Pub Date : 2023-06-28DOI: 10.18287/2541-7533-2023-22-2-79-90
E. Pechenina, E. Kudashov, V. Pechenin
The article presents a digital model for calculating the change in the angles of incidence of compressor rotor wheel blades that characterize tightness. The input parameters for the model are the geometric deviations of the disc slots and blades of the set. The calculation is based on the modeling of joints using the finite element method. To automate the modeling, a parametric design model of the blade created in the CAD module of the NX program is used; a calculation automation program created in the MATLAB environment and an algorithm for converting deformations at points obtained in finite element method into angles. The initial data and the resulting parameter values are stored in spreadsheets. Experimental studies have been carried out, including measurements of the disk and blades of the impeller, their assembly and measurement of interference. A Gaussian filter was applied to process the results of angle measurements. The tightness of the set under consideration was calculated using the developed model. The results showed that the limiting simulation error amounts to 16% of the value of experimental data; the index of correlation between the simulated and experimental data was 0.71.
{"title":"Development of a model for determination of preloads on blade shrouds","authors":"E. Pechenina, E. Kudashov, V. Pechenin","doi":"10.18287/2541-7533-2023-22-2-79-90","DOIUrl":"https://doi.org/10.18287/2541-7533-2023-22-2-79-90","url":null,"abstract":"The article presents a digital model for calculating the change in the angles of incidence of compressor rotor wheel blades that characterize tightness. The input parameters for the model are the geometric deviations of the disc slots and blades of the set. The calculation is based on the modeling of joints using the finite element method. To automate the modeling, a parametric design model of the blade created in the CAD module of the NX program is used; a calculation automation program created in the MATLAB environment and an algorithm for converting deformations at points obtained in finite element method into angles. The initial data and the resulting parameter values are stored in spreadsheets. Experimental studies have been carried out, including measurements of the disk and blades of the impeller, their assembly and measurement of interference. A Gaussian filter was applied to process the results of angle measurements. The tightness of the set under consideration was calculated using the developed model. The results showed that the limiting simulation error amounts to 16% of the value of experimental data; the index of correlation between the simulated and experimental data was 0.71.","PeriodicalId":265584,"journal":{"name":"VESTNIK of Samara University. Aerospace and Mechanical Engineering","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129714794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-28DOI: 10.18287/2541-7533-2023-22-2-21-32
Влияние Комплексного Нагружения, Радиальных Подшипников, Узлов Качания, Рулевых Агрегатов, НА Жрд, Момент Трения, Д. Е. Долгих
The paper presents a method for determining the frictional moments of the oscillation groups of the most widespread domestically made liquid propellant engine steering units. This is a topical issue requiring investigation to improve the efficiency and reliability of oscillation groups. The reason for the occurrence of an additional axial force in the radial bearings of the articulated joints that leads to an overestimation of the actual values of the moments relative to the theoretical values is shown. The procedure for calculating the maximum axial force and the accompanying increase in the moment, confirmed by the analysis of the results of the bench test of the experimental steering unit, is presented. An assessment of the range of axial forces in the absence of blocking of the axial movement of the bearing was carried out with a simultaneous analysis of the suitability of the existing methods for calculating the increase in the frictional moment for the obtained ratios of axial and radial loads. The direction of further research of low-speed radial bearings is determined, aimed at increasing the reliability of calculations and developing measures to minimize the frictional moment of production oscillation units.
{"title":"Influence of complex loading of radial bearings of the oscillation groups of liquid propellant engine steering gear on the frictional moment","authors":"Влияние Комплексного Нагружения, Радиальных Подшипников, Узлов Качания, Рулевых Агрегатов, НА Жрд, Момент Трения, Д. Е. Долгих","doi":"10.18287/2541-7533-2023-22-2-21-32","DOIUrl":"https://doi.org/10.18287/2541-7533-2023-22-2-21-32","url":null,"abstract":"The paper presents a method for determining the frictional moments of the oscillation groups of the most widespread domestically made liquid propellant engine steering units. This is a topical issue requiring investigation to improve the efficiency and reliability of oscillation groups. The reason for the occurrence of an additional axial force in the radial bearings of the articulated joints that leads to an overestimation of the actual values of the moments relative to the theoretical values is shown. The procedure for calculating the maximum axial force and the accompanying increase in the moment, confirmed by the analysis of the results of the bench test of the experimental steering unit, is presented. An assessment of the range of axial forces in the absence of blocking of the axial movement of the bearing was carried out with a simultaneous analysis of the suitability of the existing methods for calculating the increase in the frictional moment for the obtained ratios of axial and radial loads. The direction of further research of low-speed radial bearings is determined, aimed at increasing the reliability of calculations and developing measures to minimize the frictional moment of production oscillation units.","PeriodicalId":265584,"journal":{"name":"VESTNIK of Samara University. Aerospace and Mechanical Engineering","volume":"29 8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125999029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-28DOI: 10.18287/2541-7533-2023-22-2-116-126
V. Chernyshev, R. Polyakov, O. Fominova
The energy efficiency of controlled vibration protection systems is defined as the ratio of the vibration safety indicator they achieve to the cost of energy resources necessary to achieve the desired indicator. To solve the optimization problems of controlled vibration protection, a sufficient condition for the optimality of the accepted functional and, accordingly, the minimum principle, was used, the step-by-step implementation of which, in the course of numerical integration of the initial equations of the state of the system, makes it possible to reproduce the optimal control numeric arrays and the related components of the system state. The algorithm of the step-by-step procedure of the minimum principle was used to optimize the dynamic processes in the vibration protection system with indirect control of the viscous resistance damper and the potential energy recuperator. It has been established that the optimal controls that allow eliminating resonant phenomena in these systems are positional functions of a singular type, the relay switching of which in vibration protection systems with a controlled damper and recuperator is associated with a change in the sign of the absolute and relative velocity of the object and with a change in the sign of the velocity and relative displacement of the object.
{"title":"Controlled vibration protection systems: optimization and energy efficiency","authors":"V. Chernyshev, R. Polyakov, O. Fominova","doi":"10.18287/2541-7533-2023-22-2-116-126","DOIUrl":"https://doi.org/10.18287/2541-7533-2023-22-2-116-126","url":null,"abstract":"The energy efficiency of controlled vibration protection systems is defined as the ratio of the vibration safety indicator they achieve to the cost of energy resources necessary to achieve the desired indicator. To solve the optimization problems of controlled vibration protection, a sufficient condition for the optimality of the accepted functional and, accordingly, the minimum principle, was used, the step-by-step implementation of which, in the course of numerical integration of the initial equations of the state of the system, makes it possible to reproduce the optimal control numeric arrays and the related components of the system state. The algorithm of the step-by-step procedure of the minimum principle was used to optimize the dynamic processes in the vibration protection system with indirect control of the viscous resistance damper and the potential energy recuperator. It has been established that the optimal controls that allow eliminating resonant phenomena in these systems are positional functions of a singular type, the relay switching of which in vibration protection systems with a controlled damper and recuperator is associated with a change in the sign of the absolute and relative velocity of the object and with a change in the sign of the velocity and relative displacement of the object.","PeriodicalId":265584,"journal":{"name":"VESTNIK of Samara University. Aerospace and Mechanical Engineering","volume":"155 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122779129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-10DOI: 10.18287/2541-7533-2023-22-1-63-74
V. Egorychev, A. Ryazanov, A. Khaimovich
During the process of designing new devices for the high-speed metallization process, there appears the necessity to define the stable operation range and search for the optimum values of the operation mode and design parameters. This paper describes a process of optimization of a device made for depositing low-melting metal coatings, based on the rocket chamber operation principle. The paper presents an analysis of the objective function surface response metallizer operation performance. On the basis of this analysis the optimal values of fuel mass flow rate and excess oxidant ratio were determined. The choice of fuel and oxidizer throttling orifice cross-section areas was substantiated, the value of the throat cross-section for the metallizer flow-path was found. The expected performance of the designed device was also determined.
{"title":"Optimization of operation mode and design parameters of a finely-dispersed metallic liquid-alloy generator","authors":"V. Egorychev, A. Ryazanov, A. Khaimovich","doi":"10.18287/2541-7533-2023-22-1-63-74","DOIUrl":"https://doi.org/10.18287/2541-7533-2023-22-1-63-74","url":null,"abstract":"During the process of designing new devices for the high-speed metallization process, there appears the necessity to define the stable operation range and search for the optimum values of the operation mode and design parameters. This paper describes a process of optimization of a device made for depositing low-melting metal coatings, based on the rocket chamber operation principle. The paper presents an analysis of the objective function surface response metallizer operation performance. On the basis of this analysis the optimal values of fuel mass flow rate and excess oxidant ratio were determined. The choice of fuel and oxidizer throttling orifice cross-section areas was substantiated, the value of the throat cross-section for the metallizer flow-path was found. The expected performance of the designed device was also determined.","PeriodicalId":265584,"journal":{"name":"VESTNIK of Samara University. Aerospace and Mechanical Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131017357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-10DOI: 10.18287/2541-7533-2023-22-1-41-50
M. Benedyuk, A. Lomachev, R. Badykov, K. V. Bezborodova, A. Yurtaev
This article presents the results of the work on the creation of an experimental plant, its testing, as well as the development of a computational model of a rotor magnetic suspension with the use of axial electromagnets. The main purpose of producing the plant was to test the results of the developed numerical finite element model. An automatic control system was developed for the experimental installation. The electrical circuit was assembled on the basis of a ESP32 microcontroller with a clock frequency of 240 MHz and a PWM with a capacity of 10 bits. A PID-regulator program was developed. The coefficients kP, kD, kI used in the code of the electronic control system program (PID-controller) were selected. An experimental study of the bearing capacity of the axial active magnetic bearing under the influence of an external axial force was conducted. The required power of the axial active magnetic bearing was determined. The maximum load-bearing capacity of the installation for the selected coefficients of the PID-controller was determined. An axisymmetric finite-element model of the axial active magnetic bearing was created in the open-source program FEMM 4.2. The load-bearing capacity of the installation for a given current intensity value was calculated. The results of the numerical modelling were compared with the experimental data obtained. The basic principles of creation and operation of the experimental plant and its numerical model are outlined.
{"title":"Development of an experimental plant and a numerical model of an axial magnetic rotor suspension","authors":"M. Benedyuk, A. Lomachev, R. Badykov, K. V. Bezborodova, A. Yurtaev","doi":"10.18287/2541-7533-2023-22-1-41-50","DOIUrl":"https://doi.org/10.18287/2541-7533-2023-22-1-41-50","url":null,"abstract":"This article presents the results of the work on the creation of an experimental plant, its testing, as well as the development of a computational model of a rotor magnetic suspension with the use of axial electromagnets. The main purpose of producing the plant was to test the results of the developed numerical finite element model. An automatic control system was developed for the experimental installation. The electrical circuit was assembled on the basis of a ESP32 microcontroller with a clock frequency of 240 MHz and a PWM with a capacity of 10 bits. A PID-regulator program was developed. The coefficients kP, kD, kI used in the code of the electronic control system program (PID-controller) were selected. An experimental study of the bearing capacity of the axial active magnetic bearing under the influence of an external axial force was conducted. The required power of the axial active magnetic bearing was determined. The maximum load-bearing capacity of the installation for the selected coefficients of the PID-controller was determined. An axisymmetric finite-element model of the axial active magnetic bearing was created in the open-source program FEMM 4.2. The load-bearing capacity of the installation for a given current intensity value was calculated. The results of the numerical modelling were compared with the experimental data obtained. The basic principles of creation and operation of the experimental plant and its numerical model are outlined.","PeriodicalId":265584,"journal":{"name":"VESTNIK of Samara University. Aerospace and Mechanical Engineering","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132732979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-10DOI: 10.18287/2541-7533-2023-22-1-29-40
P. Markiewicz
The article considers the problem of optimizing a long-haul aircraft flight under uncertainty of objectives and tasks. Based on the analysis of the well-known flight mode selection criterion, two main objectives of the flight were identified minimizing fuel consumption and flight endurance. The study of this criterion based on a multi-purpose approach made it possible to develop an analytical model of the performance indicator containing two objective functions and a weight coefficient as a measure of comparative importance between the identified objectives. It is shown that the weight coefficient in the tasks of flight efficiency research is a measure of the uncertainty of the tasks. Consideration of the weight coefficient role in the optimization problem objective function made it possible to develop operational and trajectory methods for selecting flight modes. In the developed statement of the problem, the problems of cruise flight optimization and climb and descent modes are considered. The paper introduces the concept of the optimal cruise range as a vertical separation criterion, which allows you to rationally design the flight path at different flight levels under the uncertainty of tasks. The procedure for researching the efficiency and optimization of flight has been conducted and demonstrated by the method of mathematical modeling. The results of optimizing the flight mode are compared with the typical flight modes recommended by the flight manual. The introduced methods of flight efficiency investigation can be helpful in developing recommendations of long-haul aircraft operation. The methods and principles of a multi-purpose approach, operations research and decision theory were used in the paper. The long-haul aircraft IL-96-300 was selected as the object of research.
{"title":"Survey of the flight efficiency of a long-haul aircraft under uncertainty of tasks","authors":"P. Markiewicz","doi":"10.18287/2541-7533-2023-22-1-29-40","DOIUrl":"https://doi.org/10.18287/2541-7533-2023-22-1-29-40","url":null,"abstract":"The article considers the problem of optimizing a long-haul aircraft flight under uncertainty of objectives and tasks. Based on the analysis of the well-known flight mode selection criterion, two main objectives of the flight were identified minimizing fuel consumption and flight endurance. The study of this criterion based on a multi-purpose approach made it possible to develop an analytical model of the performance indicator containing two objective functions and a weight coefficient as a measure of comparative importance between the identified objectives. It is shown that the weight coefficient in the tasks of flight efficiency research is a measure of the uncertainty of the tasks. Consideration of the weight coefficient role in the optimization problem objective function made it possible to develop operational and trajectory methods for selecting flight modes. In the developed statement of the problem, the problems of cruise flight optimization and climb and descent modes are considered. The paper introduces the concept of the optimal cruise range as a vertical separation criterion, which allows you to rationally design the flight path at different flight levels under the uncertainty of tasks. The procedure for researching the efficiency and optimization of flight has been conducted and demonstrated by the method of mathematical modeling. The results of optimizing the flight mode are compared with the typical flight modes recommended by the flight manual. The introduced methods of flight efficiency investigation can be helpful in developing recommendations of long-haul aircraft operation. The methods and principles of a multi-purpose approach, operations research and decision theory were used in the paper. The long-haul aircraft IL-96-300 was selected as the object of research.","PeriodicalId":265584,"journal":{"name":"VESTNIK of Samara University. Aerospace and Mechanical Engineering","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134087041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-10DOI: 10.18287/2541-7533-2023-22-1-98-111
V. Matveev, S. Melnikov, G. Popov, V. M. Zubanov, I. Kudryashov, A. Shcherban
Numerical modeling for the purpose of receiving the temperature field of cooled rotor blades and its improvement is an integral process of modern design of gas turbine engines since the issue of cooling at gas temperature at the combustion chamber outlet over 1800-2000 K is becoming one of the key ones. To ensure the specified parameters of turbine operation during its design, it is necessary to obtain reliable calculation data. The article presents an algorithm for forming a calculation model to determine the thermal state of the working blade of a high-temperature high-pressure gas turbine in the Ansys program. The process of preparation of geometric and grid models is described, the boundary conditions used to set up the project in Ansys CFX Pre are given. A method for determining the cooling efficiency factor using Ansys CFX Post is also presented. The distributions of the temperature field and the coefficient of cooling efficiency over the surfaces of the blade to be cooled are obtained. Integral values of the coefficient of cooling efficiency for the designed blade at various cooling air flow rates were compared with statistical data. On the basis of the comparison a conclusion was made that the working blade considered in the work corresponds to the modern level of cooling efficiency.
{"title":"Results of conjugate modeling and analysis of the thermal state of a high-pressure turbine blade","authors":"V. Matveev, S. Melnikov, G. Popov, V. M. Zubanov, I. Kudryashov, A. Shcherban","doi":"10.18287/2541-7533-2023-22-1-98-111","DOIUrl":"https://doi.org/10.18287/2541-7533-2023-22-1-98-111","url":null,"abstract":"Numerical modeling for the purpose of receiving the temperature field of cooled rotor blades and its improvement is an integral process of modern design of gas turbine engines since the issue of cooling at gas temperature at the combustion chamber outlet over 1800-2000 K is becoming one of the key ones. To ensure the specified parameters of turbine operation during its design, it is necessary to obtain reliable calculation data. The article presents an algorithm for forming a calculation model to determine the thermal state of the working blade of a high-temperature high-pressure gas turbine in the Ansys program. The process of preparation of geometric and grid models is described, the boundary conditions used to set up the project in Ansys CFX Pre are given. A method for determining the cooling efficiency factor using Ansys CFX Post is also presented. The distributions of the temperature field and the coefficient of cooling efficiency over the surfaces of the blade to be cooled are obtained. Integral values of the coefficient of cooling efficiency for the designed blade at various cooling air flow rates were compared with statistical data. On the basis of the comparison a conclusion was made that the working blade considered in the work corresponds to the modern level of cooling efficiency.","PeriodicalId":265584,"journal":{"name":"VESTNIK of Samara University. Aerospace and Mechanical Engineering","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124095662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-10DOI: 10.18287/2541-7533-2023-22-1-85-97
E. Kudashov, I. Grachev, M. Bolotov
The reasons for the occurrence of increased vibration of the engine rotor due to aerodynamic imbalance of the fan of the first stage of the impeller are determined. A method for estimating the aerodynamic imbalance of the gas turbine engine fan is proposed, taking into account the influence of the following factors: geometric errors in the manufacture of blade airfoils and their positioning in the disk; deformation of the blade airfoil during the assembly of the impeller, as well as the factors of the working process occurring in the impeller. The use of the technique makes it possible to evaluate the aerodynamic imbalance of the impeller at the stage of its balancing and significantly reduce the amount of aerodynamic imbalance by determining the parameters for removing a layer of material or adding corrective masses. The influence of geometric errors of the blades on the value of the aerodynamic imbalance of the impeller was analyzed. Based on the results of the research, the type of dependence of unbalanced gas forces on the influence of technological and operational factors of the impeller under consideration was determined.
{"title":"Methodology for assessing and reducing the aerodynamic imbalance of the impellers of GTE fans","authors":"E. Kudashov, I. Grachev, M. Bolotov","doi":"10.18287/2541-7533-2023-22-1-85-97","DOIUrl":"https://doi.org/10.18287/2541-7533-2023-22-1-85-97","url":null,"abstract":"The reasons for the occurrence of increased vibration of the engine rotor due to aerodynamic imbalance of the fan of the first stage of the impeller are determined. A method for estimating the aerodynamic imbalance of the gas turbine engine fan is proposed, taking into account the influence of the following factors: geometric errors in the manufacture of blade airfoils and their positioning in the disk; deformation of the blade airfoil during the assembly of the impeller, as well as the factors of the working process occurring in the impeller. The use of the technique makes it possible to evaluate the aerodynamic imbalance of the impeller at the stage of its balancing and significantly reduce the amount of aerodynamic imbalance by determining the parameters for removing a layer of material or adding corrective masses. The influence of geometric errors of the blades on the value of the aerodynamic imbalance of the impeller was analyzed. Based on the results of the research, the type of dependence of unbalanced gas forces on the influence of technological and operational factors of the impeller under consideration was determined.","PeriodicalId":265584,"journal":{"name":"VESTNIK of Samara University. Aerospace and Mechanical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128491591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-10DOI: 10.18287/2541-7533-2023-22-1-7-28
A. D. Alendar, A. Lanshin, A. Evstigneev, K. Yakubovsky, M. Siluyanova
The problems of creating a propulsion system for a new generation supersonic passenger aircraft are considered on the basis of a review of the work on the supersonic transport being carried out in the world. It is shown that the desire to achieve high flight performance and commercial effectiveness of a supersonic passenger aircraft while meeting up-to-date environmental requirements leads to contradictory technical solutions regarding the propulsion system: the location and number of engines, the scheme of the air intake and nozzle, the choice of the scheme and design parameters of the engine, the use of new high-temperature materials in the engine hot section, etc. The features of the operating conditions of the engine components of a supersonic passenger aircraft in comparison with the engines of up-to-date subsonic civil aviation aircraft and supersonic military aircraft are indicated. The calculated estimates of the influence of various technical solutions on the parameters of the supersonic passenger aircraft engine are given. Due to the complexity and multi-criterion nature of the task of creating a supersonic passenger aircraft propulsion system, its solution requires an integrated approach based on close cooperation of specialists in airframe aerodynamics, engine, etc.
{"title":"The problems of creating a propulsion system of a new generation supersonic passenger aircraft (review)","authors":"A. D. Alendar, A. Lanshin, A. Evstigneev, K. Yakubovsky, M. Siluyanova","doi":"10.18287/2541-7533-2023-22-1-7-28","DOIUrl":"https://doi.org/10.18287/2541-7533-2023-22-1-7-28","url":null,"abstract":"The problems of creating a propulsion system for a new generation supersonic passenger aircraft are considered on the basis of a review of the work on the supersonic transport being carried out in the world. It is shown that the desire to achieve high flight performance and commercial effectiveness of a supersonic passenger aircraft while meeting up-to-date environmental requirements leads to contradictory technical solutions regarding the propulsion system: the location and number of engines, the scheme of the air intake and nozzle, the choice of the scheme and design parameters of the engine, the use of new high-temperature materials in the engine hot section, etc. The features of the operating conditions of the engine components of a supersonic passenger aircraft in comparison with the engines of up-to-date subsonic civil aviation aircraft and supersonic military aircraft are indicated. The calculated estimates of the influence of various technical solutions on the parameters of the supersonic passenger aircraft engine are given. Due to the complexity and multi-criterion nature of the task of creating a supersonic passenger aircraft propulsion system, its solution requires an integrated approach based on close cooperation of specialists in airframe aerodynamics, engine, etc.","PeriodicalId":265584,"journal":{"name":"VESTNIK of Samara University. Aerospace and Mechanical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130409226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-10DOI: 10.18287/2541-7533-2023-22-1-112-120
D. Savchuk, D. E. Bescherov, D. Kulikov, V. Panov, V. Patrushev, M. S. Porfiriev, S. A. Soloviev
Requirements of low vibration and low noise level are imposed on reactor plant centrifugal pumping equipment. Computational research of vibration characteristics of centrifugal pumping is required in order to choose the optimal design alternate. Representativeness and adequacy of computational research are ensured by using verified methods of mathematical modeling. The paper presents the results of comparative analysis of various options of centrifugal pump wet end with the hydraulics master data. Hydrodynamic flow analysis was made and pump impeller loads were determined to calculate the pump rotor rotational dynamics. The computational analysis considers the rotor residual unbalance. According to the calculations carried out the pump vibration characteristics were analyzed and compared to those of the prototype pump with low vibration characteristics.
{"title":"Ensuring vibration characteristics of reactor plant centrifugal pumping equipment","authors":"D. Savchuk, D. E. Bescherov, D. Kulikov, V. Panov, V. Patrushev, M. S. Porfiriev, S. A. Soloviev","doi":"10.18287/2541-7533-2023-22-1-112-120","DOIUrl":"https://doi.org/10.18287/2541-7533-2023-22-1-112-120","url":null,"abstract":"Requirements of low vibration and low noise level are imposed on reactor plant centrifugal pumping equipment. Computational research of vibration characteristics of centrifugal pumping is required in order to choose the optimal design alternate. Representativeness and adequacy of computational research are ensured by using verified methods of mathematical modeling. The paper presents the results of comparative analysis of various options of centrifugal pump wet end with the hydraulics master data. Hydrodynamic flow analysis was made and pump impeller loads were determined to calculate the pump rotor rotational dynamics. The computational analysis considers the rotor residual unbalance. According to the calculations carried out the pump vibration characteristics were analyzed and compared to those of the prototype pump with low vibration characteristics.","PeriodicalId":265584,"journal":{"name":"VESTNIK of Samara University. Aerospace and Mechanical Engineering","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130377297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}