising antibacterial target.

抗生素耐药性的迅速增加要求发现具有独特抗菌机制的新型抗生素。开发抗生素离不开新靶点的挖掘。由于缺乏对抗菌活性的全面了解和新靶点的挖掘,植物微生物抗生素对未充分开发的来源具有吸引力。本文合成了一系列与植物根相关的荧光假单胞菌的氯葡萄糖醇衍生物,并对其进行了结构-活性关系分析。值得注意的是,2,4-二丙基氯葡萄糖醇(DPPG)对多种革兰氏阳性菌具有高效的杀菌活性。重要的是,机理研究表明,DPPG 与 II 型 NADH 脱氢酶(NDH-2)结合,阻断了金黄色葡萄球菌体内的电子传递。最后,我们通过动物感染模型验证了 DPPG 在体内的疗效。我们的研究结果不仅为治疗耐多药病原体提供了一种独特的抗生素线索,还发现了一个很有前景的抗菌靶点。
{"title":"Discovery of antibacterial diketones against gram-positive bacteria.","authors":"Qian Li, Hanzhong Feng, Qiong Tian, Yun Xiang, Xiaolei Wang, Yong-Xing He, Kui Zhu","doi":"10.1016/j.chembiol.2024.06.017","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.06.017","url":null,"abstract":"<p><p>The rapid rise of antibiotic resistance calls for the discovery of new antibiotics with distinct antibacterial mechanisms. New target mining is indispensable for developing antibiotics. Plant-microbial antibiotics are appealing to underexplored sources due to a dearth of comprehensive understanding of antibacterial activity and the excavation of new targets. Here, a series of phloroglucinol derivatives of plant-root-associated Pseudomonas fluorescens were synthesized for structure-activity relationship analysis. Notably, 2,4-diproylphloroglucinol (DPPG) displayed efficient bactericidal activity against a wide range of gram-positive bacteria. Importantly, mechanistic study exhibits that DPPG binds to type II NADH dehydrogenase (NDH-2), an essential enzyme catalyzing the transfer of electrons from NADH to quinones in the electron transport chain (ETC), blocking electron transfer in S. aureus. Last, we validated the efficacy of DPPG in vivo through animal infection models. Our findings not only provide a distinct antibiotic lead to treat multidrug resistant pathogens but also identify a promising antibacterial target.</p>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting type I DED interactions at the DED filament serves as a sensitive switch for cell fate decisions 在DED丝上靶向I型DED相互作用是细胞命运决定的敏感开关
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-24 DOI: 10.1016/j.chembiol.2024.06.014

Activation of procaspase-8 in the death effector domain (DED) filaments of the death-inducing signaling complex (DISC) is a key step in apoptosis. In this study, a rationally designed cell-penetrating peptide, DEDid, was engineered to mimic the h2b helical region of procaspase-8-DED2 containing a highly conservative FL motif. Furthermore, mutations were introduced into the DEDid binding site of the procaspase-8 type I interface. Additionally, our data suggest that DEDid targets other type I DED interactions such as those of FADD. Both approaches of blocking type I DED interactions inhibited CD95L-induced DISC assembly, caspase activation and apoptosis. We showed that inhibition of procaspase-8 type I interactions by mutations not only diminished procaspase-8 recruitment to the DISC but also destabilized the FADD core of DED filaments. Taken together, this study offers insights to develop strategies to target DED proteins, which may be considered in diseases associated with cell death and inflammation.

死亡诱导信号复合体(DISC)的死亡效应域(DED)丝中的procaspase-8被激活是细胞凋亡的关键步骤。在这项研究中,我们设计了一种合理的细胞穿透肽--DEDid,它模仿了procaspase-8-DED2的h2b螺旋区,其中包含一个高度保守的FL基序。此外,我们还在 procaspase-8 I 型界面的 DEDid 结合位点引入了突变。此外,我们的数据还表明,DEDid靶向其他I型DED相互作用,如FADD的相互作用。阻断 I 型 DED 相互作用的两种方法都抑制了 CD95L 诱导的 DISC 组装、caspase 激活和细胞凋亡。我们发现,通过突变抑制procaspase-8的I型相互作用不仅会减少procaspase-8对DISC的招募,还会破坏DED丝的FADD核心的稳定性。综上所述,这项研究为开发靶向 DED 蛋白的策略提供了启示,在与细胞死亡和炎症相关的疾病中可能会考虑到这一点。
{"title":"Targeting type I DED interactions at the DED filament serves as a sensitive switch for cell fate decisions","authors":"","doi":"10.1016/j.chembiol.2024.06.014","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.06.014","url":null,"abstract":"<p>Activation of procaspase-8 in the death effector domain (DED) filaments of the death-inducing signaling complex (DISC) is a key step in apoptosis. In this study, a rationally designed cell-penetrating peptide, DEDid, was engineered to mimic the <em>h</em>2b helical region of procaspase-8-DED2 containing a highly conservative FL motif. Furthermore, mutations were introduced into the DEDid binding site of the procaspase-8 type I interface. Additionally, our data suggest that DEDid targets other type I DED interactions such as those of FADD. Both approaches of blocking type I DED interactions inhibited CD95L-induced DISC assembly, caspase activation and apoptosis. We showed that inhibition of procaspase-8 type I interactions by mutations not only diminished procaspase-8 recruitment to the DISC but also destabilized the FADD core of DED filaments. Taken together, this study offers insights to develop strategies to target DED proteins, which may be considered in diseases associated with cell death and inflammation.</p>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141754487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A highly potent bi-thiazole inhibitor of LOX rewires collagen architecture and enhances chemoresponse in triple-negative breast cancer 一种高效的 LOX 双噻唑抑制剂可重构胶原结构并增强三阴性乳腺癌的化疗反应
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-22 DOI: 10.1016/j.chembiol.2024.06.012

Lysyl oxidase (LOX) is upregulated in highly stiff aggressive tumors, correlating with metastasis, resistance, and worse survival; however, there are currently no potent, safe, and orally bioavailable small molecule LOX inhibitors to treat these aggressive desmoplastic solid tumors in clinics. Here we discovered bi-thiazole derivatives as potent LOX inhibitors by robust screening of drug-like molecules combined with cell/recombinant protein-based assays. Structure-activity relationship analysis identified a potent lead compound (LXG6403) with ∼3.5-fold specificity for LOX compared to LOXL2 while not inhibiting LOXL1 with a competitive, time- and concentration-dependent irreversible mode of inhibition. LXG6403 shows favorable pharmacokinetic properties, globally changes ECM/collagen architecture, and reduces tumor stiffness. This leads to better drug penetration, inhibits FAK signaling, and induces ROS/DNA damage, G1 arrest, and apoptosis in chemoresistant triple-negative breast cancer (TNBC) cell lines, PDX organoids, and in vivo. Overall, our potent and tolerable bi-thiazole LOX inhibitor enhances chemoresponse in TNBC, the deadliest breast cancer subtype.

赖氨酰氧化酶(LOX)在高度僵硬的侵袭性肿瘤中上调,与转移、耐药性和生存期恶化相关;然而,目前临床上还没有强效、安全、口服生物可用的小分子 LOX 抑制剂来治疗这些侵袭性脱落细胞实体瘤。在这里,我们通过对类药物分子的稳健筛选,结合基于细胞/重组蛋白的检测,发现了双噻唑衍生物作为强效的 LOX 抑制剂。结构-活性关系分析确定了一种强效先导化合物(LXG6403),它对 LOX 的特异性是 LOXL2 的 3.5 倍,同时不抑制 LOXL1,具有竞争性、时间和浓度依赖性的不可逆抑制模式。LXG6403 具有良好的药代动力学特性,能全面改变 ECM/胶原蛋白结构,降低肿瘤硬度。这使得药物渗透性更好,抑制了 FAK 信号转导,并诱导了 ROS/DNA 损伤、G1 停滞以及耐化疗三阴性乳腺癌(TNBC)细胞系、PDX 有机体和体内的细胞凋亡。总之,我们的双噻唑 LOX 抑制剂具有强效且可耐受的特点,能增强 TNBC(最致命的乳腺癌亚型)的化疗反应。
{"title":"A highly potent bi-thiazole inhibitor of LOX rewires collagen architecture and enhances chemoresponse in triple-negative breast cancer","authors":"","doi":"10.1016/j.chembiol.2024.06.012","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.06.012","url":null,"abstract":"<p>Lysyl oxidase (LOX) is upregulated in highly stiff aggressive tumors, correlating with metastasis, resistance, and worse survival; however, there are currently no potent, safe, and orally bioavailable small molecule LOX inhibitors to treat these aggressive desmoplastic solid tumors in clinics. Here we discovered bi-thiazole derivatives as potent LOX inhibitors by robust screening of drug-like molecules combined with cell/recombinant protein-based assays. Structure-activity relationship analysis identified a potent lead compound (LXG6403) with ∼3.5-fold specificity for LOX compared to LOXL2 while not inhibiting LOXL1 with a competitive, time- and concentration-dependent irreversible mode of inhibition. LXG6403 shows favorable pharmacokinetic properties, globally changes ECM/collagen architecture, and reduces tumor stiffness. This leads to better drug penetration, inhibits FAK signaling, and induces ROS/DNA damage, G1 arrest, and apoptosis in chemoresistant triple-negative breast cancer (TNBC) cell lines, PDX organoids, and <em>in vivo</em>. Overall, our potent and tolerable bi-thiazole LOX inhibitor enhances chemoresponse in TNBC, the deadliest breast cancer subtype.</p>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141746559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rescuing T cells from stiff tumors 从僵硬的肿瘤中拯救 T 细胞
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-18 DOI: 10.1016/j.chembiol.2024.06.011

In a recent issue of Cell, Zhang et al.1 demonstrate that mechanical features of a solid tumor can drive T cells into dysfunctionality and identify pathways that revert this “exhausted” state.

在最近一期《细胞》(Cell)杂志上,Zhang 等人1 证明了实体瘤的机械特征可使 T 细胞功能失调,并确定了恢复这种 "衰竭 "状态的途径。
{"title":"Rescuing T cells from stiff tumors","authors":"","doi":"10.1016/j.chembiol.2024.06.011","DOIUrl":"10.1016/j.chembiol.2024.06.011","url":null,"abstract":"<div><p>In a recent issue of <em>Cell</em>, Zhang et al.<span><span><sup>1</sup></span></span> demonstrate that mechanical features of a solid tumor can drive T cells into dysfunctionality and identify pathways that revert this “exhausted” state.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CBLs downregulation foretells T cell ubiquitination leading to autoimmunity CBLs 下调预示着 T 细胞泛素化会导致自身免疫病
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-18 DOI: 10.1016/j.chembiol.2024.06.010

In a study published in the July issue of Immunity, Li et al.1 demonstrate that expression of the E3 ubiquitin ligases CBL and CBL-B is downregulated in Tfh cells in SLE with Tfh cell expansion and autoimmunity. This leads to reduced ubiquitination of the T cell costimulator ICOS which regulates proteostasis of the Tfh cell transcription factor BCL6 via chaperone-mediated autophagy.

在发表于《免疫》(Immunity)七月刊的一项研究中,Li 等人1 证实,在伴有 Tfh 细胞扩增和自身免疫的系统性红斑狼疮患者的 Tfh 细胞中,E3 泛素连接酶 CBL 和 CBL-B 的表达下调。这导致T细胞成本刺激因子ICOS的泛素化减少,而ICOS通过伴侣介导的自噬调节Tfh细胞转录因子BCL6的蛋白稳态。
{"title":"CBLs downregulation foretells T cell ubiquitination leading to autoimmunity","authors":"","doi":"10.1016/j.chembiol.2024.06.010","DOIUrl":"10.1016/j.chembiol.2024.06.010","url":null,"abstract":"<div><p>In a study published in the July issue of <em>Immunity</em>, Li et al.<span><span><sup>1</sup></span></span> demonstrate that expression of the E3 ubiquitin ligases CBL and CBL-B is downregulated in Tfh cells in SLE with Tfh cell expansion and autoimmunity. This leads to reduced ubiquitination of the T cell costimulator ICOS which regulates proteostasis of the Tfh cell transcription factor BCL6 via chaperone-mediated autophagy.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
STX-bpc: “Brightening” the path to neuronal inhibition STX-bpc:"照亮 "神经元抑制之路
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-18 DOI: 10.1016/j.chembiol.2024.06.008

In this issue of Cell Chemical Biology, Elleman et al.1 introduce a transformative chemical approach to control neuronal activity with high spatial and temporal resolution. The authors present STX-bpc, a potent neurotoxin that naturally inhibits voltage-gated sodium channels (NaVs), complementing available optogenetic methods for manipulating neuronal activity, cellular communication, and behavior.

在本期的《细胞化学生物学》(Cell Chemical Biology)杂志上,Elleman 等人1 介绍了一种变革性的化学方法,可以高空间和时间分辨率控制神经元活动。作者介绍了一种天然抑制电压门控钠通道(NaVs)的强效神经毒素 STX-bpc,它是对现有光遗传学方法的补充,可用于操纵神经元活动、细胞通讯和行为。
{"title":"STX-bpc: “Brightening” the path to neuronal inhibition","authors":"","doi":"10.1016/j.chembiol.2024.06.008","DOIUrl":"10.1016/j.chembiol.2024.06.008","url":null,"abstract":"<div><p>In this issue of <em>Cell Chemical Biology</em>, Elleman et al.<span><span><sup>1</sup></span></span> introduce a transformative chemical approach to control neuronal activity with high spatial and temporal resolution. The authors present STX-bpc, a potent neurotoxin that naturally inhibits voltage-gated sodium channels (Na<sub>V</sub>s), complementing available optogenetic methods for manipulating neuronal activity, cellular communication, and behavior.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Repurposing AS1411 for constructing ANM-PROTACs 重新利用 AS1411 构建 ANM-PROTAC
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-18 DOI: 10.1016/j.chembiol.2024.03.011

Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules consisting of two ligands joined by a linker, enabling them to simultaneously bind with an E3 ligase and a protein of interest (POI) and trigger proteasomal degradation of the POI. Limitations of PROTAC include lack of potent E3 ligands, poor cell selectivity, and low permeability. AS1411 is an antitumor aptamer specifically recognizing a membrane-nucleus shuttling nucleolin (NCL). Here, we repurpose AS1411 as a ligand for an E3 ligase mouse double minute 2 homolog (MDM2) via anchoring the NCL-MDM2 complex. Then, we construct an AS1411-NCL-MDM2-based PROTAC (ANM-PROTAC) by conjugating AS1411 with large-molecular-weight ligands for “undruggable” oncogenic STAT3, c-Myc, p53-R175H, and AR-V7. We show that the ANM-PROTAC efficiently penetrates tumor cells, recruits MDM2 and degrades the POIs. The ANM-PROTAC achieves tumor-selective distribution and exhibits excellent antitumor activity with no systemic toxicity. This is a PROTAC with built-in tumor-targeting and cell-penetrating capacities.

蛋白水解靶向嵌合体(PROTACs)是由两个配体通过连接体连接而成的异功能分子,使其能够同时与E3连接酶和感兴趣的蛋白质(POI)结合,并触发POI的蛋白酶体降解。PROTAC 的局限性包括缺乏有效的 E3 配体、细胞选择性差和渗透性低。AS1411 是一种特异性识别膜-核穿梭核蛋白(NCL)的抗肿瘤配体。在这里,我们通过锚定 NCL-MDM2 复合物,将 AS1411 重新用作 E3 连接酶小鼠双分 2 同源物(MDM2)的配体。然后,我们通过将 AS1411 与 "不可药用 "致癌物质 STAT3、c-Myc、p53-R175H 和 AR-V7 的大分子量配体共轭,构建了基于 AS1411-NCL-MDM2 的 PROTAC(ANM-PROTAC)。我们的研究表明,ANM-PROTAC 能有效穿透肿瘤细胞,招募 MDM2 并降解 POIs。ANM-PROTAC 实现了肿瘤选择性分布,并表现出卓越的抗肿瘤活性,且无全身毒性。这是一种具有肿瘤靶向和细胞穿透能力的 PROTAC。
{"title":"Repurposing AS1411 for constructing ANM-PROTACs","authors":"","doi":"10.1016/j.chembiol.2024.03.011","DOIUrl":"10.1016/j.chembiol.2024.03.011","url":null,"abstract":"<div><p>Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules consisting of two ligands joined by a linker, enabling them to simultaneously bind with an E3 ligase and a protein of interest (POI) and trigger proteasomal degradation of the POI. Limitations of PROTAC include lack of potent E3 ligands, poor cell selectivity, and low permeability. AS1411 is an antitumor aptamer specifically recognizing a membrane-nucleus shuttling nucleolin (NCL). Here, we repurpose AS1411 as a ligand for an E3 ligase mouse double minute 2 homolog (MDM2) via anchoring the NCL-MDM2 complex. Then, we construct an AS1411-NCL-MDM2-based PROTAC (ANM-PROTAC) by conjugating AS1411 with large-molecular-weight ligands for “undruggable” oncogenic STAT3, c-Myc, p53-R175H, and AR-V7. We show that the ANM-PROTAC efficiently penetrates tumor cells, recruits MDM2 and degrades the POIs. The ANM-PROTAC achieves tumor-selective distribution and exhibits excellent antitumor activity with no systemic toxicity. This is a PROTAC with built-in tumor-targeting and cell-penetrating capacities.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140637617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A sterol analog inhibits hedgehog pathway by blocking cholesterylation of smoothened 一种甾醇类似物通过阻断平滑肌的胆固醇化抑制刺猬通路。
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-18 DOI: 10.1016/j.chembiol.2024.02.002

The hedgehog (Hh) signaling pathway has long been a hotspot for anti-cancer drug development due to its important role in cell proliferation and tumorigenesis. However, most clinically available Hh pathway inhibitors target the seven-transmembrane region (7TM) of smoothened (SMO), and the acquired drug resistance is an urgent problem in SMO inhibitory therapy. Here, we identify a sterol analog Q29 and show that it can inhibit the Hh pathway through binding to the cysteine-rich domain (CRD) of SMO and blocking its cholesterylation. Q29 suppresses Hh signaling-dependent cell proliferation and arrests Hh-dependent medulloblastoma growth. Q29 exhibits an additive inhibitory effect on medulloblastoma with vismodegib, a clinically used SMO-7TM inhibitor for treating basal cell carcinoma (BCC). Importantly, Q29 overcomes resistance caused by SMO mutants against SMO-7TM inhibitors and inhibits the activity of SMO oncogenic variants. Our work demonstrates that the SMO-CRD inhibitor can be a new way to treat Hh pathway-driven cancers.

由于在细胞增殖和肿瘤发生中的重要作用,刺猬(Hh)信号通路一直是抗癌药物研发的热点。然而,临床上现有的Hh通路抑制剂大多以平滑肌(SMO)的七跨膜区(7TM)为靶点,获得性耐药性是SMO抑制疗法亟待解决的问题。在这里,我们发现了一种甾醇类似物 Q29,并证明它能通过与 SMO 的富半胱氨酸结构域(CRD)结合并阻断其胆固醇化来抑制 Hh 通路。Q29 可抑制 Hh 信号依赖性细胞增殖,并抑制 Hh 依赖性髓母细胞瘤的生长。Q29 与临床上用于治疗基底细胞癌(BCC)的 SMO-7TM 抑制剂 vismodegib 对髓母细胞瘤具有相加抑制作用。重要的是,Q29 能克服 SMO 突变体对 SMO-7TM 抑制剂产生的抗药性,并抑制 SMO 致癌变体的活性。我们的工作表明,SMO-CRD抑制剂可以成为治疗Hh通路驱动的癌症的一种新方法。
{"title":"A sterol analog inhibits hedgehog pathway by blocking cholesterylation of smoothened","authors":"","doi":"10.1016/j.chembiol.2024.02.002","DOIUrl":"10.1016/j.chembiol.2024.02.002","url":null,"abstract":"<div><p>The hedgehog (Hh) signaling pathway has long been a hotspot for anti-cancer drug development due to its important role in cell proliferation and tumorigenesis. However, most clinically available Hh pathway inhibitors target the seven-transmembrane region (7TM) of smoothened (SMO), and the acquired drug resistance is an urgent problem in SMO inhibitory therapy. Here, we identify a sterol analog Q29 and show that it can inhibit the Hh pathway through binding to the cysteine-rich domain (CRD) of SMO and blocking its cholesterylation. Q29 suppresses Hh signaling-dependent cell proliferation and arrests Hh-dependent medulloblastoma growth. Q29 exhibits an additive inhibitory effect on medulloblastoma with vismodegib, a clinically used SMO-7TM inhibitor for treating basal cell carcinoma (BCC). Importantly, Q29 overcomes resistance caused by SMO mutants against SMO-7TM inhibitors and inhibits the activity of SMO oncogenic variants. Our work demonstrates that the SMO-CRD inhibitor can be a new way to treat Hh pathway-driven cancers.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S245194562400076X/pdfft?md5=9fca5500f416c04fdc676ebd0ebc03ad&pid=1-s2.0-S245194562400076X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140038450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of covalent chemogenetic K2P channel activators 开发共价化学基因 K2P 通道激活剂
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-18 DOI: 10.1016/j.chembiol.2024.06.006

K2P potassium channels regulate excitability by affecting cellular resting membrane potential in the brain, cardiovascular system, immune cells, and sensory organs. Despite their important roles in anesthesia, arrhythmia, pain, hypertension, sleep, and migraine, the ability to control K2P function remains limited. Here, we describe a chemogenetic strategy termed CATKLAMP (covalent activation of TREK family K+ channels to clamp membrane potential) that leverages the discovery of a K2P modulator pocket site that reacts with electrophile-bearing derivatives of a TREK subfamily small-molecule activator, ML335, to activate the channel irreversibly. We show that CATKLAMP can be used to probe fundamental aspects of K2P function, as a switch to silence neuronal firing, and is applicable to all TREK subfamily members. Together, our findings exemplify a means to alter K2P channel activity that should facilitate molecular and systems level studies of K2P function and enable the search for new K2P modulators.

K2P 钾通道通过影响大脑、心血管系统、免疫细胞和感觉器官中的细胞静息膜电位来调节兴奋性。尽管它们在麻醉、心律失常、疼痛、高血压、睡眠和偏头痛中发挥着重要作用,但控制 K2P 功能的能力仍然有限。在这里,我们描述了一种称为 CATKLAMP(共价激活 TREK 家族 K+ 通道以钳制膜电位)的化学遗传学策略,该策略利用了 K2P 调制剂口袋位点的发现,该位点可与 TREK 亚家族小分子激活剂 ML335 的亲电子衍生物发生反应,从而不可逆地激活通道。我们的研究表明,CATKLAMP 可用于探测 K2P 功能的基本方面,作为抑制神经元发射的开关,并适用于所有 TREK 亚家族成员。总之,我们的研究结果体现了一种改变 K2P 通道活性的方法,它将促进 K2P 功能的分子和系统水平研究,并有助于寻找新的 K2P 调节剂。
{"title":"Development of covalent chemogenetic K2P channel activators","authors":"","doi":"10.1016/j.chembiol.2024.06.006","DOIUrl":"10.1016/j.chembiol.2024.06.006","url":null,"abstract":"<div><p>K<sub>2P</sub> potassium channels regulate excitability by affecting cellular resting membrane potential in the brain, cardiovascular system, immune cells, and sensory organs. Despite their important roles in anesthesia, arrhythmia, pain, hypertension, sleep, and migraine, the ability to control K<sub>2P</sub> function remains limited. Here, we describe a chemogenetic strategy termed CATKLAMP (covalent activation of TREK family K<sup>+</sup> channels to clamp membrane potential) that leverages the discovery of a K<sub>2P</sub> modulator pocket site that reacts with electrophile-bearing derivatives of a TREK subfamily small-molecule activator, ML335, to activate the channel irreversibly. We show that CATKLAMP can be used to probe fundamental aspects of K<sub>2P</sub> function, as a switch to silence neuronal firing, and is applicable to all TREK subfamily members. Together, our findings exemplify a means to alter K<sub>2P</sub> channel activity that should facilitate molecular and systems level studies of K<sub>2P</sub> function and enable the search for new K<sub>2P</sub> modulators.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141637808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new light on PLCβ! PLCβ 的新亮点!
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-18 DOI: 10.1016/j.chembiol.2024.06.007

In this issue of Cell Chemical Biology, Kim et al.1 present a novel optogenetic tool, opto-PLCβ, to control PLCβ signaling optically. In addition to eliciting PIP2 hydrolysis and downstream signaling in cells, opto-PLCβ also enabled probing the impact of PLCβ signaling on amygdala synaptic plasticity and fear learning in mice.

在本期《细胞化学生物学》(Cell Chemical Biology)杂志上,Kim 等人1 提出了一种新型光遗传学工具--opto-PLCβ,它能以光学方式控制 PLCβ 信号传导。除了在细胞中诱发 PIP2 水解和下游信号传导外,opto-PLCβ 还能探究 PLCβ 信号传导对小鼠杏仁核突触可塑性和恐惧学习的影响。
{"title":"A new light on PLCβ!","authors":"","doi":"10.1016/j.chembiol.2024.06.007","DOIUrl":"10.1016/j.chembiol.2024.06.007","url":null,"abstract":"<div><p>In this issue of <em>Cell Chemical Biology</em>, Kim et al.<span><span><sup>1</sup></span></span> present a novel optogenetic tool, opto-PLCβ, to control PLCβ signaling optically. In addition to eliciting PIP2 hydrolysis and downstream signaling in cells, opto-PLCβ also enabled probing the impact of PLCβ signaling on amygdala synaptic plasticity and fear learning in mice.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Chemical Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1