首页 > 最新文献

Cell Chemical Biology最新文献

英文 中文
Therapeutic induction of ferroptosis in tumors using PD-L1 targeting antibody nanogel conjugates 利用 PD-L1 靶向抗体纳米凝胶共轭物治疗诱导肿瘤中的铁变态反应
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-19 DOI: 10.1016/j.chembiol.2024.10.014
Mengdie Wang , Theeraphop Prachyathipsakul , Christi A. Wisniewski , Choua Xiong , Shivam Goel , Hira Lal Goel , Emmet R. Karner , Dimpi Mukhopadhyay , Prachi Gupta , Aniket Majee , S. Thayumanavan , Arthur M. Mercurio
Although programmed cell death ligand 1 (PD-L1) is best known for its role in immune suppression, tumor-intrinsic functions are emerging. Here, we report that tumor cells that express PD-L1 are sensitive to ferroptosis inducers such as imidazole ketone erastin (IKE). PD-L1 promotes ferroptosis sensitivity because it suppresses SLC7A11 expression and diminishes glutathione levels. Although the use of anti-PD-L1 antibody drug conjugates (ADCs) could be effective for the delivery of ferroptosis inducers to specific tumor populations, the chemistry of most ferroptosis inducers precludes their incorporation in ADCs. To overcome this challenge, we synthesized an antibody nanogel conjugate (ANC) comprised of an anti-PD-L1 antibody conjugated to a nanogel encapsulated with IKE. This ANC targets PD-L1-expressing cells in vitro and in vivo and induces ferroptosis, resulting in tumor suppression. Importantly, this approach is superior to systemic administration of IKE because it enables enhanced delivery of IKE specifically to tumor cells and it requires lower drug doses for efficacy.
尽管程序性细胞死亡配体 1(PD-L1)因其在免疫抑制中的作用而广为人知,但其肿瘤内在功能也在不断涌现。在这里,我们报告了表达 PD-L1 的肿瘤细胞对铁变态反应诱导剂(如咪唑酮依拉斯汀(IKE))的敏感性。PD-L1 可抑制 SLC7A11 的表达并降低谷胱甘肽的水平,从而促进铁中毒敏感性。虽然使用抗 PD-L1 抗体药物共轭物(ADCs)可以有效地将铁沉降诱导剂递送到特定的肿瘤人群,但大多数铁沉降诱导剂的化学性质使其无法加入 ADCs。为了克服这一难题,我们合成了一种抗体纳米凝胶共轭物(ANC),它由抗 PD-L1 抗体与包裹有 IKE 的纳米凝胶组成。这种 ANC 可在体外和体内靶向表达 PD-L1 的细胞,并诱导铁凋亡,从而抑制肿瘤。重要的是,这种方法优于全身给药 IKE,因为它能增强 IKE 对肿瘤细胞的特异性递送,而且需要较低的药物剂量才能产生疗效。
{"title":"Therapeutic induction of ferroptosis in tumors using PD-L1 targeting antibody nanogel conjugates","authors":"Mengdie Wang ,&nbsp;Theeraphop Prachyathipsakul ,&nbsp;Christi A. Wisniewski ,&nbsp;Choua Xiong ,&nbsp;Shivam Goel ,&nbsp;Hira Lal Goel ,&nbsp;Emmet R. Karner ,&nbsp;Dimpi Mukhopadhyay ,&nbsp;Prachi Gupta ,&nbsp;Aniket Majee ,&nbsp;S. Thayumanavan ,&nbsp;Arthur M. Mercurio","doi":"10.1016/j.chembiol.2024.10.014","DOIUrl":"10.1016/j.chembiol.2024.10.014","url":null,"abstract":"<div><div>Although programmed cell death ligand 1 <strong>(</strong>PD-L1) is best known for its role in immune suppression, tumor-intrinsic functions are emerging. Here, we report that tumor cells that express PD-L1 are sensitive to ferroptosis inducers such as imidazole ketone erastin (IKE). PD-L1 promotes ferroptosis sensitivity because it suppresses SLC7A11 expression and diminishes glutathione levels. Although the use of anti-PD-L1 antibody drug conjugates (ADCs) could be effective for the delivery of ferroptosis inducers to specific tumor populations, the chemistry of most ferroptosis inducers precludes their incorporation in ADCs. To overcome this challenge, we synthesized an antibody nanogel conjugate (ANC) comprised of an anti-PD-L1 antibody conjugated to a nanogel encapsulated with IKE. This ANC targets PD-L1-expressing cells <em>in vitro</em> and <em>in vivo</em> and induces ferroptosis, resulting in tumor suppression. Importantly, this approach is superior to systemic administration of IKE because it enables enhanced delivery of IKE specifically to tumor cells and it requires lower drug doses for efficacy.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 12","pages":"Pages 2039-2051.e6"},"PeriodicalIF":6.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142713116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Platelets accelerate lipid peroxidation and induce pathogenic neutrophil extracellular trap release 血小板加速脂质过氧化,诱导致病性中性粒细胞胞外陷阱释放
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-19 DOI: 10.1016/j.chembiol.2024.11.003
Madoka Ono , Masayasu Toyomoto , Momono Yamauchi , Masatoshi Hagiwara
Neutrophil extracellular traps (NETs), an important host defense mechanism, are assembled after the release of decondensed chromatin and other nuclear components by a process termed NETosis. However, excessive NET release destroys surrounding tissues, leading to conditions such as sepsis where platelets are implicated in the pathogenic switch of NETosis. Here, we show that platelets trigger iron accumulation and promote lipid peroxide production in neutrophils co-stimulated with lipopolysaccharide and platelets in vitro, resulting in the induction of NETosis. We also screened for compounds that inhibit lipid peroxidation, identified 8-methyl-N-geranyl-6-nonamide (capsaicin), and assessed its potential in suppressing platelet-mediated pathogenic NETosis. Capsaicin inhibited lipopolysaccharide/platelet-induced cellular lipid peroxidation and suppressed NETosis in vitro. Furthermore, capsaicin attenuated NETosis in a mouse model of lipopolysaccharide-induced lung inflammation. Our findings provide an original therapeutic strategy to target lipid peroxidation and pave the way for drug development for a wide range of NETosis-related diseases.
中性粒细胞胞外陷阱(Neutrophil extracellular traps, NETs)是一种重要的宿主防御机制,它是在去浓缩染色质和其他核成分释放后通过NETosis过程进行组装的。然而,过多的NET释放破坏周围组织,导致脓毒症等情况,其中血小板与NETosis的致病开关有关。在这里,我们发现血小板在体外与脂多糖和血小板共同刺激的中性粒细胞中触发铁积累并促进脂质过氧化生成,导致NETosis的诱导。我们还筛选了抑制脂质过氧化的化合物,鉴定了8-甲基-n -香叶酰-6-非酰胺(辣椒素),并评估了其抑制血小板介导的致病性NETosis的潜力。辣椒素在体外抑制脂多糖/血小板诱导的细胞脂质过氧化和NETosis。此外,辣椒素在脂多糖诱导的肺部炎症小鼠模型中减轻了NETosis。我们的发现提供了一种针对脂质过氧化的原始治疗策略,并为广泛的netosis相关疾病的药物开发铺平了道路。
{"title":"Platelets accelerate lipid peroxidation and induce pathogenic neutrophil extracellular trap release","authors":"Madoka Ono ,&nbsp;Masayasu Toyomoto ,&nbsp;Momono Yamauchi ,&nbsp;Masatoshi Hagiwara","doi":"10.1016/j.chembiol.2024.11.003","DOIUrl":"10.1016/j.chembiol.2024.11.003","url":null,"abstract":"<div><div>Neutrophil extracellular traps (NETs), an important host defense mechanism, are assembled after the release of decondensed chromatin and other nuclear components by a process termed NETosis. However, excessive NET release destroys surrounding tissues, leading to conditions such as sepsis where platelets are implicated in the pathogenic switch of NETosis. Here, we show that platelets trigger iron accumulation and promote lipid peroxide production in neutrophils co-stimulated with lipopolysaccharide and platelets <em>in vitro</em>, resulting in the induction of NETosis. We also screened for compounds that inhibit lipid peroxidation, identified 8-methyl-<em>N</em>-geranyl-6-nonamide (capsaicin), and assessed its potential in suppressing platelet-mediated pathogenic NETosis. Capsaicin inhibited lipopolysaccharide/platelet-induced cellular lipid peroxidation and suppressed NETosis <em>in vitro</em>. Furthermore, capsaicin attenuated NETosis in a mouse model of lipopolysaccharide-induced lung inflammation. Our findings provide an original therapeutic strategy to target lipid peroxidation and pave the way for drug development for a wide range of NETosis-related diseases.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 12","pages":"Pages 2085-2095.e4"},"PeriodicalIF":6.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery and biosynthesis of non-canonical C16-terpenoids from Pseudomonas 从假单胞菌中发现非典型 C16-三萜类化合物并进行生物合成
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-19 DOI: 10.1016/j.chembiol.2024.09.002
Xu-Hua Mo , Qing-Yin Pu , Tilo Lübken , Gui-Hong Yu , Mert Malay , Paul M. D’Agostino , Tobias A.M. Gulder
Biosynthesis of sodorifen with a unique C16-bicyclo[3.2.1]octene framework requires an S-adenosyl methionine-dependent methyltransferase SodC and terpene cyclase SodD. While bioinformatic analyses reveal a wide distribution of the sodCD genes organization in bacteria, their functional diversity remains largely unknown. Herein, two sodorifen-type gene clusters, pcch and pcau, from Pseudomonas sp. are heterologously expressed in Escherichia coli, leading to the discovery of two C16 terpenoids. Enzymatic synthesis of these compounds is achieved using the two (SodCD-like) pathway-specific enzymes. Enzyme assays using different combinations of methyltransferases and terpene synthases across the pcch, pcau, and sod pathways reveal a unifying biosynthetic mechanism: all three SodC-like enzymes methylate farnesyl pyrophosphate (FPP) with subsequent cyclization to a common intermediate, pre-sodorifen pyrophosphate. Structural diversification of this joint precursor solely occurs by the subsequently acting individual terpene synthases. Our findings expand basic biosynthetic understanding and structural diversity of unusual C16-terpenoids.
具有独特 C16-双环[3.2.1]辛烯框架的索多里芬的生物合成需要依赖 S-腺苷蛋氨酸的甲基转移酶 SodC 和萜烯环化酶 SodD。虽然生物信息学分析表明 SodCD 基因在细菌中广泛分布,但它们的功能多样性在很大程度上仍然未知。在本文中,来自假单胞菌的两个 sodorifen 型基因簇 pcch 和 pcau 在大肠杆菌中进行了异源表达,从而发现了两种 C16 类萜类化合物。这两种(类似 SodCD)途径特异性酶实现了这些化合物的酶合成。利用 pcch、pcau 和 sod 途径中不同组合的甲基转移酶和萜烯合成酶进行的酶测定揭示了一种统一的生物合成机制:所有三种 SodC 样酶都将焦磷酸法尼酯(FPP)甲基化,随后环化成一种共同的中间体--焦磷酸前索多瑞芬。这种联合前体的结构多样化仅通过随后作用的单个萜烯合成酶来实现。我们的发现拓展了对不常见的 C16-萜类化合物的基本生物合成认识和结构多样性。
{"title":"Discovery and biosynthesis of non-canonical C16-terpenoids from Pseudomonas","authors":"Xu-Hua Mo ,&nbsp;Qing-Yin Pu ,&nbsp;Tilo Lübken ,&nbsp;Gui-Hong Yu ,&nbsp;Mert Malay ,&nbsp;Paul M. D’Agostino ,&nbsp;Tobias A.M. Gulder","doi":"10.1016/j.chembiol.2024.09.002","DOIUrl":"10.1016/j.chembiol.2024.09.002","url":null,"abstract":"<div><div>Biosynthesis of sodorifen with a unique C<sub>16</sub>-bicyclo[3.2.1]octene framework requires an <em>S</em>-adenosyl methionine-dependent methyltransferase SodC and terpene cyclase SodD. While bioinformatic analyses reveal a wide distribution of the <em>sodCD</em> genes organization in bacteria, their functional diversity remains largely unknown. Herein, two sodorifen-type gene clusters, <em>pcch</em> and <em>pcau</em>, from <em>Pseudomonas</em> sp. are heterologously expressed in <em>Escherichia coli</em>, leading to the discovery of two C<sub>16</sub> terpenoids. Enzymatic synthesis of these compounds is achieved using the two (SodCD-like) pathway-specific enzymes. Enzyme assays using different combinations of methyltransferases and terpene synthases across the <em>pcch</em>, <em>pcau</em>, and <em>sod</em> pathways reveal a unifying biosynthetic mechanism: all three SodC-like enzymes methylate farnesyl pyrophosphate (FPP) with subsequent cyclization to a common intermediate, pre-sodorifen pyrophosphate. Structural diversification of this joint precursor solely occurs by the subsequently acting individual terpene synthases. Our findings expand basic biosynthetic understanding and structural diversity of unusual C<sub>16</sub>-terpenoids.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 12","pages":"Pages 2128-2137.e4"},"PeriodicalIF":6.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of two repurposed drugs targeting GSDMD oligomerization interface I to block pyroptosis 鉴定两种以 GSDMD 寡聚界面 I 为靶点的再利用药物,以阻断焦细胞增多症
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-19 DOI: 10.1016/j.chembiol.2024.10.002
Yingchao Hu , Honghui Li , Xiangyu Zhang , Yuxian Song , Jun Liu , Jie Pu , Shuang Wen , Hongyang Xu , Hongliang Xin , Bingwei Wang , Shuo Yang
As an executor of pyroptosis, gasdermin D (GSDMD) plays a critical role in inflammatory diseases and cancer. Thus, GSDMD is currently being widely explored as a drug target. Existing inhibitors targeting GSDMD, such as necrosulfonamide, disulfiram, and fumarate, primarily prevent pyroptosis by modifying human/mouse C191/C192 in the N-terminal fragment of GSDMD. However, cysteine modification can prevent the function of important proteins or enzymes, thereby leading to adverse reactions. Here, we chose an alternative key intervention site for GSDMD activation, which is located at the oligomerization interface I of its pore-forming structure. Through high-throughput virtual and experimental screening and in combination with efficacy and pharmacological validation, we have identified two safe, specific “repurposed drugs” that potently suppress GSDMD-mediated pyroptosis. Moreover, the candidates exhibited synergistic therapeutic effects of “1 + 1>2” in murine sepsis and tumorigenesis models. These recently identified GSDMD inhibitors hold great promise for clinical translation in the development of anti-inflammatory and anti-cancer immunotherapies.
作为化脓过程的执行者,gasdermin D(GSDMD)在炎症性疾病和癌症中起着至关重要的作用。因此,GSDMD 目前正被作为药物靶点进行广泛研究。现有的以 GSDMD 为靶点的抑制剂,如新磺酰胺、二磺酰胺和富马酸盐,主要通过修饰 GSDMD N 端片段中的人/鼠 C191/C192 来阻止热蛋白沉积。然而,半胱氨酸修饰会妨碍重要蛋白质或酶的功能,从而导致不良反应。在此,我们选择了 GSDMD 激活的另一个关键干预位点,该位点位于其孔形成结构的寡聚界面 I。通过高通量虚拟和实验筛选,并结合药效和药理验证,我们发现了两种安全、特异的 "再利用药物",它们能有效抑制 GSDMD 介导的热蛋白沉积。此外,这些候选药物在小鼠败血症和肿瘤发生模型中表现出了 "1 + 1>2 "的协同治疗效果。这些最新发现的 GSDMD 抑制剂有望在抗炎和抗癌免疫疗法的开发中实现临床转化。
{"title":"Identification of two repurposed drugs targeting GSDMD oligomerization interface I to block pyroptosis","authors":"Yingchao Hu ,&nbsp;Honghui Li ,&nbsp;Xiangyu Zhang ,&nbsp;Yuxian Song ,&nbsp;Jun Liu ,&nbsp;Jie Pu ,&nbsp;Shuang Wen ,&nbsp;Hongyang Xu ,&nbsp;Hongliang Xin ,&nbsp;Bingwei Wang ,&nbsp;Shuo Yang","doi":"10.1016/j.chembiol.2024.10.002","DOIUrl":"10.1016/j.chembiol.2024.10.002","url":null,"abstract":"<div><div>As an executor of pyroptosis, gasdermin D (GSDMD) plays a critical role in inflammatory diseases and cancer. Thus, GSDMD is currently being widely explored as a drug target. Existing inhibitors targeting GSDMD, such as necrosulfonamide, disulfiram, and fumarate, primarily prevent pyroptosis by modifying human/mouse C191/C192 in the N-terminal fragment of GSDMD. However, cysteine modification can prevent the function of important proteins or enzymes, thereby leading to adverse reactions. Here, we chose an alternative key intervention site for GSDMD activation, which is located at the oligomerization interface I of its pore-forming structure. Through high-throughput virtual and experimental screening and in combination with efficacy and pharmacological validation, we have identified two safe, specific “repurposed drugs” that potently suppress GSDMD-mediated pyroptosis. Moreover, the candidates exhibited synergistic therapeutic effects of “1 + 1&gt;2” in murine sepsis and tumorigenesis models. These recently identified GSDMD inhibitors hold great promise for clinical translation in the development of anti-inflammatory and anti-cancer immunotherapies.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 12","pages":"Pages 2024-2038.e7"},"PeriodicalIF":6.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FAAHcilitating recovery in malnourished kids 促进营养不良儿童的康复
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-19 DOI: 10.1016/j.chembiol.2024.11.007
Franciscus Chandra , Elaine Y. Hsiao
The molecular underpinnings behind the diet-microbiome-host health relationship are largely undescribed. In a recent issue of Science, Cheng et al.1 uncovered one piece of the puzzle by describing a novel fatty acid amide hydrolase (FAAH) derived from a Faecalibacterium prausnitzii strain that correlated with improved malnutrition recovery. This emphasized the microbiome’s role in supporting recovery from malnutrition.
饮食-微生物群-宿主健康关系背后的分子基础在很大程度上未被描述。在最近一期的《科学》杂志上,Cheng等人1通过描述一种新的脂肪酸酰胺水解酶(FAAH),揭开了这个谜题的一部分,这种酶来自于prausnitzii粪杆菌菌株,与改善营养不良的恢复有关。这强调了微生物组在支持营养不良恢复中的作用。
{"title":"FAAHcilitating recovery in malnourished kids","authors":"Franciscus Chandra ,&nbsp;Elaine Y. Hsiao","doi":"10.1016/j.chembiol.2024.11.007","DOIUrl":"10.1016/j.chembiol.2024.11.007","url":null,"abstract":"<div><div>The molecular underpinnings behind the diet-microbiome-host health relationship are largely undescribed. In a recent issue of <em>Science</em>, Cheng et al.<span><span><sup>1</sup></span></span> uncovered one piece of the puzzle by describing a novel fatty acid amide hydrolase (FAAH) derived from a <em>Faecalibacterium prausnitzii</em> strain that correlated with improved malnutrition recovery. This emphasized the microbiome’s role in supporting recovery from malnutrition.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 12","pages":"Pages 2018-2020"},"PeriodicalIF":6.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into biofilm architecture and maturation enable improved clinical strategies for exopolysaccharide-targeting therapeutics 对生物膜结构和成熟的洞察使体外多糖靶向治疗的临床策略得到改善
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-19 DOI: 10.1016/j.chembiol.2024.11.005
J. Sebastian Temme , Zibin Tan , Mi Li , Mo Yang , Alexander Wlodawer , Xuefei Huang , John S. Schneekloth Jr. , Jeffrey C. Gildersleeve
Polysaccharide intercellular adhesin (PIA), an exopolysaccharide composed of poly-N-acetyl glucosamine (PNAG), is an essential component in many pathogenic biofilms. Partial deacetylation of PNAG is required for biofilm formation, but limited structural knowledge hinders therapeutic development. Employing a new monoclonal antibody (TG10) that selectively binds highly deacetylated PNAG and an antibody (F598) in clinical trials that binds highly acetylated PNAG, we demonstrate that PIA within the biofilm contains distinct regions of highly acetylated and deacetylated exopolysaccharide, contrary to the previous model invoking stochastic deacetylation throughout the biofilm. This discovery led us to hypothesize that targeting both forms of PNAG would enhance efficacy. Remarkably, TG10 and F598 synergistically increased in vitro and in vivo activity, providing 90% survival in a lethal Staphylococcus aureus challenge murine model. Our advanced model deepens the conceptual understanding of PIA architecture and maturation and reveals improved design strategies for PIA-targeting therapeutics, vaccines, and diagnostic agents.
多糖胞间黏附素(PIA)是一种由聚n -乙酰氨基葡萄糖(PNAG)组成的胞外多糖,是许多致病性生物膜的重要组成部分。PNAG的部分去乙酰化是生物膜形成所必需的,但有限的结构知识阻碍了治疗的发展。利用一种新的单克隆抗体(TG10)选择性结合高度去乙酰化的PNAG和一种抗体(F598)在临床试验中结合高度乙酰化的PNAG,我们证明了生物膜内的PIA含有不同的高度乙酰化和去乙酰化的外多糖区域,这与之前在整个生物膜中随机去乙酰化的模型相反。这一发现使我们假设,针对两种形式的PNAG将提高疗效。值得注意的是,TG10和F598协同提高了体外和体内活性,在致死性金黄色葡萄球菌攻击小鼠模型中提供了90%的存活率。我们的先进模型加深了对PIA结构和成熟的概念理解,并揭示了针对PIA的治疗方法、疫苗和诊断试剂的改进设计策略。
{"title":"Insights into biofilm architecture and maturation enable improved clinical strategies for exopolysaccharide-targeting therapeutics","authors":"J. Sebastian Temme ,&nbsp;Zibin Tan ,&nbsp;Mi Li ,&nbsp;Mo Yang ,&nbsp;Alexander Wlodawer ,&nbsp;Xuefei Huang ,&nbsp;John S. Schneekloth Jr. ,&nbsp;Jeffrey C. Gildersleeve","doi":"10.1016/j.chembiol.2024.11.005","DOIUrl":"10.1016/j.chembiol.2024.11.005","url":null,"abstract":"<div><div>Polysaccharide intercellular adhesin (PIA), an exopolysaccharide composed of poly-N-acetyl glucosamine (PNAG), is an essential component in many pathogenic biofilms. Partial deacetylation of PNAG is required for biofilm formation, but limited structural knowledge hinders therapeutic development. Employing a new monoclonal antibody (TG10) that selectively binds highly deacetylated PNAG and an antibody (F598) in clinical trials that binds highly acetylated PNAG, we demonstrate that PIA within the biofilm contains distinct regions of highly acetylated and deacetylated exopolysaccharide, contrary to the previous model invoking stochastic deacetylation throughout the biofilm. This discovery led us to hypothesize that targeting both forms of PNAG would enhance efficacy. Remarkably, TG10 and F598 synergistically increased <em>in vitro</em> and <em>in vivo</em> activity, providing 90% survival in a lethal <em>Staphylococcus aureus</em> challenge murine model. Our advanced model deepens the conceptual understanding of PIA architecture and maturation and reveals improved design strategies for PIA-targeting therapeutics, vaccines, and diagnostic agents.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 12","pages":"Pages 2096-2111.e7"},"PeriodicalIF":6.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142763761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancer reprogramming underlies therapeutic utility of a SMARCA2 degrader in SMARCA4 mutant cancer 增强子重编程是SMARCA2降解剂在SMARCA4突变癌症中发挥治疗作用的基础
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-19 DOI: 10.1016/j.chembiol.2024.09.004
Sasikumar Kotagiri , Nicholas Blazanin , Yuanxin Xi , Yanyan Han , Md Qudratullah , Xiaobing Liang , Yawen Wang , Poonam Pandey , Hira Mazhar , Truong Nguyen Lam , Anand Kamal Singh , Jing Wang , Yonathan Lissanu
Genomic studies have identified frequent mutations in subunits of the SWI/SNF (switch/sucrose non-fermenting) chromatin remodeling complex including SMARCA4 and ARID1A in non-small cell lung cancer (NSCLC). Genetic evidence indicates that the paralog SMARCA2 is synthetic lethal to SMARCA4 suggesting SMARCA2 is a valuable therapeutic target. However, the discovery of selective inhibitors of SMARCA2 has been challenging. Here, we utilized structure-activity relationship (SAR) studies to develop YD23, a potent and selective proteolysis targeting chimera (PROTAC) targeting SMARCA2. Mechanistically, we show that SMARCA2 degradation induces reprogramming of the enhancer landscape in SMARCA4-mutant cells with loss of chromatin accessibility at enhancers of genes involved in cell proliferation. Furthermore, we identified YAP/TEADas key partners to SMARCA2 in driving growth of SMARCA4-mutant cells. Finally, we show that YD23 has potent tumor growth inhibitory activity in SMARCA4-mutant xenografts. These findings provide the mechanistic basis for development of SMARCA2 degraders as synthetic lethal therapeutics against SMARCA4-mutant lung cancers.
基因组研究发现,在非小细胞肺癌(NSCLC)中,SWI/SNF(开关/蔗糖不发酵)染色质重塑复合物亚基(包括 SMARCA4 和 ARID1A)经常发生突变。遗传学证据表明,SMARCA2 的旁系亲属与 SMARCA4 具有合成致死性,这表明 SMARCA2 是一个有价值的治疗靶点。然而,发现 SMARCA2 的选择性抑制剂一直是个挑战。在这里,我们利用结构-活性关系(SAR)研究开发了YD23,一种针对SMARCA2的强效、选择性蛋白水解靶向嵌合体(PROTAC)。从机理上讲,我们发现 SMARCA2 的降解会诱导 SMARCA4 突变细胞中增强子景观的重编程,使细胞增殖相关基因的增强子染色质可及性丧失。此外,我们还发现 YAP/TEAD 是 SMARCA2 推动 SMARCA4 突变细胞生长的关键伙伴。最后,我们发现 YD23 在 SMARCA4 突变异种移植物中具有强效的肿瘤生长抑制活性。这些发现为开发 SMARCA2 降解剂作为针对 SMARCA4 突变型肺癌的合成致死疗法提供了机理基础。
{"title":"Enhancer reprogramming underlies therapeutic utility of a SMARCA2 degrader in SMARCA4 mutant cancer","authors":"Sasikumar Kotagiri ,&nbsp;Nicholas Blazanin ,&nbsp;Yuanxin Xi ,&nbsp;Yanyan Han ,&nbsp;Md Qudratullah ,&nbsp;Xiaobing Liang ,&nbsp;Yawen Wang ,&nbsp;Poonam Pandey ,&nbsp;Hira Mazhar ,&nbsp;Truong Nguyen Lam ,&nbsp;Anand Kamal Singh ,&nbsp;Jing Wang ,&nbsp;Yonathan Lissanu","doi":"10.1016/j.chembiol.2024.09.004","DOIUrl":"10.1016/j.chembiol.2024.09.004","url":null,"abstract":"<div><div>Genomic studies have identified frequent mutations in subunits of the SWI/SNF (switch/sucrose non-fermenting) chromatin remodeling complex including <em>SMARCA4</em> and <em>ARID1A</em> in non-small cell lung cancer (NSCLC). Genetic evidence indicates that the paralog <em>SMARCA2</em> is synthetic lethal to <em>SMARCA4</em> suggesting SMARCA2 is a valuable therapeutic target. However, the discovery of selective inhibitors of SMARCA2 has been challenging. Here, we utilized structure-activity relationship (SAR) studies to develop YD23, a potent and selective proteolysis targeting chimera (PROTAC) targeting SMARCA2. Mechanistically, we show that SMARCA2 degradation induces reprogramming of the enhancer landscape in <em>SMARCA4</em>-mutant cells with loss of chromatin accessibility at enhancers of genes involved in cell proliferation. Furthermore, we identified YAP/TEADas key partners to SMARCA2 in driving growth of <em>SMARCA4</em>-mutant cells. Finally, we show that YD23 has potent tumor growth inhibitory activity in <em>SMARCA4</em>-mutant xenografts. These findings provide the mechanistic basis for development of SMARCA2 degraders as synthetic lethal therapeutics against <em>SMARCA4</em>-mutant lung cancers.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 12","pages":"Pages 2069-2084.e9"},"PeriodicalIF":6.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
D-aring to explore: New approaches to gasdermin D targeting D-正在探索:gasdermin D靶向的新方法
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-19 DOI: 10.1016/j.chembiol.2024.11.006
Lei Wang , Wen Zhou
Novel inhibitors of pyroptosis promise breakthroughs in treating inflammatory diseases and malignant tumors. In this issue of Cell Chemical Biology, Hu et al.1 identify two repurposed drugs that selectively target gasdermin D (GSDMD) oligomers, effectively suppressing pyroptosis while reducing off-target effects typical of cysteine-based inhibitors.
新型焦亡抑制剂有望在治疗炎性疾病和恶性肿瘤方面取得突破。在这一期的《细胞化学生物学》中,Hu等人1确定了两种靶向气皮蛋白D (GSDMD)低聚物的靶向药物,有效抑制焦亡,同时减少半胱氨酸抑制剂的脱靶效应。
{"title":"D-aring to explore: New approaches to gasdermin D targeting","authors":"Lei Wang ,&nbsp;Wen Zhou","doi":"10.1016/j.chembiol.2024.11.006","DOIUrl":"10.1016/j.chembiol.2024.11.006","url":null,"abstract":"<div><div>Novel inhibitors of pyroptosis promise breakthroughs in treating inflammatory diseases and malignant tumors. In this issue of <em>Cell Chemical Biology</em>, Hu et al.<span><span><sup>1</sup></span></span> identify two repurposed drugs that selectively target gasdermin D (GSDMD) oligomers, effectively suppressing pyroptosis while reducing off-target effects typical of cysteine-based inhibitors.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 12","pages":"Pages 2015-2017"},"PeriodicalIF":6.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of a mu-opioid receptor modulator that in combination with morphinan antagonists induces analgesia 发现一种μ-阿片受体调节剂,与吗啡烷拮抗剂联合使用可产生镇痛效果
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-21 DOI: 10.1016/j.chembiol.2024.06.013
Yi-Han Huang , Shu-Yu Lin , Li-Chin Ou , Wei-Cheng Huang , Po-Kuan Chao , Yung-Chiao Chang , Hsiao-Fu Chang , Pin-Tse Lee , Teng-Kuang Yeh , Yu-Hsien Kuo , Ya-Wen Tien , Jing-Hua Xi , Pao-Luh Tao , Pin-Yuan Chen , Jian-Ying Chuang , Chuan Shih , Chiung-Tong Chen , Chun-Wei Tung , Horace H. Loh , Shau-Hua Ueng , Shiu-Hwa Yeh
Morphinan antagonists, which block opioid effects at mu-opioid receptors, have been studied for their analgesic potential. Previous studies have suggested that these antagonists elicit analgesia with fewer adverse effects in the presence of the mutant mu-opioid receptor (MOR; S196A). However, introducing a mutant receptor for medical applications represents significant challenges. We hypothesize that binding a chemical compound to the MOR may elicit a comparable effect to the S196A mutation. Through high-throughput screening and structure-activity relationship studies, we identified a modulator, 4-(2-(4-fluorophenyl)-4-oxothiazolidin-3-yl)-3-methylbenzoic acid (BPRMU191), which confers agonistic properties to small-molecule morphinan antagonists, which induce G protein-dependent MOR activation. Co-application of BPRMU191 and morphinan antagonists resulted in MOR-dependent analgesia with diminished side effects, including gastrointestinal dysfunction, antinociceptive tolerance, and physical and psychological dependence. Combining BPRMU191 and morphinan antagonists could serve as a potential therapeutic strategy for severe pain with reduced adverse effects and provide an avenue for studying G protein-coupled receptor modulation.
吗啡南拮抗剂可阻断μ阿片受体的阿片效应,其镇痛潜力已得到研究。以前的研究表明,这些拮抗剂在存在突变μ阿片受体(MOR;S196A)的情况下可产生镇痛作用,且不良反应较少。然而,引入突变受体用于医疗应用是一项重大挑战。我们假设,将化合物与 MOR 结合可能会产生与 S196A 突变相似的效果。通过高通量筛选和结构-活性关系研究,我们发现了一种调节剂--4-(2-(4-氟苯基)-4-氧代噻唑烷-3-基)-3-甲基苯甲酸(BPRMU191),它能赋予小分子吗啡烷拮抗剂激动特性,而吗啡烷拮抗剂能诱导 G 蛋白依赖的 MOR 激活。将 BPRMU191 和吗啡南拮抗剂联合应用,可产生 MOR 依赖性镇痛,同时减少副作用,包括胃肠道功能障碍、抗痛觉耐受性以及生理和心理依赖性。将 BPRMU191 和吗啡南拮抗剂结合使用,可作为一种潜在的治疗严重疼痛的策略,同时减少不良反应,并为研究 G 蛋白偶联受体调节提供了一条途径。
{"title":"Discovery of a mu-opioid receptor modulator that in combination with morphinan antagonists induces analgesia","authors":"Yi-Han Huang ,&nbsp;Shu-Yu Lin ,&nbsp;Li-Chin Ou ,&nbsp;Wei-Cheng Huang ,&nbsp;Po-Kuan Chao ,&nbsp;Yung-Chiao Chang ,&nbsp;Hsiao-Fu Chang ,&nbsp;Pin-Tse Lee ,&nbsp;Teng-Kuang Yeh ,&nbsp;Yu-Hsien Kuo ,&nbsp;Ya-Wen Tien ,&nbsp;Jing-Hua Xi ,&nbsp;Pao-Luh Tao ,&nbsp;Pin-Yuan Chen ,&nbsp;Jian-Ying Chuang ,&nbsp;Chuan Shih ,&nbsp;Chiung-Tong Chen ,&nbsp;Chun-Wei Tung ,&nbsp;Horace H. Loh ,&nbsp;Shau-Hua Ueng ,&nbsp;Shiu-Hwa Yeh","doi":"10.1016/j.chembiol.2024.06.013","DOIUrl":"10.1016/j.chembiol.2024.06.013","url":null,"abstract":"<div><div><span>Morphinan antagonists, which block opioid effects at mu-opioid receptors, have been studied for their analgesic potential. Previous studies have suggested that these antagonists elicit analgesia with fewer adverse effects in the presence of the mutant mu-opioid receptor (MOR; S196A). However, introducing a mutant receptor for medical applications represents significant challenges. We hypothesize that binding a chemical compound to the MOR may elicit a comparable effect to the S196A mutation. Through high-throughput screening and structure-activity relationship studies, we identified a modulator, 4-(2-(4-fluorophenyl)-4-oxothiazolidin-3-yl)-3-methylbenzoic acid (</span><strong>BPRMU191</strong>), which confers agonistic properties to small-molecule morphinan antagonists, which induce G protein-dependent MOR activation. Co-application of <strong>BPRMU191</strong><span><span> and morphinan antagonists resulted in MOR-dependent analgesia with diminished side effects, including </span>gastrointestinal dysfunction, antinociceptive tolerance, and physical and psychological dependence. Combining </span><strong>BPRMU191</strong> and morphinan antagonists could serve as a potential therapeutic strategy for severe pain with reduced adverse effects and provide an avenue for studying G protein-coupled receptor modulation.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 11","pages":"Pages 1885-1898.e10"},"PeriodicalIF":6.6,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141631753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of antibacterial diketones against gram-positive bacteria 发现针对革兰氏阳性细菌的抗菌二酮。
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-21 DOI: 10.1016/j.chembiol.2024.06.017
Qian Li , Hanzhong Feng , Qiong Tian , Yun Xiang , Xiaolei Wang , Yong-Xing He , Kui Zhu
The rapid rise of antibiotic resistance calls for the discovery of new antibiotics with distinct antibacterial mechanisms. New target mining is indispensable for developing antibiotics. Plant-microbial antibiotics are appealing to underexplored sources due to a dearth of comprehensive understanding of antibacterial activity and the excavation of new targets. Here, a series of phloroglucinol derivatives of plant-root-associated Pseudomonas fluorescens were synthesized for structure-activity relationship analysis. Notably, 2,4-diproylphloroglucinol (DPPG) displayed efficient bactericidal activity against a wide range of gram-positive bacteria. Importantly, mechanistic study exhibits that DPPG binds to type II NADH dehydrogenase (NDH-2), an essential enzyme catalyzing the transfer of electrons from NADH to quinones in the electron transport chain (ETC), blocking electron transfer in S. aureus. Last, we validated the efficacy of DPPG in vivo through animal infection models. Our findings not only provide a distinct antibiotic lead to treat multidrug resistant pathogens but also identify a promising antibacterial target.
抗生素耐药性的迅速增加要求发现具有独特抗菌机制的新型抗生素。开发抗生素离不开新靶点的挖掘。由于缺乏对抗菌活性的全面了解和新靶点的挖掘,植物微生物抗生素对未充分开发的来源具有吸引力。本文合成了一系列与植物根相关的荧光假单胞菌的氯葡萄糖醇衍生物,并对其进行了结构-活性关系分析。值得注意的是,2,4-二丙基氯葡萄糖醇(DPPG)对多种革兰氏阳性菌具有高效的杀菌活性。重要的是,机理研究表明,DPPG 与 II 型 NADH 脱氢酶(NDH-2)结合,阻断了金黄色葡萄球菌体内的电子传递。最后,我们通过动物感染模型验证了 DPPG 在体内的疗效。我们的研究结果不仅为治疗耐多药病原体提供了一种独特的抗生素线索,还发现了一个很有前景的抗菌靶点。
{"title":"Discovery of antibacterial diketones against gram-positive bacteria","authors":"Qian Li ,&nbsp;Hanzhong Feng ,&nbsp;Qiong Tian ,&nbsp;Yun Xiang ,&nbsp;Xiaolei Wang ,&nbsp;Yong-Xing He ,&nbsp;Kui Zhu","doi":"10.1016/j.chembiol.2024.06.017","DOIUrl":"10.1016/j.chembiol.2024.06.017","url":null,"abstract":"<div><div>The rapid rise of antibiotic resistance calls for the discovery of new antibiotics with distinct antibacterial mechanisms. New target mining is indispensable for developing antibiotics. Plant-microbial antibiotics are appealing to underexplored sources due to a dearth of comprehensive understanding of antibacterial activity and the excavation of new targets. Here, a series of phloroglucinol derivatives of plant-root-associated <em>Pseudomonas fluorescens</em> were synthesized for structure-activity relationship analysis. Notably, 2,4-diproylphloroglucinol (DPPG) displayed efficient bactericidal activity against a wide range of gram-positive bacteria. Importantly, mechanistic study exhibits that DPPG binds to type II NADH dehydrogenase (NDH-2), an essential enzyme catalyzing the transfer of electrons from NADH to quinones in the electron transport chain (ETC), blocking electron transfer in <em>S. aureus</em>. Last, we validated the efficacy of DPPG <em>in vivo</em> through animal infection models. Our findings not only provide a distinct antibiotic lead to treat multidrug resistant pathogens but also identify a promising antibacterial target.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 11","pages":"Pages 1874-1884.e6"},"PeriodicalIF":6.6,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Chemical Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1