首页 > 最新文献

Analytical Chemistry最新文献

英文 中文
Multiscale Manufacturing of Recyclable Polyimide Composite Aerogels 多尺度制造可回收聚酰亚胺复合气凝胶
IF 29.4 1区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2024-11-13 DOI: 10.1002/adma.202411599
Mengmeng Li, Tingting Wu, Zhiyang Zhao, Lei Li, Tongxin Shan, Hui Wu, Robert Zboray, Francesco Bernasconi, Yongjie Cui, Peiying Hu, Wim J. Malfait, Qinghua Zhang, Shanyu Zhao
Mitigating embodied emissions is becoming increasingly crucial as the energy supply shifts toward more sustainable sources. Bio-based materials present a potentially more sustainable alternative to synthetic polymers; however, it often do not yet match the performance of synthetic materials. Given the ongoing reliance on high-performance, high-environmental-impact materials, it is essential to ensure their complete recyclability. Aerogels, recognized by IUPAC as one of the top ten emerging technologies, are witnessing rapid market growth in thermal insulation and thermal protection applications. In certain applications, synthetic and composite aerogels exhibit superior performance, particularly under high temperatures. Here, molecular simulation tools are employed to elucidate the interaction forces between polymers and solvents, develop a recycling strategy for polyimide-based aerogels, and demonstrate their application in thermal protection for firefighter textiles and thermal runaway protection for Li-ion battery packs. These composites are engineered for disassembly, allowing for the complete recovery of starting materials without any degradation of components after multiple recycling cycles. The recyclable composites can be fabricated using various manufacturing techniques to produce fibers (1D), membranes (2D), and complex structures (3D). This unique combination of outstanding performance and excellent recyclability facilitates the sustainable utilization of aerogels in protective clothing, electric mobility, consumer goods, and aeronautics.
随着能源供应转向更可持续的来源,减少体现排放变得越来越重要。生物基材料有可能成为合成聚合物的更具可持续性的替代品,但其性能往往还无法与合成材料相媲美。鉴于对高性能、高环境影响材料的持续依赖,确保其完全可回收性至关重要。气凝胶被国际理论化学和应用化学联合会(IUPAC)评为十大新兴技术之一,在隔热和热保护应用领域的市场增长迅速。在某些应用中,合成气凝胶和复合气凝胶表现出卓越的性能,尤其是在高温条件下。在这里,我们利用分子模拟工具阐明了聚合物与溶剂之间的相互作用力,开发了聚酰亚胺气凝胶的回收策略,并展示了它们在消防员纺织品热保护和锂离子电池组热失控保护中的应用。这些复合材料可拆卸设计,经过多次回收循环后,可完全回收起始材料,且组件不会出现任何降解。可回收复合材料可通过各种制造技术制成纤维(1D)、薄膜(2D)和复杂结构(3D)。气凝胶将出色的性能和卓越的可回收性独特地结合在一起,有助于在防护服、电动汽车、消费品和航空领域实现可持续利用。
{"title":"Multiscale Manufacturing of Recyclable Polyimide Composite Aerogels","authors":"Mengmeng Li, Tingting Wu, Zhiyang Zhao, Lei Li, Tongxin Shan, Hui Wu, Robert Zboray, Francesco Bernasconi, Yongjie Cui, Peiying Hu, Wim J. Malfait, Qinghua Zhang, Shanyu Zhao","doi":"10.1002/adma.202411599","DOIUrl":"https://doi.org/10.1002/adma.202411599","url":null,"abstract":"Mitigating embodied emissions is becoming increasingly crucial as the energy supply shifts toward more sustainable sources. Bio-based materials present a potentially more sustainable alternative to synthetic polymers; however, it often do not yet match the performance of synthetic materials. Given the ongoing reliance on high-performance, high-environmental-impact materials, it is essential to ensure their complete recyclability. Aerogels, recognized by IUPAC as one of the top ten emerging technologies, are witnessing rapid market growth in thermal insulation and thermal protection applications. In certain applications, synthetic and composite aerogels exhibit superior performance, particularly under high temperatures. Here, molecular simulation tools are employed to elucidate the interaction forces between polymers and solvents, develop a recycling strategy for polyimide-based aerogels, and demonstrate their application in thermal protection for firefighter textiles and thermal runaway protection for Li-ion battery packs. These composites are engineered for disassembly, allowing for the complete recovery of starting materials without any degradation of components after multiple recycling cycles. The recyclable composites can be fabricated using various manufacturing techniques to produce fibers (1D), membranes (2D), and complex structures (3D). This unique combination of outstanding performance and excellent recyclability facilitates the sustainable utilization of aerogels in protective clothing, electric mobility, consumer goods, and aeronautics.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"36 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differentiated Intra-Ligand Charge Transfer Boosting Multicolor Responsive MOF Heterostructures as Robust Anti-Counterfeiting Labels 差异化配体内电荷转移促进多色响应 MOF 异质结构作为坚固耐用的防伪标签
IF 29.4 1区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2024-11-13 DOI: 10.1002/adma.202412637
Yuanchao Lv, Chenwei Lin, Xinming Liu, Jiashuai Liang, Yunbin Li, Zizhu Yao, Shengchang Xiang, Banglin Chen, Zhangjing Zhang
Metal–organic framework (MOF) heterostructures with hybrid architectures and abundant functional sites possess great potential applications in advanced information security, yet still suffer from the harsh stimuli mechanisms with restrained emission control. Herein, the differentiated design strategy on intra-ligand charge transfer is first reported to realize smart-responsive multicolor MOF heterostructures as robust anticounterfeiting labels. Designed similar MOF blocks with the differentiated intra-ligand charge transfer are integrated via time-dependent epitaxial growth to form multicolor MOF heterostructures. Different numbers of electron-donating groups in MOF blocks offer distinct space regulation on the torsion of charge transfer ligands, which trigger the diverse responsive emissions under the same mild stimuli, thus generating multiple tunable color patterns in heterostructures. These spatial-resolved MOF heterostructures with stable multicolor responsive modes permit the encoding of fingerprint information, which further functions as robust anti-counterfeiting labels with high-security convert states. These results offer a promising route for the function-oriented exploitation of smart-responsive MOF heterosystems for advanced information anticounterfeiting.
具有混合结构和丰富功能位点的金属有机框架(MOF)异质结构在先进的信息安全领域具有巨大的应用潜力,但仍存在发射控制受限的苛刻刺激机制。本文首次报道了配体内电荷转移的差异化设计策略,以实现智能响应的多色 MOF 异质结构,并将其用作坚固的防伪标签。设计出的具有差异化配体内电荷转移的类似 MOF 块通过时间依赖性外延生长整合成多色 MOF 异质结构。MOF 块中不同数量的电子捐献基团可对电荷转移配体的扭转提供不同的空间调节,从而在相同的温和刺激下触发不同的响应发射,从而在异质结构中产生多种可调颜色模式。这些空间分辨 MOF 异质结构具有稳定的多色响应模式,可以编码指纹信息,并进一步用作具有高安全转换状态的坚固防伪标签。这些成果为以功能为导向利用智能响应 MOF 异质系统实现先进的信息防伪提供了一条大有可为的途径。
{"title":"Differentiated Intra-Ligand Charge Transfer Boosting Multicolor Responsive MOF Heterostructures as Robust Anti-Counterfeiting Labels","authors":"Yuanchao Lv, Chenwei Lin, Xinming Liu, Jiashuai Liang, Yunbin Li, Zizhu Yao, Shengchang Xiang, Banglin Chen, Zhangjing Zhang","doi":"10.1002/adma.202412637","DOIUrl":"https://doi.org/10.1002/adma.202412637","url":null,"abstract":"Metal–organic framework (MOF) heterostructures with hybrid architectures and abundant functional sites possess great potential applications in advanced information security, yet still suffer from the harsh stimuli mechanisms with restrained emission control. Herein, the differentiated design strategy on intra-ligand charge transfer is first reported to realize smart-responsive multicolor MOF heterostructures as robust anticounterfeiting labels. Designed similar MOF blocks with the differentiated intra-ligand charge transfer are integrated via time-dependent epitaxial growth to form multicolor MOF heterostructures. Different numbers of electron-donating groups in MOF blocks offer distinct space regulation on the torsion of charge transfer ligands, which trigger the diverse responsive emissions under the same mild stimuli, thus generating multiple tunable color patterns in heterostructures. These spatial-resolved MOF heterostructures with stable multicolor responsive modes permit the encoding of fingerprint information, which further functions as robust anti-counterfeiting labels with high-security convert states. These results offer a promising route for the function-oriented exploitation of smart-responsive MOF heterosystems for advanced information anticounterfeiting.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"37 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Programmable Shape-Morphing Enables Ceramic Meta-Aerogel Highly Stretchable for Thermal Protection 可编程成型技术实现了陶瓷元气凝胶的高拉伸性,可用于热防护
IF 29.4 1区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2024-11-13 DOI: 10.1002/adma.202412962
Xuan Zhang, Jianyong Yu, Yang Si
Ceramic aerogels hold significant potential for thermal insulation, yet their mechanical stretchability and thermal stability fall short in extreme environments. Here, the study presents a programmable shape-morphing strategy aimed at engineering a binary network topology structure within ceramic aerogels to effectively dissipate stress and block heat transfer. The special topology design, which includes kirigami lamellated aerogels for bearing loading stress and randomly assembled aerogels for mechanical energy pre-storage to transfer tensile stress, effectively achieves unexpected mechanical tensile properties and thermal stability. The resulting robust meta-aerogels demonstrate remarkable structural stability with topology-derived mechanical tensile of up to 85% strain, excellent resilience to 500 cycles of 50% tensile strain, 1000 cycles of 60% buckling strain, and 500 cycles of 50% compressive strain, temperature-invariant tensile recovery capability; simultaneously, low thermal conductivity of 33.01 mW m−1 K−1 and tensile-invariant thermal insulation makes the ceramic meta-aerogels an ideal substitute material for various applications.
陶瓷气凝胶在隔热方面具有巨大潜力,但在极端环境下,其机械伸展性和热稳定性都存在不足。本研究提出了一种可编程的形状变形策略,旨在在陶瓷气凝胶中设计一种二元网络拓扑结构,以有效消散应力并阻断热传导。这种特殊的拓扑结构设计包括用于承受加载应力的叽里格米层状气凝胶和用于预存储机械能以传递拉伸应力的随机组合气凝胶,可有效实现意想不到的机械拉伸性能和热稳定性。由此产生的坚固元气凝胶具有显著的结构稳定性,拓扑结构产生的机械拉伸应变高达 85%,对 500 次 50%拉伸应变、1000 次 60%屈曲应变和 500 次 50%压缩应变具有出色的恢复能力,拉伸恢复能力不受温度影响;同时,33.01 mW m-1 K-1 的低导热率和不受拉伸影响的隔热性能使陶瓷元气凝胶成为各种应用的理想替代材料。
{"title":"Programmable Shape-Morphing Enables Ceramic Meta-Aerogel Highly Stretchable for Thermal Protection","authors":"Xuan Zhang, Jianyong Yu, Yang Si","doi":"10.1002/adma.202412962","DOIUrl":"https://doi.org/10.1002/adma.202412962","url":null,"abstract":"Ceramic aerogels hold significant potential for thermal insulation, yet their mechanical stretchability and thermal stability fall short in extreme environments. Here, the study presents a programmable shape-morphing strategy aimed at engineering a binary network topology structure within ceramic aerogels to effectively dissipate stress and block heat transfer. The special topology design, which includes kirigami lamellated aerogels for bearing loading stress and randomly assembled aerogels for mechanical energy pre-storage to transfer tensile stress, effectively achieves unexpected mechanical tensile properties and thermal stability. The resulting robust meta-aerogels demonstrate remarkable structural stability with topology-derived mechanical tensile of up to 85% strain, excellent resilience to 500 cycles of 50% tensile strain, 1000 cycles of 60% buckling strain, and 500 cycles of 50% compressive strain, temperature-invariant tensile recovery capability; simultaneously, low thermal conductivity of 33.01 mW m<sup>−1</sup> K<sup>−1</sup> and tensile-invariant thermal insulation makes the ceramic meta-aerogels an ideal substitute material for various applications.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"18 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly Responsive Polar Vortices in All-Ferroelectric Heterostructures 全费电异质结构中的高响应极涡
IF 29.4 1区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2024-11-13 DOI: 10.1002/adma.202410146
Pravin Kavle, Aiden M. Ross, Harikrishnan KP, Peter Meisenheimer, Arvind Dasgupta, Jiyuan Yang, Ching-Che Lin, Hao Pan, Piush Behera, Eric Parsonnet, Xiaoxi Huang, Jacob A. Zorn, Yu-Tsun Shao, Sujit Das, Shi Liu, David A. Muller, Ramamoorthy Ramesh, Long-Qing Chen, Lane W. Martin
The discovery of polar vortices and skyrmions in ferroelectric-dielectric superlattices [such as (PbTiO3)n/(SrTiO3)n] has ushered in an era of novel dipolar topologies and corresponding emergent phenomena. The key to creating such emergent features has generally been considered to be related to counterpoising strongly polar and non-polar materials thus creating the appropriate boundary conditions. This limits the utility these materials can have, however, by rendering (effectively) half of the structure unresponsive to applied stimuli. Here, using advanced thin-film deposition and an array of characterization and simulation approaches, polar vortices are realized in all-ferroelectric trilayers, multilayers, and superlattices built from the fundamental building block of (PbTiO3)n/(PbxSr1−xTiO3)n wherein in-plane ferroelectric polarization in the PbxSr1−xTiO3 provides the appropriate boundary conditions. These superlattices exhibit substantially enhanced electromechanical and ferroelectric responses in the out-of-plane direction that arise from the ability of the polarization in both layers to rotate to the out-of-plane direction under field. In the in-plane direction, the layers are found to be strongly coupled during switching and when heterostructured with ferroelectric-dielectric building blocks, it is possible to produce multistate switching. This approach expands the realm of systems supporting emergent dipolar texture formation and does so with entirely ferroelectric materials thus greatly improving their responses.
铁电介质超晶格[如 (PbTiO3)n/(SrTiO3)n] 中极性漩涡和天幕的发现开创了一个新的双极拓扑结构和相应新兴现象的时代。一般认为,产生这种新现象的关键在于将强极性和非极性材料对调,从而创造出适当的边界条件。然而,这限制了这些材料的实用性,因为它们(实际上)使一半的结构对施加的刺激没有反应。在这里,我们利用先进的薄膜沉积技术和一系列表征与模拟方法,在全铁电体三层、多层和超晶格中实现了极性涡流,这些超晶格由 (PbTiO3)n/(PbxSr1-xTiO3)n 这一基本构件构建而成,其中 PbxSr1-xTiO3 的面内铁电极化提供了适当的边界条件。这些超晶格在面外方向表现出显著增强的机电和铁电响应,这是由于两层中的极化都能在磁场作用下旋转到面外方向。在面内方向上,这两个层在开关过程中会发生强耦合,当与铁电-介电构件异质结构时,就有可能产生多态开关。这种方法拓展了支持新出现的偶极纹理形成的系统领域,并通过完全铁电材料实现了这一目标,从而极大地改善了它们的响应。
{"title":"Highly Responsive Polar Vortices in All-Ferroelectric Heterostructures","authors":"Pravin Kavle, Aiden M. Ross, Harikrishnan KP, Peter Meisenheimer, Arvind Dasgupta, Jiyuan Yang, Ching-Che Lin, Hao Pan, Piush Behera, Eric Parsonnet, Xiaoxi Huang, Jacob A. Zorn, Yu-Tsun Shao, Sujit Das, Shi Liu, David A. Muller, Ramamoorthy Ramesh, Long-Qing Chen, Lane W. Martin","doi":"10.1002/adma.202410146","DOIUrl":"https://doi.org/10.1002/adma.202410146","url":null,"abstract":"The discovery of polar vortices and skyrmions in ferroelectric-dielectric superlattices [such as (PbTiO<sub>3</sub>)<i><sub>n</sub></i>/(SrTiO<sub>3</sub>)<i><sub>n</sub></i>] has ushered in an era of novel dipolar topologies and corresponding emergent phenomena. The key to creating such emergent features has generally been considered to be related to counterpoising strongly polar and non-polar materials thus creating the appropriate boundary conditions. This limits the utility these materials can have, however, by rendering (effectively) half of the structure unresponsive to applied stimuli. Here, using advanced thin-film deposition and an array of characterization and simulation approaches, polar vortices are realized in all-ferroelectric trilayers, multilayers, and superlattices built from the fundamental building block of (PbTiO<sub>3</sub>)<i><sub>n</sub></i>/(Pb<i><sub>x</sub></i>Sr<sub>1−</sub><i><sub>x</sub></i>TiO<sub>3</sub>)<i><sub>n</sub></i> wherein in-plane ferroelectric polarization in the Pb<i><sub>x</sub></i>Sr<sub>1−</sub><i><sub>x</sub></i>TiO<sub>3</sub> provides the appropriate boundary conditions. These superlattices exhibit substantially enhanced electromechanical and ferroelectric responses in the out-of-plane direction that arise from the ability of the polarization in both layers to rotate to the out-of-plane direction under field. In the in-plane direction, the layers are found to be strongly coupled during switching and when heterostructured with ferroelectric-dielectric building blocks, it is possible to produce multistate switching. This approach expands the realm of systems supporting emergent dipolar texture formation and does so with entirely ferroelectric materials thus greatly improving their responses.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"6 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering Topological and Chemical Disorder in Pd Sites for Record-Breaking Formic Acid Electrocatalytic Oxidation 利用钯位的拓扑和化学紊乱实现破纪录的甲酸电催化氧化
IF 29.4 1区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2024-11-13 DOI: 10.1002/adma.202414283
Xiaohong Tan, Jiarui Wang, Yuhang Xiao, Yingying Guo, Weidong He, Binjie Du, Hao Cui, Chengxin Wang
Designing palladium-based formic acid oxidation reaction (FAOR) catalysts to achieve significant breakthroughs in catalytic activity, pathway selectivity, and toxicity resistance is both urgent and challenging. Here, these challenges are addressed by pioneering a novel catalyst design that incorporates both topological and chemical disorder, developing a new class of PdCuLaYMnW high-entropy amorphous alloys with a porous network (Net-Pd-HEAA) as a highly active, selective, and stable FAOR electrocatalyst. This novel Net-Pd-HEAA demonstrates record-breaking FAOR performance, achieving the mass and specific activities of 5.94 A mgPd−1 and 8.94 mA cm−2, respectively, surpassing all previously reported Pd-based catalysts and showing strong competitiveness against advanced Pt-based catalysts. Simulataneously, Net-Pd-HEAA exhibits extraordinary stability in accelerated durability tests (ADT) and chronoamperometry (CA) tests. Advanced characterization and in situ, spectral analysis reveal that the extremely disordered atomic structure effectively regulates the geometric and electronic structure of the Pd sites, enhancing active intermediate coverage, facilitating dehydrogenation pathway, and inhibiting the production/adsorption of CO. Furthermore, when employed as the anode catalyst in proton exchange membrane water electrolysis (PEMWE), Net-Pd-HEAA only requires a potential of 1.28 V to obtain a current density of 1 A cm−2, and operates stably in a highly corrosive electrolyte for over 100 h.
设计钯基甲酸氧化反应(FAOR)催化剂,以便在催化活性、途径选择性和抗毒性方面实现重大突破,既紧迫又具有挑战性。本文通过开创性地结合拓扑和化学无序性的新型催化剂设计,开发出一类具有多孔网络的新型 PdCuLaYMnW 高熵无定形合金(Net-Pd-HEAA),作为一种高活性、高选择性和高稳定性的甲酸氧化反应电催化剂,来应对这些挑战。这种新型 Net-Pd-HEAA 具有破纪录的 FAOR 性能,其质量活性和比活性分别达到了 5.94 A mgPd-1 和 8.94 mA cm-2,超过了之前报道的所有钯基催化剂,与先进的铂基催化剂相比具有很强的竞争力。同时,Net-Pd-HEAA 在加速耐久性试验(ADT)和计时器测定法(CA)试验中表现出非凡的稳定性。先进的表征和原位光谱分析显示,极度无序的原子结构有效地调节了钯位点的几何和电子结构,提高了活性中间体的覆盖率,促进了脱氢途径,并抑制了 CO 的产生/吸附。此外,在质子交换膜电解水(PEMWE)中用作阳极催化剂时,Net-Pd-HEAA 只需要 1.28 V 的电位就能获得 1 A cm-2 的电流密度,并能在高腐蚀性电解质中稳定运行 100 小时以上。
{"title":"Engineering Topological and Chemical Disorder in Pd Sites for Record-Breaking Formic Acid Electrocatalytic Oxidation","authors":"Xiaohong Tan, Jiarui Wang, Yuhang Xiao, Yingying Guo, Weidong He, Binjie Du, Hao Cui, Chengxin Wang","doi":"10.1002/adma.202414283","DOIUrl":"https://doi.org/10.1002/adma.202414283","url":null,"abstract":"Designing palladium-based formic acid oxidation reaction (FAOR) catalysts to achieve significant breakthroughs in catalytic activity, pathway selectivity, and toxicity resistance is both urgent and challenging. Here, these challenges are addressed by pioneering a novel catalyst design that incorporates both topological and chemical disorder, developing a new class of PdCuLaYMnW high-entropy amorphous alloys with a porous network (Net-Pd-HEAA) as a highly active, selective, and stable FAOR electrocatalyst. This novel Net-Pd-HEAA demonstrates record-breaking FAOR performance, achieving the mass and specific activities of 5.94 A mg<sub>Pd</sub><sup>−1</sup> and 8.94 mA cm<sup>−2</sup>, respectively, surpassing all previously reported Pd-based catalysts and showing strong competitiveness against advanced Pt-based catalysts. Simulataneously, Net-Pd-HEAA exhibits extraordinary stability in accelerated durability tests (ADT) and chronoamperometry (CA) tests. Advanced characterization and in situ, spectral analysis reveal that the extremely disordered atomic structure effectively regulates the geometric and electronic structure of the Pd sites, enhancing active intermediate coverage, facilitating dehydrogenation pathway, and inhibiting the production/adsorption of CO. Furthermore, when employed as the anode catalyst in proton exchange membrane water electrolysis (PEMWE), Net-Pd-HEAA only requires a potential of 1.28 V to obtain a current density of 1 A cm<sup>−2</sup>, and operates stably in a highly corrosive electrolyte for over 100 h.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"17 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of SrZnOSe Crystals with Low Phonon Energy for Enhancing Near-Infrared Mechanoluminescence 合成低声子能量的 SrZnOSe 晶体以增强近红外机械发光能力
IF 29.4 1区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2024-11-12 DOI: 10.1002/adma.202406899
Yanze Wang, Biyun Ren, Weilin Zheng, Dengfeng Peng, Feng Wang
Near-infrared (NIR) light is promising for bioimaging and information technology due to its high penetration ability and resistance to interference with environmental radiation. Here, a new class of lanthanide-doped SrZnOSe crystals are developed for the self-sustainable generation of NIR emissions under mechanical excitation. It is shown that the SrZnOSe crystals render ≈5-fold stronger NIR emissions than the well-established CaZnOS due to the low phonon energies of the selenide host, as confirmed by Raman spectroscopy. The potential utility of the crystals is demonstrated by integration with a mouthguard, which can generate bright NIR emissions by bite force to transmit encrypted optical signals through thick tissues (up to 8 mm) in ambient environments. The findings provide a powerful addition to the toolbox of self-recovery mechanoluminescent materials and open new possibilities for applied research.
近红外(NIR)光具有穿透能力强、抗环境辐射干扰的特点,因此在生物成像和信息技术领域大有可为。本文开发了一类新型掺杂镧系元素的 SrZnOSe 晶体,可在机械激励下自持地产生近红外辐射。拉曼光谱证实,由于硒化物宿主的声子能量较低,SrZnOSe 晶体的近红外发射强度是成熟的 CaZnOS 晶体的 5 倍。这种晶体的潜在用途通过与护齿的集成得到了证明,护齿可以通过咬合力产生明亮的近红外辐射,从而在环境中通过厚组织(最厚达 8 毫米)传输加密的光学信号。这些发现为自恢复机械发光材料的工具箱提供了强有力的补充,并为应用研究开辟了新的可能性。
{"title":"Synthesis of SrZnOSe Crystals with Low Phonon Energy for Enhancing Near-Infrared Mechanoluminescence","authors":"Yanze Wang, Biyun Ren, Weilin Zheng, Dengfeng Peng, Feng Wang","doi":"10.1002/adma.202406899","DOIUrl":"https://doi.org/10.1002/adma.202406899","url":null,"abstract":"Near-infrared (NIR) light is promising for bioimaging and information technology due to its high penetration ability and resistance to interference with environmental radiation. Here, a new class of lanthanide-doped SrZnOSe crystals are developed for the self-sustainable generation of NIR emissions under mechanical excitation. It is shown that the SrZnOSe crystals render ≈5-fold stronger NIR emissions than the well-established CaZnOS due to the low phonon energies of the selenide host, as confirmed by Raman spectroscopy. The potential utility of the crystals is demonstrated by integration with a mouthguard, which can generate bright NIR emissions by bite force to transmit encrypted optical signals through thick tissues (up to 8 mm) in ambient environments. The findings provide a powerful addition to the toolbox of self-recovery mechanoluminescent materials and open new possibilities for applied research.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"23 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redox-Bipolar Covalent Organic Framework Cathode for Advanced Sodium-Organic Batteries 用于先进钠-有机电池的氧化还原-双极共价有机框架阴极
IF 29.4 1区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2024-11-12 DOI: 10.1002/adma.202411625
Linqi Cheng, Xiaoli Yan, Jie Yu, Xupeng Zhang, Heng-Guo Wang, Fengchao Cui, Yinghui Wang
Redox-active covalent organic frameworks (COFs) are promising candidates for sodium-ion batteries (SIBs). However, the construction of redox-bipolar COFs with the anions and cations co-storage feature for SIBs is rarely reported. Herein, redox-bipolar COF constructed from aniline-fused quinonoid units (TPAD-COF) is developed as the cathode material in SIBs for the first time. The unique integration of conductive aniline skeletons and quinone redox centers endows TPAD-COF with high ionic/electrical conductivity, abundant redox-active sites, and fascinating bipolar features. Consequently, the elaborately tailored TPAD-COF cathode exhibits higher specific capacity (186.4 mAh g−1 at 0.05 A g−1) and superior cycling performance (over 2000 cycles at 1.0 A g−1 with 0.015% decay rate per cycle). Impressively, TPAD-COF also displays a high specific capacity of 101 mAh g−1 even at −20 °C. As a proof of concept, all-organic SIBs (AOSIBs) are assembled using TPAD-COF cathode and disodium terephthalate anode, which also show impressive electrochemical properties, indicating the potential application of TPAD-COF cathode in AOSIBs. The work will pave the avenue toward advanced COFs cathode for rechargeable batteries through rational molecular design.
氧化还原活性共价有机框架(COF)是钠离子电池(SIB)的理想候选材料。然而,为钠离子电池构建具有阴阳离子共储功能的氧化还原双极 COF 的研究却鲜有报道。本文首次开发了由苯胺融合类醌单元构建的氧化还原双极 COF(TPAD-COF),作为 SIB 的阴极材料。导电苯胺骨架和醌氧化还原中心的独特结合赋予了 TPAD-COF 高离子/导电性、丰富的氧化还原活性位点和迷人的双极特性。因此,精心定制的 TPAD-COF 阴极具有更高的比容量(0.05 A g-1 时为 186.4 mAh g-1)和卓越的循环性能(1.0 A g-1 时超过 2000 个循环,每个循环的衰减率为 0.015%)。令人印象深刻的是,TPAD-COF 即使在零下 20 °C,也能显示出 101 mAh g-1 的高比容量。作为概念验证,使用 TPAD-COF 阴极和对苯二甲酸二钠阳极组装的全有机 SIB(AOSIB)也显示出令人印象深刻的电化学特性,表明 TPAD-COF 阴极在 AOSIB 中的潜在应用。这项工作将为通过合理的分子设计将先进的 COFs 阴极用于可充电电池铺平道路。
{"title":"Redox-Bipolar Covalent Organic Framework Cathode for Advanced Sodium-Organic Batteries","authors":"Linqi Cheng, Xiaoli Yan, Jie Yu, Xupeng Zhang, Heng-Guo Wang, Fengchao Cui, Yinghui Wang","doi":"10.1002/adma.202411625","DOIUrl":"https://doi.org/10.1002/adma.202411625","url":null,"abstract":"Redox-active covalent organic frameworks (COFs) are promising candidates for sodium-ion batteries (SIBs). However, the construction of redox-bipolar COFs with the anions and cations co-storage feature for SIBs is rarely reported. Herein, redox-bipolar COF constructed from aniline-fused quinonoid units (TPAD-COF) is developed as the cathode material in SIBs for the first time. The unique integration of conductive aniline skeletons and quinone redox centers endows TPAD-COF with high ionic/electrical conductivity, abundant redox-active sites, and fascinating bipolar features. Consequently, the elaborately tailored TPAD-COF cathode exhibits higher specific capacity (186.4 mAh g<sup>−1</sup> at 0.05 A g<sup>−1</sup>) and superior cycling performance (over 2000 cycles at 1.0 A g<sup>−1</sup> with 0.015% decay rate per cycle). Impressively, TPAD-COF also displays a high specific capacity of 101 mAh g<sup>−1</sup> even at −20 °C. As a proof of concept, all-organic SIBs (AOSIBs) are assembled using TPAD-COF cathode and disodium terephthalate anode, which also show impressive electrochemical properties, indicating the potential application of TPAD-COF cathode in AOSIBs. The work will pave the avenue toward advanced COFs cathode for rechargeable batteries through rational molecular design.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"61 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Greatly Enhanced Oxygen Reduction Reaction in Anion Exchange Membrane Fuel Cell and Zn-Air Battery via Hole Inner Edge Reconstruction of 2D Pd Nanomesh 通过二维钯纳米网格孔内缘重构大幅增强阴离子交换膜燃料电池和锌-空气电池中的氧还原反应
IF 29.4 1区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2024-11-12 DOI: 10.1002/adma.202412051
Jiakang Tian, Yanhui Song, Xiaodong Hao, Xudong Wang, Yongqing Shen, Peizhi Liu, Zebin Wei, Ting Liao, Lei Jiang, Junjie Guo, Bingshe Xu, Ziqi Sun
Platinum group metals (PGM) have yet to be the most active catalysts in various sustainable energy reactions. Their high cost, however, has made maximizing the activity and minimizing the dosage become an urgent priority for the practical applications of emerging technologies. Herein, a novel 2D Pd nanomesh structure possessing hole inner reconstructed edges (HIER) with exposed high energy facets and overstretched lattice parameters is fabricated through a facile room-temperature reduction method at gram-scale yields. The HIER enhances the catalytic performance of Pd in electrochemical oxygen reduction reaction (ORR), achieving superior mass activity (MA) of 2.672 A mgPd−1, which is 27.8 fold and 23.6 fold higher, respectively, than those of the commercial Pt/C (0.096 A mgPt−1) and Pd/C (0.113 A mgPd−1) at 0.9 VRHE. Most significantly, in H2-air anion exchange membrane fuel cell (AEMFC) and Zn-air battery (ZAB) applications, this unique Pd catalyst delivers a much-outperformed peak power density of 0.86 and 0.22 W cm−2, respectively, compared with 0.54 and 0.13 W cm−2 of the commercial Pt/C catalyst, indicating a novel pathway in electrocatalyst designs through HIER engineering.
在各种可持续能源反应中,铂族金属(PGM)一直是最活跃的催化剂。然而,铂族金属的高成本使得最大限度地提高活性和减少用量成为新兴技术实际应用的当务之急。在此,我们通过一种简单的室温还原方法,以克级产量制造出了一种新型二维钯纳米网状结构,这种结构具有孔内重构边(HIER),具有暴露的高能面和过度拉伸的晶格参数。HIER 增强了钯在电化学氧还原反应(ORR)中的催化性能,在 0.9 VRHE 条件下,钯的质量活度(MA)达到 2.672 A mgPd-1,分别比商业铂/钯(0.096 A mgPt-1)和钯/钯(0.113 A mgPd-1)高出 27.8 倍和 23.6 倍。最重要的是,在 H2- 空气阴离子交换膜燃料电池 (AEMFC) 和锌空气电池 (ZAB) 应用中,这种独特的钯催化剂的峰值功率密度分别为 0.86 W cm-2 和 0.22 W cm-2,远高于商用铂/钯催化剂的 0.54 W cm-2 和 0.13 W cm-2,这表明通过 HIER 工程在电催化剂设计方面开辟了一条新途径。
{"title":"Greatly Enhanced Oxygen Reduction Reaction in Anion Exchange Membrane Fuel Cell and Zn-Air Battery via Hole Inner Edge Reconstruction of 2D Pd Nanomesh","authors":"Jiakang Tian, Yanhui Song, Xiaodong Hao, Xudong Wang, Yongqing Shen, Peizhi Liu, Zebin Wei, Ting Liao, Lei Jiang, Junjie Guo, Bingshe Xu, Ziqi Sun","doi":"10.1002/adma.202412051","DOIUrl":"https://doi.org/10.1002/adma.202412051","url":null,"abstract":"Platinum group metals (PGM) have yet to be the most active catalysts in various sustainable energy reactions. Their high cost, however, has made maximizing the activity and minimizing the dosage become an urgent priority for the practical applications of emerging technologies. Herein, a novel 2D Pd nanomesh structure possessing hole inner reconstructed edges (HIER) with exposed high energy facets and overstretched lattice parameters is fabricated through a facile room-temperature reduction method at gram-scale yields. The HIER enhances the catalytic performance of Pd in electrochemical oxygen reduction reaction (ORR), achieving superior mass activity (MA) of 2.672 A mg<sub>Pd</sub><sup>−1</sup>, which is 27.8 fold and 23.6 fold higher, respectively, than those of the commercial Pt/C (0.096 A mg<sub>Pt</sub><sup>−1</sup>) and Pd/C (0.113 A mg<sub>Pd</sub><sup>−1</sup>) at 0.9 V<sub>RHE</sub>. Most significantly, in H<sub>2</sub>-air anion exchange membrane fuel cell (AEMFC) and Zn-air battery (ZAB) applications, this unique Pd catalyst delivers a much-outperformed peak power density of 0.86 and 0.22 W cm<sup>−2</sup>, respectively, compared with 0.54 and 0.13 W cm<sup>−2</sup> of the commercial Pt/C catalyst, indicating a novel pathway in electrocatalyst designs through HIER engineering.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"196 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Naturally Inspired Tree-Ring Structured Dressing Provides Sustained Wound Tightening and Accelerates Closure 天然树环结构敷料可持续收紧伤口并加速伤口闭合
IF 29.4 1区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2024-11-12 DOI: 10.1002/adma.202410845
Honggui Chen, Rui Zhang, Guo Zhang, Xiaoyang Liang, Chen Xu, Yang Li, Fu-Jian Xu
Mechanically regulated wound dressings require a rational combination of contraction and adhesion functions as well as balancing exudate-induced swelling issues. However, many of the reported dressings face the dilemma of impaired function and impeded wound self-contraction due to fluid-absorbing swelling. In this study, inspired by the tree ring, a core–ring structured hydrogel dressing capable of mechanical modulation is designed, and prepare it using a simple two-step photopolymerization process. The core covers the center of the wound, contracts spontaneously at body temperature to generate a contractile force of 3.4 kPa, and resists swelling. Meanwhile, the ring adheres to the normal epidermis around the wound and transfers the contraction stress to the wound edge. The integration of a functionally independent core and ring ultimately achieves effective wound traction and avoids dressing swelling. In murine and porcine skin wound-healing models, this hydrogel with a closely connected core and ring promotes healing by accelerating epidermal closure (50% closure in mouse skin on day 2, 85% closure in pig skin on day 8), collagen deposition, vascular maturation, and extracellular matrix remodeling. These results can guide further research on mechanical force modulation in wound healing, with the potential for clinical translation.
机械调节型伤口敷料需要将收缩和粘附功能合理地结合起来,并平衡渗出物引起的肿胀问题。然而,许多已报道的敷料都面临着功能受损和吸液肿胀导致伤口自我收缩受阻的困境。本研究受树环的启发,设计了一种具有机械调节功能的核环结构水凝胶敷料,并采用简单的两步光聚合工艺制备而成。核心覆盖伤口中心,在体温下会自发收缩,产生 3.4 kPa 的收缩力,并能抗肿胀。同时,环粘附在伤口周围的正常表皮上,并将收缩应力传递到伤口边缘。功能独立的核心和环的结合最终实现了有效的伤口牵引,避免了敷料肿胀。在小鼠和猪皮肤伤口愈合模型中,这种核心和环紧密相连的水凝胶通过加速表皮闭合(小鼠皮肤在第 2 天闭合 50%,猪皮肤在第 8 天闭合 85%)、胶原沉积、血管成熟和细胞外基质重塑来促进伤口愈合。这些结果可以指导对伤口愈合中机械力调节的进一步研究,并有可能应用于临床。
{"title":"Naturally Inspired Tree-Ring Structured Dressing Provides Sustained Wound Tightening and Accelerates Closure","authors":"Honggui Chen, Rui Zhang, Guo Zhang, Xiaoyang Liang, Chen Xu, Yang Li, Fu-Jian Xu","doi":"10.1002/adma.202410845","DOIUrl":"https://doi.org/10.1002/adma.202410845","url":null,"abstract":"Mechanically regulated wound dressings require a rational combination of contraction and adhesion functions as well as balancing exudate-induced swelling issues. However, many of the reported dressings face the dilemma of impaired function and impeded wound self-contraction due to fluid-absorbing swelling. In this study, inspired by the tree ring, a core–ring structured hydrogel dressing capable of mechanical modulation is designed, and prepare it using a simple two-step photopolymerization process. The core covers the center of the wound, contracts spontaneously at body temperature to generate a contractile force of 3.4 kPa, and resists swelling. Meanwhile, the ring adheres to the normal epidermis around the wound and transfers the contraction stress to the wound edge. The integration of a functionally independent core and ring ultimately achieves effective wound traction and avoids dressing swelling. In murine and porcine skin wound-healing models, this hydrogel with a closely connected core and ring promotes healing by accelerating epidermal closure (50% closure in mouse skin on day 2, 85% closure in pig skin on day 8), collagen deposition, vascular maturation, and extracellular matrix remodeling. These results can guide further research on mechanical force modulation in wound healing, with the potential for clinical translation.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"6 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A High-Stability Pressure-Sensitive Implantable Memristor for Pulmonary Hypertension Monitoring 用于肺动脉高压监测的高稳定性压力敏感型植入式可记忆晶体管
IF 29.4 1区 化学 Q1 CHEMISTRY, ANALYTICAL Pub Date : 2024-11-12 DOI: 10.1002/adma.202411659
Zelin Cao, Yiwei Liu, Bai Sun, Guangdong Zhou, Kaikai Gao, Siyu Sun, Yu Cui, Mengna Wang, Xianxia Yan, Tianfu Zhao, Xiaoliang Chen, Jinyou Shao, Sida Qin
Pulmonary hypertension (PH) significantly affects the quality of life and lifespan of humans and has promoted the development of flexible implantable electronic devices for PH diagnosis and prevention. Traditional implantable devices based on the von Neumann architecture face insurmountable challenges in processing large amounts of biological data due to computational bottlenecks. Memristors, with integrated in-memory sensing and computing capabilities, can effectively eliminate computational bottlenecks and become one of the most promising products in implantable devices for health monitoring. Here, a memristor with the Ag/MnO2/BaTiO3/FTO structure is implemented and implanted into Sprague‒Dawley (SD) rats. With polydimethylsiloxane (PDMS) packaging, the device can be continuously worked in vivo for up to four weeks, demonstrating excellent stability and biocompatibility. Furthermore, a memristive sensor array is designed for pulmonary artery blood pressure monitoring based on the pressure-responsive characteristics of the as-prepared memristive device. The front-end memristive sensor array can collect and feedback pressure signal, while noise reduction is achieved through memristive logic circuits, and ultimately the memristor neural network processes and classifies the information. Therefore, this work demonstrates the potential of implantable memristors for pulmonary artery pressure monitoring and provides new inspiration for the design of efficient, real-time, and reliable implantable pressure monitoring devices in medical health monitoring.
肺动脉高压(PH)严重影响人类的生活质量和寿命,促进了用于肺动脉高压诊断和预防的灵活植入式电子设备的发展。由于计算瓶颈,基于冯-诺依曼架构的传统植入式设备在处理大量生物数据时面临着难以克服的挑战。集成了内存传感和计算功能的忆阻器可以有效消除计算瓶颈,成为最有前景的健康监测植入式设备产品之一。在这里,我们实现了一种具有Ag/MnO2/BaTiO3/FTO结构的忆阻器,并将其植入Sprague-Dawley(SD)大鼠体内。通过聚二甲基硅氧烷(PDMS)封装,该装置可在体内连续工作长达四周,显示出卓越的稳定性和生物相容性。此外,根据制备的忆阻器的压力响应特性,还设计了用于肺动脉血压监测的忆阻器传感器阵列。前端忆阻器传感器阵列可以收集和反馈压力信号,同时通过忆阻器逻辑电路实现降噪,最终由忆阻器神经网络对信息进行处理和分类。因此,这项工作证明了植入式忆阻器在肺动脉压力监测方面的潜力,并为医疗健康监测领域设计高效、实时、可靠的植入式压力监测设备提供了新的灵感。
{"title":"A High-Stability Pressure-Sensitive Implantable Memristor for Pulmonary Hypertension Monitoring","authors":"Zelin Cao, Yiwei Liu, Bai Sun, Guangdong Zhou, Kaikai Gao, Siyu Sun, Yu Cui, Mengna Wang, Xianxia Yan, Tianfu Zhao, Xiaoliang Chen, Jinyou Shao, Sida Qin","doi":"10.1002/adma.202411659","DOIUrl":"https://doi.org/10.1002/adma.202411659","url":null,"abstract":"Pulmonary hypertension (PH) significantly affects the quality of life and lifespan of humans and has promoted the development of flexible implantable electronic devices for PH diagnosis and prevention. Traditional implantable devices based on the von Neumann architecture face insurmountable challenges in processing large amounts of biological data due to computational bottlenecks. Memristors, with integrated in-memory sensing and computing capabilities, can effectively eliminate computational bottlenecks and become one of the most promising products in implantable devices for health monitoring. Here, a memristor with the Ag/MnO<sub>2</sub>/BaTiO<sub>3</sub>/FTO structure is implemented and implanted into Sprague‒Dawley (SD) rats. With polydimethylsiloxane (PDMS) packaging, the device can be continuously worked in vivo for up to four weeks, demonstrating excellent stability and biocompatibility. Furthermore, a memristive sensor array is designed for pulmonary artery blood pressure monitoring based on the pressure-responsive characteristics of the as-prepared memristive device. The front-end memristive sensor array can collect and feedback pressure signal, while noise reduction is achieved through memristive logic circuits, and ultimately the memristor neural network processes and classifies the information. Therefore, this work demonstrates the potential of implantable memristors for pulmonary artery pressure monitoring and provides new inspiration for the design of efficient, real-time, and reliable implantable pressure monitoring devices in medical health monitoring.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"18 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Analytical Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1