Pub Date : 2024-02-01DOI: 10.32362/2500-316x-2024-12-1-7-14
V. V. Golubov, S. V. Manko
Objectives. The article substantiates the relevance of automatic docking of autonomous mobile robots. Specific examples show that the implementation of the automatic docking functions of autonomous robots reveals the potential for creating multi-agent systems with a transformable structure. The aim of the work is to develop means for automatic docking of autonomous mobile robots in complex scenarios and an uncertain environment.Methods. The proposed approach to automating autonomous mobile robot docking is reduced to a modification of the counter-growth rapidly-exploring random tree (RRT) method. It is based on the parallel execution of a decentralized route planning algorithm with mutual coordination of distributed computing processes. The effectiveness of the complex of algorithmic and software tools developed was evaluated using computer and natural simulation methods. The final series of full-scale experiments was carried out on the example of JetBot AI kit Nvidia platforms for automatic docking of autonomous robots. This was performed using the means and methods of intelligent control, visual navigation, technical vision and wireless network communication.Results. The study analyzed the features of automatic docking as one of the tasks of group control of autonomous robots. This is part of multi-agent systems, capable of reconfiguring structures for purposeful changes to the existing set of functional properties and application possibilities. The study also proposes a decentralized modification of the counter-growth RRT method. This allows the movements of autonomous mobile robots in the course of their mutual approach and subsequent docking to be planned. A set of software-algorithmic tools was developed to automate the docking of autonomous robots. A series of model and full-scale experiments were carried out to confirm the effectiveness of the approach developed herein.Conclusions. The modification presented herein of the counter-growth RRT method, traditionally used for planning the movements of manipulators and mobile platforms, is complementary to the tasks it resolves. This enables the docking of autonomous robots to be automated. The results obtained open up the potential for universal schedulers with extended functionality for autonomous robot control systems to be designed.
目的。文章论证了自主移动机器人自动对接的相关性。具体实例表明,自主机器人自动对接功能的实现揭示了创建具有可转换结构的多代理系统的潜力。这项工作的目的是开发在复杂场景和不确定环境中自动对接自主移动机器人的方法。所提出的自主移动机器人自动对接方法简化为逆生长快速探索随机树(RRT)方法的一种修正。该方法基于分布式计算进程相互协调的分散路线规划算法的并行执行。利用计算机和自然模拟方法对所开发的算法和软件工具的有效性进行了评估。最后,以自动机器人自动对接的 JetBot AI 套件 Nvidia 平台为例,进行了一系列全面实验。实验采用了智能控制、视觉导航、技术视觉和无线网络通信等手段和方法。研究分析了自动对接作为自主机器人群控任务之一的特点。这是多代理系统的一部分,能够重新配置结构,有目的地改变现有的功能特性和应用可能性。该研究还提出了反生长 RRT 方法的分散修改。这样就可以规划自主移动机器人在相互接近和随后对接过程中的运动。研究还开发了一套软件算法工具,用于自动实现自主机器人的对接。进行了一系列模型和全尺寸实验,以确认本文所开发方法的有效性。本文介绍的反生长 RRT 方法传统上用于规划机械手和移动平台的运动,对该方法的修改与其解决的任务相辅相成。这使得自主机器人的对接实现了自动化。所取得的成果为设计具有扩展功能的通用调度器提供了可能性,可用于自主机器人控制系统。
{"title":"Automation of autonomous mobile robot docking based on the counter growth rapidly exploring random tree method","authors":"V. V. Golubov, S. V. Manko","doi":"10.32362/2500-316x-2024-12-1-7-14","DOIUrl":"https://doi.org/10.32362/2500-316x-2024-12-1-7-14","url":null,"abstract":"Objectives. The article substantiates the relevance of automatic docking of autonomous mobile robots. Specific examples show that the implementation of the automatic docking functions of autonomous robots reveals the potential for creating multi-agent systems with a transformable structure. The aim of the work is to develop means for automatic docking of autonomous mobile robots in complex scenarios and an uncertain environment.Methods. The proposed approach to automating autonomous mobile robot docking is reduced to a modification of the counter-growth rapidly-exploring random tree (RRT) method. It is based on the parallel execution of a decentralized route planning algorithm with mutual coordination of distributed computing processes. The effectiveness of the complex of algorithmic and software tools developed was evaluated using computer and natural simulation methods. The final series of full-scale experiments was carried out on the example of JetBot AI kit Nvidia platforms for automatic docking of autonomous robots. This was performed using the means and methods of intelligent control, visual navigation, technical vision and wireless network communication.Results. The study analyzed the features of automatic docking as one of the tasks of group control of autonomous robots. This is part of multi-agent systems, capable of reconfiguring structures for purposeful changes to the existing set of functional properties and application possibilities. The study also proposes a decentralized modification of the counter-growth RRT method. This allows the movements of autonomous mobile robots in the course of their mutual approach and subsequent docking to be planned. A set of software-algorithmic tools was developed to automate the docking of autonomous robots. A series of model and full-scale experiments were carried out to confirm the effectiveness of the approach developed herein.Conclusions. The modification presented herein of the counter-growth RRT method, traditionally used for planning the movements of manipulators and mobile platforms, is complementary to the tasks it resolves. This enables the docking of autonomous robots to be automated. The results obtained open up the potential for universal schedulers with extended functionality for autonomous robot control systems to be designed.","PeriodicalId":282368,"journal":{"name":"Russian Technological Journal","volume":"28 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139684123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.32362/2500-316x-2024-12-1-59-68
G. V. Kulikov, X. K. Dang
Objectives. At the present time, amplitude-phase shift keyed (APSK) signals are actively used in satellite communication systems. In particular, they are applied in systems which operate in a limited radio frequency spectrum with increased data transmission quality requirements. Such systems use multi-channel type receivers with maximum likelihood decision on the received symbol (correlation receiver) or quadrature type receivers. The noise immunity of these receivers is directly dependent on the quality of the formation of reference oscillations. These oscillations are reference signals for correlation receivers and in-phase and quadrature components for quadrature receivers. The aim of the work is to analyze the influence of the amplitude and phase parameter spread of the in-phase and quadrature channels on the noise immunity of receiving APSK signals with a circular shape of the signal constellation.Methods. Methods of statistical radio engineering, theory of optimal signal reception, and computer simulation are used.Results. The study established the characteristics of noise immunity of the APSK signal reception depending on the spread of parameters of the quadrature converter. The theoretical calculations were confirmed by the results of modeling the transmission of APSK signals in a Gaussian communication channel. A comparison with systems using quadrature amplitude modulation (QAM) was carried out, in order to assess system stability in the presence of spread parameters among other similar systems.Conclusions. The studies enabled us to conclude that an imbalance of the quadrature reference oscillations can lead to a significant decrease in the noise immunity of radio systems using APSK signals. The minimum energy loss due to imbalance of quadrature reference oscillations is achieved when the imbalance value is less than 10% in amplitude and 2°–3° in phase. The amplitude imbalance of quadrature reference oscillations when receiving QAM signals is more pronounced than in the case of APSK signals. The phase imbalance affects approximately the same.
{"title":"Influence of quadrature transformation imbalance on the noise immunity of signal reception with amplitude-phase shift keying","authors":"G. V. Kulikov, X. K. Dang","doi":"10.32362/2500-316x-2024-12-1-59-68","DOIUrl":"https://doi.org/10.32362/2500-316x-2024-12-1-59-68","url":null,"abstract":"Objectives. At the present time, amplitude-phase shift keyed (APSK) signals are actively used in satellite communication systems. In particular, they are applied in systems which operate in a limited radio frequency spectrum with increased data transmission quality requirements. Such systems use multi-channel type receivers with maximum likelihood decision on the received symbol (correlation receiver) or quadrature type receivers. The noise immunity of these receivers is directly dependent on the quality of the formation of reference oscillations. These oscillations are reference signals for correlation receivers and in-phase and quadrature components for quadrature receivers. The aim of the work is to analyze the influence of the amplitude and phase parameter spread of the in-phase and quadrature channels on the noise immunity of receiving APSK signals with a circular shape of the signal constellation.Methods. Methods of statistical radio engineering, theory of optimal signal reception, and computer simulation are used.Results. The study established the characteristics of noise immunity of the APSK signal reception depending on the spread of parameters of the quadrature converter. The theoretical calculations were confirmed by the results of modeling the transmission of APSK signals in a Gaussian communication channel. A comparison with systems using quadrature amplitude modulation (QAM) was carried out, in order to assess system stability in the presence of spread parameters among other similar systems.Conclusions. The studies enabled us to conclude that an imbalance of the quadrature reference oscillations can lead to a significant decrease in the noise immunity of radio systems using APSK signals. The minimum energy loss due to imbalance of quadrature reference oscillations is achieved when the imbalance value is less than 10% in amplitude and 2°–3° in phase. The amplitude imbalance of quadrature reference oscillations when receiving QAM signals is more pronounced than in the case of APSK signals. The phase imbalance affects approximately the same.","PeriodicalId":282368,"journal":{"name":"Russian Technological Journal","volume":"29 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139814723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.32362/2500-316x-2024-12-1-30-58
A. V. Gevorsky, M. S. Kostin, K. A. Boikov
Objectives. The aim of this study is to develop and analyze parameters for a multifunctional audio module based on the ADAU1701 audio digital signal processor in the SigmaStudio environment. This will be used for testing audio devices in the following modes: routing of balanced and unbalanced audio channels according to the differential scheme Di-Box/R Di-Box; spatiotemporal and dynamic audio processing; three-band monochannel cross-separation with independent equalization; and correction of the frequency response of the audio channel with tracking notch auto-suppression of electro-acoustic positive feedback in a given spectral band.Methods. Visual-graphical architectural programming of audio modules in the SigmaStudio and Flowstone, as well as algorithms for real-time signal audio measurements and analysis of experimental data in the REW and Soundcard Oscilloscope are used.Results. The characteristics of the Di-Box/R Di-Box circuit were studied, in order to estimate the effect of differential signal conversion on the signal-to-noise ratio in the audio signal path. The characteristics of the reverberation and saturation submodules were established. Furthermore, the effect of equalization modes on the frequency response correction of a studio audio monitor was determined. The paper also studied the effect of an audio compressor on the dynamic range and the level of the output signal. The experimental results of the submodule for compensating the frequency response of an audio monitor using matched filtering were established, and the spectral characteristics of the submodule for automatic suppression of electro-acoustic positive feedback were obtained.Conclusions. The software architecture of a multifunctional audio module based on the ADAU1701 audio digital signal processor for testing and debugging media devices in a given spectral-dynamic and spectral-temporal ranges was designed. Balanced routing allows the effect of noise induced into the audio channel to be reduced 20-fold, thus enabling calibration of pickup audio devices. The audio signal processing submodule provides: compression response in the dynamic range from −27 to 18.6 dB with the possibility of equalization parameterization in the range of 0.04–18 kHz; reverberation response in the range from 0.5–3000 ms; audio-channel cross-division into 3 with the ability to adjust the amplitude-frequency response in the dynamic range from −30 to 30 dB. The auto-correction submodule of the amplitude-frequency response allows the dynamic nonuniformity of the amplitude-frequency response to be reduced by 40 dB. The auto-suppression submodule of electro-acoustic positive feedback provides notch formant suppression up to −100 dB with an input dynamic range from −50 to 80 dB.
{"title":"Software-architectural configuration of the multifunctional audio digital signal processor module for signal mediatesting of audio devices","authors":"A. V. Gevorsky, M. S. Kostin, K. A. Boikov","doi":"10.32362/2500-316x-2024-12-1-30-58","DOIUrl":"https://doi.org/10.32362/2500-316x-2024-12-1-30-58","url":null,"abstract":"Objectives. The aim of this study is to develop and analyze parameters for a multifunctional audio module based on the ADAU1701 audio digital signal processor in the SigmaStudio environment. This will be used for testing audio devices in the following modes: routing of balanced and unbalanced audio channels according to the differential scheme Di-Box/R Di-Box; spatiotemporal and dynamic audio processing; three-band monochannel cross-separation with independent equalization; and correction of the frequency response of the audio channel with tracking notch auto-suppression of electro-acoustic positive feedback in a given spectral band.Methods. Visual-graphical architectural programming of audio modules in the SigmaStudio and Flowstone, as well as algorithms for real-time signal audio measurements and analysis of experimental data in the REW and Soundcard Oscilloscope are used.Results. The characteristics of the Di-Box/R Di-Box circuit were studied, in order to estimate the effect of differential signal conversion on the signal-to-noise ratio in the audio signal path. The characteristics of the reverberation and saturation submodules were established. Furthermore, the effect of equalization modes on the frequency response correction of a studio audio monitor was determined. The paper also studied the effect of an audio compressor on the dynamic range and the level of the output signal. The experimental results of the submodule for compensating the frequency response of an audio monitor using matched filtering were established, and the spectral characteristics of the submodule for automatic suppression of electro-acoustic positive feedback were obtained.Conclusions. The software architecture of a multifunctional audio module based on the ADAU1701 audio digital signal processor for testing and debugging media devices in a given spectral-dynamic and spectral-temporal ranges was designed. Balanced routing allows the effect of noise induced into the audio channel to be reduced 20-fold, thus enabling calibration of pickup audio devices. The audio signal processing submodule provides: compression response in the dynamic range from −27 to 18.6 dB with the possibility of equalization parameterization in the range of 0.04–18 kHz; reverberation response in the range from 0.5–3000 ms; audio-channel cross-division into 3 with the ability to adjust the amplitude-frequency response in the dynamic range from −30 to 30 dB. The auto-correction submodule of the amplitude-frequency response allows the dynamic nonuniformity of the amplitude-frequency response to be reduced by 40 dB. The auto-suppression submodule of electro-acoustic positive feedback provides notch formant suppression up to −100 dB with an input dynamic range from −50 to 80 dB.","PeriodicalId":282368,"journal":{"name":"Russian Technological Journal","volume":"127 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139820339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.32362/2500-316x-2024-12-1-15-29
S. Uvaysov, N. T. Luu, C. D. Nguyen, Th. H. Vo, A. V. Dolmatov
Objectives. Defects in the form of layering may occur during lamination in the production of multilayer printed circuit boards (MPCB). These defects cannot be detected by optical and electrical methods of output control. However, they can lead to breaches of the mechanical mode of operation and failures while running radioelectronic devices. In order to detect such defects, the acoustic emission (AE) method is proposed. This is based on the occurrence and propagation of acoustic waves in MPCBs caused by the presence of defects. The aim of this study is to investigate the possibility of using the AE method to detect defects in multilayer printed circuit boards. These defects can occur, in particular, in the lamination process.Methods. A mechanical processes modeling program (for research on the MPCB model) and various samples of two-layer printed circuit boards with pre-introduced defects (for experimental studies) were used to study the propagation of acoustic signals in the MPCB in the presence of defects. A solenoid mounted on the MPCB was used as a source of acoustic signals, while a piezoelectric sensor was used to receive signals. Data processing was carried out by comparing AE signals obtained for a serviceable MPCB sample and for MPCB samples with defects.Results. Simulation of the acoustic signal propagation in MPCBs in serviceable and faulty (with a rectangular defect in the form of delamination) states was carried out to show the difference in the received signals at the sensor installation point. Experimental studies were also conducted to examine the AE method applicability for detecting defects of various sizes and quantities.Conclusions. The studies demonstrated that the AE method allows the presence of defects in MPCB occurring during the lamination process to be detected effectively and reliably. This study proposes a new approach to non-destructive testing of MPCB using the AE method. This method significantly increases the reliability of MPCBs and the efficiency of their production processes.
{"title":"Detection of defects in printed circuit boards by the acoustic emission method","authors":"S. Uvaysov, N. T. Luu, C. D. Nguyen, Th. H. Vo, A. V. Dolmatov","doi":"10.32362/2500-316x-2024-12-1-15-29","DOIUrl":"https://doi.org/10.32362/2500-316x-2024-12-1-15-29","url":null,"abstract":"Objectives. Defects in the form of layering may occur during lamination in the production of multilayer printed circuit boards (MPCB). These defects cannot be detected by optical and electrical methods of output control. However, they can lead to breaches of the mechanical mode of operation and failures while running radioelectronic devices. In order to detect such defects, the acoustic emission (AE) method is proposed. This is based on the occurrence and propagation of acoustic waves in MPCBs caused by the presence of defects. The aim of this study is to investigate the possibility of using the AE method to detect defects in multilayer printed circuit boards. These defects can occur, in particular, in the lamination process.Methods. A mechanical processes modeling program (for research on the MPCB model) and various samples of two-layer printed circuit boards with pre-introduced defects (for experimental studies) were used to study the propagation of acoustic signals in the MPCB in the presence of defects. A solenoid mounted on the MPCB was used as a source of acoustic signals, while a piezoelectric sensor was used to receive signals. Data processing was carried out by comparing AE signals obtained for a serviceable MPCB sample and for MPCB samples with defects.Results. Simulation of the acoustic signal propagation in MPCBs in serviceable and faulty (with a rectangular defect in the form of delamination) states was carried out to show the difference in the received signals at the sensor installation point. Experimental studies were also conducted to examine the AE method applicability for detecting defects of various sizes and quantities.Conclusions. The studies demonstrated that the AE method allows the presence of defects in MPCB occurring during the lamination process to be detected effectively and reliably. This study proposes a new approach to non-destructive testing of MPCB using the AE method. This method significantly increases the reliability of MPCBs and the efficiency of their production processes.","PeriodicalId":282368,"journal":{"name":"Russian Technological Journal","volume":"89 3‐4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139813252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.32362/2500-316x-2024-12-1-15-29
S. Uvaysov, N. T. Luu, C. D. Nguyen, Th. H. Vo, A. V. Dolmatov
Objectives. Defects in the form of layering may occur during lamination in the production of multilayer printed circuit boards (MPCB). These defects cannot be detected by optical and electrical methods of output control. However, they can lead to breaches of the mechanical mode of operation and failures while running radioelectronic devices. In order to detect such defects, the acoustic emission (AE) method is proposed. This is based on the occurrence and propagation of acoustic waves in MPCBs caused by the presence of defects. The aim of this study is to investigate the possibility of using the AE method to detect defects in multilayer printed circuit boards. These defects can occur, in particular, in the lamination process.Methods. A mechanical processes modeling program (for research on the MPCB model) and various samples of two-layer printed circuit boards with pre-introduced defects (for experimental studies) were used to study the propagation of acoustic signals in the MPCB in the presence of defects. A solenoid mounted on the MPCB was used as a source of acoustic signals, while a piezoelectric sensor was used to receive signals. Data processing was carried out by comparing AE signals obtained for a serviceable MPCB sample and for MPCB samples with defects.Results. Simulation of the acoustic signal propagation in MPCBs in serviceable and faulty (with a rectangular defect in the form of delamination) states was carried out to show the difference in the received signals at the sensor installation point. Experimental studies were also conducted to examine the AE method applicability for detecting defects of various sizes and quantities.Conclusions. The studies demonstrated that the AE method allows the presence of defects in MPCB occurring during the lamination process to be detected effectively and reliably. This study proposes a new approach to non-destructive testing of MPCB using the AE method. This method significantly increases the reliability of MPCBs and the efficiency of their production processes.
{"title":"Detection of defects in printed circuit boards by the acoustic emission method","authors":"S. Uvaysov, N. T. Luu, C. D. Nguyen, Th. H. Vo, A. V. Dolmatov","doi":"10.32362/2500-316x-2024-12-1-15-29","DOIUrl":"https://doi.org/10.32362/2500-316x-2024-12-1-15-29","url":null,"abstract":"Objectives. Defects in the form of layering may occur during lamination in the production of multilayer printed circuit boards (MPCB). These defects cannot be detected by optical and electrical methods of output control. However, they can lead to breaches of the mechanical mode of operation and failures while running radioelectronic devices. In order to detect such defects, the acoustic emission (AE) method is proposed. This is based on the occurrence and propagation of acoustic waves in MPCBs caused by the presence of defects. The aim of this study is to investigate the possibility of using the AE method to detect defects in multilayer printed circuit boards. These defects can occur, in particular, in the lamination process.Methods. A mechanical processes modeling program (for research on the MPCB model) and various samples of two-layer printed circuit boards with pre-introduced defects (for experimental studies) were used to study the propagation of acoustic signals in the MPCB in the presence of defects. A solenoid mounted on the MPCB was used as a source of acoustic signals, while a piezoelectric sensor was used to receive signals. Data processing was carried out by comparing AE signals obtained for a serviceable MPCB sample and for MPCB samples with defects.Results. Simulation of the acoustic signal propagation in MPCBs in serviceable and faulty (with a rectangular defect in the form of delamination) states was carried out to show the difference in the received signals at the sensor installation point. Experimental studies were also conducted to examine the AE method applicability for detecting defects of various sizes and quantities.Conclusions. The studies demonstrated that the AE method allows the presence of defects in MPCB occurring during the lamination process to be detected effectively and reliably. This study proposes a new approach to non-destructive testing of MPCB using the AE method. This method significantly increases the reliability of MPCBs and the efficiency of their production processes.","PeriodicalId":282368,"journal":{"name":"Russian Technological Journal","volume":"66 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139872988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.32362/2500-316x-2024-12-1-59-68
G. V. Kulikov, X. K. Dang
Objectives. At the present time, amplitude-phase shift keyed (APSK) signals are actively used in satellite communication systems. In particular, they are applied in systems which operate in a limited radio frequency spectrum with increased data transmission quality requirements. Such systems use multi-channel type receivers with maximum likelihood decision on the received symbol (correlation receiver) or quadrature type receivers. The noise immunity of these receivers is directly dependent on the quality of the formation of reference oscillations. These oscillations are reference signals for correlation receivers and in-phase and quadrature components for quadrature receivers. The aim of the work is to analyze the influence of the amplitude and phase parameter spread of the in-phase and quadrature channels on the noise immunity of receiving APSK signals with a circular shape of the signal constellation.Methods. Methods of statistical radio engineering, theory of optimal signal reception, and computer simulation are used.Results. The study established the characteristics of noise immunity of the APSK signal reception depending on the spread of parameters of the quadrature converter. The theoretical calculations were confirmed by the results of modeling the transmission of APSK signals in a Gaussian communication channel. A comparison with systems using quadrature amplitude modulation (QAM) was carried out, in order to assess system stability in the presence of spread parameters among other similar systems.Conclusions. The studies enabled us to conclude that an imbalance of the quadrature reference oscillations can lead to a significant decrease in the noise immunity of radio systems using APSK signals. The minimum energy loss due to imbalance of quadrature reference oscillations is achieved when the imbalance value is less than 10% in amplitude and 2°–3° in phase. The amplitude imbalance of quadrature reference oscillations when receiving QAM signals is more pronounced than in the case of APSK signals. The phase imbalance affects approximately the same.
{"title":"Influence of quadrature transformation imbalance on the noise immunity of signal reception with amplitude-phase shift keying","authors":"G. V. Kulikov, X. K. Dang","doi":"10.32362/2500-316x-2024-12-1-59-68","DOIUrl":"https://doi.org/10.32362/2500-316x-2024-12-1-59-68","url":null,"abstract":"Objectives. At the present time, amplitude-phase shift keyed (APSK) signals are actively used in satellite communication systems. In particular, they are applied in systems which operate in a limited radio frequency spectrum with increased data transmission quality requirements. Such systems use multi-channel type receivers with maximum likelihood decision on the received symbol (correlation receiver) or quadrature type receivers. The noise immunity of these receivers is directly dependent on the quality of the formation of reference oscillations. These oscillations are reference signals for correlation receivers and in-phase and quadrature components for quadrature receivers. The aim of the work is to analyze the influence of the amplitude and phase parameter spread of the in-phase and quadrature channels on the noise immunity of receiving APSK signals with a circular shape of the signal constellation.Methods. Methods of statistical radio engineering, theory of optimal signal reception, and computer simulation are used.Results. The study established the characteristics of noise immunity of the APSK signal reception depending on the spread of parameters of the quadrature converter. The theoretical calculations were confirmed by the results of modeling the transmission of APSK signals in a Gaussian communication channel. A comparison with systems using quadrature amplitude modulation (QAM) was carried out, in order to assess system stability in the presence of spread parameters among other similar systems.Conclusions. The studies enabled us to conclude that an imbalance of the quadrature reference oscillations can lead to a significant decrease in the noise immunity of radio systems using APSK signals. The minimum energy loss due to imbalance of quadrature reference oscillations is achieved when the imbalance value is less than 10% in amplitude and 2°–3° in phase. The amplitude imbalance of quadrature reference oscillations when receiving QAM signals is more pronounced than in the case of APSK signals. The phase imbalance affects approximately the same.","PeriodicalId":282368,"journal":{"name":"Russian Technological Journal","volume":"33 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139874575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.32362/2500-316x-2024-12-1-30-58
A. V. Gevorsky, M. S. Kostin, K. A. Boikov
Objectives. The aim of this study is to develop and analyze parameters for a multifunctional audio module based on the ADAU1701 audio digital signal processor in the SigmaStudio environment. This will be used for testing audio devices in the following modes: routing of balanced and unbalanced audio channels according to the differential scheme Di-Box/R Di-Box; spatiotemporal and dynamic audio processing; three-band monochannel cross-separation with independent equalization; and correction of the frequency response of the audio channel with tracking notch auto-suppression of electro-acoustic positive feedback in a given spectral band.Methods. Visual-graphical architectural programming of audio modules in the SigmaStudio and Flowstone, as well as algorithms for real-time signal audio measurements and analysis of experimental data in the REW and Soundcard Oscilloscope are used.Results. The characteristics of the Di-Box/R Di-Box circuit were studied, in order to estimate the effect of differential signal conversion on the signal-to-noise ratio in the audio signal path. The characteristics of the reverberation and saturation submodules were established. Furthermore, the effect of equalization modes on the frequency response correction of a studio audio monitor was determined. The paper also studied the effect of an audio compressor on the dynamic range and the level of the output signal. The experimental results of the submodule for compensating the frequency response of an audio monitor using matched filtering were established, and the spectral characteristics of the submodule for automatic suppression of electro-acoustic positive feedback were obtained.Conclusions. The software architecture of a multifunctional audio module based on the ADAU1701 audio digital signal processor for testing and debugging media devices in a given spectral-dynamic and spectral-temporal ranges was designed. Balanced routing allows the effect of noise induced into the audio channel to be reduced 20-fold, thus enabling calibration of pickup audio devices. The audio signal processing submodule provides: compression response in the dynamic range from −27 to 18.6 dB with the possibility of equalization parameterization in the range of 0.04–18 kHz; reverberation response in the range from 0.5–3000 ms; audio-channel cross-division into 3 with the ability to adjust the amplitude-frequency response in the dynamic range from −30 to 30 dB. The auto-correction submodule of the amplitude-frequency response allows the dynamic nonuniformity of the amplitude-frequency response to be reduced by 40 dB. The auto-suppression submodule of electro-acoustic positive feedback provides notch formant suppression up to −100 dB with an input dynamic range from −50 to 80 dB.
{"title":"Software-architectural configuration of the multifunctional audio digital signal processor module for signal mediatesting of audio devices","authors":"A. V. Gevorsky, M. S. Kostin, K. A. Boikov","doi":"10.32362/2500-316x-2024-12-1-30-58","DOIUrl":"https://doi.org/10.32362/2500-316x-2024-12-1-30-58","url":null,"abstract":"Objectives. The aim of this study is to develop and analyze parameters for a multifunctional audio module based on the ADAU1701 audio digital signal processor in the SigmaStudio environment. This will be used for testing audio devices in the following modes: routing of balanced and unbalanced audio channels according to the differential scheme Di-Box/R Di-Box; spatiotemporal and dynamic audio processing; three-band monochannel cross-separation with independent equalization; and correction of the frequency response of the audio channel with tracking notch auto-suppression of electro-acoustic positive feedback in a given spectral band.Methods. Visual-graphical architectural programming of audio modules in the SigmaStudio and Flowstone, as well as algorithms for real-time signal audio measurements and analysis of experimental data in the REW and Soundcard Oscilloscope are used.Results. The characteristics of the Di-Box/R Di-Box circuit were studied, in order to estimate the effect of differential signal conversion on the signal-to-noise ratio in the audio signal path. The characteristics of the reverberation and saturation submodules were established. Furthermore, the effect of equalization modes on the frequency response correction of a studio audio monitor was determined. The paper also studied the effect of an audio compressor on the dynamic range and the level of the output signal. The experimental results of the submodule for compensating the frequency response of an audio monitor using matched filtering were established, and the spectral characteristics of the submodule for automatic suppression of electro-acoustic positive feedback were obtained.Conclusions. The software architecture of a multifunctional audio module based on the ADAU1701 audio digital signal processor for testing and debugging media devices in a given spectral-dynamic and spectral-temporal ranges was designed. Balanced routing allows the effect of noise induced into the audio channel to be reduced 20-fold, thus enabling calibration of pickup audio devices. The audio signal processing submodule provides: compression response in the dynamic range from −27 to 18.6 dB with the possibility of equalization parameterization in the range of 0.04–18 kHz; reverberation response in the range from 0.5–3000 ms; audio-channel cross-division into 3 with the ability to adjust the amplitude-frequency response in the dynamic range from −30 to 30 dB. The auto-correction submodule of the amplitude-frequency response allows the dynamic nonuniformity of the amplitude-frequency response to be reduced by 40 dB. The auto-suppression submodule of electro-acoustic positive feedback provides notch formant suppression up to −100 dB with an input dynamic range from −50 to 80 dB.","PeriodicalId":282368,"journal":{"name":"Russian Technological Journal","volume":"29 3-4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139880548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-14DOI: 10.32362/2500-316x-2023-11-6-89-98
S. I. Dovguchits
Objectives. The aim ofthis work is to enhance the scientific and methodological apparatus of artificial intelligence (AI) sciences by enriching their conceptual framework. The current conceptual framework of AI sciences does not reflect the intricate nature of this technological and socioeconomic phenomenon as possessing the diverse range of capabilities and the interconnectedness that allows for the imitation of human cognitive functions and comparable results. The author of the article structures the concept of the technological package of AI, describing its system properties, connections and functional elements based on the various types of human cognitive and operational activities.Methods. The research is based on the concept (method) of technological packages—genetically and functionally connected sets of technologies with system properties.Results. For the first time in Russian and international practice, the basic (general) taxonomy of the AI technological package has been specified and structured. A taxonomy of the AI metatechnological package (a package of metatechnologies) has been proposed. General taxonomy can serve as a tool for improving strategies, methodological documents and state programs to define the development of AI systems at state or industry level.Conclusions. The suggested basic (general) taxonomy oftechnological package and taxonomy of metatechnologies package allows research to move away from the limited view of AI. It increases semantic and methodological clarity in relation to AI as a complex technosocial phenomenon and contributes to the harmonized integration of AI systems intо the sphere of socioeconomic activities of the state. It can thus serve as a foundation for further improvement of state economic and legal regulation of AI development.
{"title":"Semantic features of complex technosocial systems: On the taxonomy of artificial intelligence technological packages","authors":"S. I. Dovguchits","doi":"10.32362/2500-316x-2023-11-6-89-98","DOIUrl":"https://doi.org/10.32362/2500-316x-2023-11-6-89-98","url":null,"abstract":"Objectives. The aim ofthis work is to enhance the scientific and methodological apparatus of artificial intelligence (AI) sciences by enriching their conceptual framework. The current conceptual framework of AI sciences does not reflect the intricate nature of this technological and socioeconomic phenomenon as possessing the diverse range of capabilities and the interconnectedness that allows for the imitation of human cognitive functions and comparable results. The author of the article structures the concept of the technological package of AI, describing its system properties, connections and functional elements based on the various types of human cognitive and operational activities.Methods. The research is based on the concept (method) of technological packages—genetically and functionally connected sets of technologies with system properties.Results. For the first time in Russian and international practice, the basic (general) taxonomy of the AI technological package has been specified and structured. A taxonomy of the AI metatechnological package (a package of metatechnologies) has been proposed. General taxonomy can serve as a tool for improving strategies, methodological documents and state programs to define the development of AI systems at state or industry level.Conclusions. The suggested basic (general) taxonomy oftechnological package and taxonomy of metatechnologies package allows research to move away from the limited view of AI. It increases semantic and methodological clarity in relation to AI as a complex technosocial phenomenon and contributes to the harmonized integration of AI systems intо the sphere of socioeconomic activities of the state. It can thus serve as a foundation for further improvement of state economic and legal regulation of AI development.","PeriodicalId":282368,"journal":{"name":"Russian Technological Journal","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139001430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-14DOI: 10.32362/2500-316x-2023-11-6-28-38
V. K. Bityukov, A. V. Dolmatov, A. A. Zadernovsky, A. I. Starikovsky, R. M. Uvaysov
Objectives. A variety of technical condition control methods are used in the production and operation of printed circuit assemblies (PCA) for radio-electronic means (REM). The main methods are optical, electrical, and thermal. However, not all possible defects can be detected using these methods. For example, a weakened PCA fastener in a block or the incorrect installation of an electric radioelement (ERE) on a printed circuit board (PCB) can be detected only by analyzing the mechanical characteristics of the REM. These factors, in particular, are the values of the vibration acceleration amplitudes on ERE or at selected PCB control points (hereinafter referred to as the PCA vibration acceleration amplitude). In order to draw a conclusion about the presence of a defect, the measured values of the vibration acceleration amplitudes obtained as a result of testing PCA for the effects of harmonic vibration are compared with the permissible values calculated during the simulation of mechanical processes in PCA. This takes into account the variations in the physical and mechanical parameters of materials and geometric parameters of the PCA design. The aim of this paper is to determine the permissible values of PCA vibration acceleration amplitudes to be compared with the measured values.Methods. The Monte Carlo simulation method is used to calculate the permissible deviations of vibration accelerations. This consists in repeatedly calculating the values of the vibration acceleration amplitudes at random values of the physical and mechanical parameters of materials and geometric parameters of the PCA design within their tolerances.Results. Experimental verification of this method was carried out using the SolidWorks software for modeling mechanical processes. This enabled the tolerance values for PCA vibration acceleration at the control point at the first resonant frequency to be established and experimental data to be obtained when introducing various defects. The results of comparing the measured values with the calculated tolerance enabled conclusions to be made with regard to the possibility of detecting PCA defects.Conclusions. Using this method of calculating tolerances for the PCA vibration acceleration amplitude allows the presence of defects in REM that do not affect the electrical or thermal characteristics of REM to be determined, thus increasing the efficiency of technical condition control.
目的。在无线电电子设备(REM)印刷电路组件(PCA)的生产和运行过程中,使用了多种技术条件控制方法。主要方法有光学、电学和热学。然而,并非所有可能的缺陷都能通过这些方法检测出来。例如,只有通过分析 REM 的机械特性,才能检测出块中 PCA 紧固件的松动或印刷电路板 (PCB) 上无线电元件 (ERE) 的错误安装。这些因素尤其是 ERE 上或所选 PCB 控制点上的振动加速度振幅值(以下称为 PCA 振动加速度振幅)。为了得出是否存在缺陷的结论,需要将 PCA 谐振效应测试后获得的振动加速度振幅测量值与 PCA 机械过程模拟中计算出的允许值进行比较。这考虑到了材料的物理和机械参数以及 PCA 设计几何参数的变化。本文旨在确定 PCA 振动加速度振幅的允许值,以便与测量值进行比较。采用蒙特卡罗模拟法计算振动加速度的允许偏差。这包括在材料的物理和机械参数以及 PCA 设计的几何参数的公差范围内重复计算随机值下的振动加速度幅值。使用 SolidWorks 机械加工建模软件对该方法进行了实验验证。这样就能确定第一共振频率控制点 PCA 振动加速度的公差值,并在引入各种缺陷时获得实验数据。将测量值与计算公差进行比较后,得出了检测 PCA 缺陷可能性的结论。使用这种方法计算 PCA 振动加速度振幅的公差,可以确定 REM 中是否存在不影响 REM 电气或热特性的缺陷,从而提高技术条件控制的效率。
{"title":"Calculating permissible deviations of vibration accelerations of printed circuit assemblies by simulation modeling","authors":"V. K. Bityukov, A. V. Dolmatov, A. A. Zadernovsky, A. I. Starikovsky, R. M. Uvaysov","doi":"10.32362/2500-316x-2023-11-6-28-38","DOIUrl":"https://doi.org/10.32362/2500-316x-2023-11-6-28-38","url":null,"abstract":"Objectives. A variety of technical condition control methods are used in the production and operation of printed circuit assemblies (PCA) for radio-electronic means (REM). The main methods are optical, electrical, and thermal. However, not all possible defects can be detected using these methods. For example, a weakened PCA fastener in a block or the incorrect installation of an electric radioelement (ERE) on a printed circuit board (PCB) can be detected only by analyzing the mechanical characteristics of the REM. These factors, in particular, are the values of the vibration acceleration amplitudes on ERE or at selected PCB control points (hereinafter referred to as the PCA vibration acceleration amplitude). In order to draw a conclusion about the presence of a defect, the measured values of the vibration acceleration amplitudes obtained as a result of testing PCA for the effects of harmonic vibration are compared with the permissible values calculated during the simulation of mechanical processes in PCA. This takes into account the variations in the physical and mechanical parameters of materials and geometric parameters of the PCA design. The aim of this paper is to determine the permissible values of PCA vibration acceleration amplitudes to be compared with the measured values.Methods. The Monte Carlo simulation method is used to calculate the permissible deviations of vibration accelerations. This consists in repeatedly calculating the values of the vibration acceleration amplitudes at random values of the physical and mechanical parameters of materials and geometric parameters of the PCA design within their tolerances.Results. Experimental verification of this method was carried out using the SolidWorks software for modeling mechanical processes. This enabled the tolerance values for PCA vibration acceleration at the control point at the first resonant frequency to be established and experimental data to be obtained when introducing various defects. The results of comparing the measured values with the calculated tolerance enabled conclusions to be made with regard to the possibility of detecting PCA defects.Conclusions. Using this method of calculating tolerances for the PCA vibration acceleration amplitude allows the presence of defects in REM that do not affect the electrical or thermal characteristics of REM to be determined, thus increasing the efficiency of technical condition control.","PeriodicalId":282368,"journal":{"name":"Russian Technological Journal","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138971350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-14DOI: 10.32362/2500-316x-2023-11-6-39-46
G. V. Kulikov, Yuriy Polevoda, M. Kostin
Objectives. Radio-technical information transmission systems are widely used in various sectors of our life, not only for telecommunications and associated domestic needs, but also for the functioning of various special services, such as emergency response units, which increasingly use robotic complexes in the course of their work. In the event of an emergency, robot devices can be used to get in under rubble, in concrete pipes or other municipal facilities, which typically result in a sharp deterioration of the necessary conditions for the propagation of radio waves. In this regard, the problem of ensuring reliable communication with the robotic complex becomes rather acute. The aim of the present work is to reduce the effect of multipath propagation of radio waves in the communication channel under complex interference conditions.Methods. The methods of statistical radio engineering and mathematical modeling are used according to optimal signal reception theory.Results. The presented model for a multi-element, spatially-distributed, in-phase receiving antenna of various configurations, featuring an electronically adjustable radiation pattern, is designed to ameliorate the multipath nature of signal propagation. A simulation of a multipath communication channel was carried out in the presence of one main and three reflected beams of radio wave propagation, as well as with harmonic interference at two angles of its arrival and different frequency detuning relative to the frequency of the useful signal. The probability of a bit error when receiving discrete information using the proposed antenna is estimated.Conclusions. The proposed signal processing algorithm on the receiving side can be used to partially compensate for the influence of the multipath effect. As a result, the noise immunity of information reception in comparison with reception on an omnidirectional antenna with one antenna element increases: for a bit error probability of 10−3, the energy gain ranges from 2 dB for two beams to 7–10 dB for three or four beams. In the presence of concentrated harmonic interference in the radio channel, its simultaneous spatial (by the antenna) and spectral (by the demodulator) filtering is also observed, the effectiveness of which depends on the direction of arrival and the frequency detuning of the interference, which also leads to a significant decrease in the error probability.
{"title":"Use of a spatially distributed in-phase antenna to increase the noise immunity of signal reception","authors":"G. V. Kulikov, Yuriy Polevoda, M. Kostin","doi":"10.32362/2500-316x-2023-11-6-39-46","DOIUrl":"https://doi.org/10.32362/2500-316x-2023-11-6-39-46","url":null,"abstract":"Objectives. Radio-technical information transmission systems are widely used in various sectors of our life, not only for telecommunications and associated domestic needs, but also for the functioning of various special services, such as emergency response units, which increasingly use robotic complexes in the course of their work. In the event of an emergency, robot devices can be used to get in under rubble, in concrete pipes or other municipal facilities, which typically result in a sharp deterioration of the necessary conditions for the propagation of radio waves. In this regard, the problem of ensuring reliable communication with the robotic complex becomes rather acute. The aim of the present work is to reduce the effect of multipath propagation of radio waves in the communication channel under complex interference conditions.Methods. The methods of statistical radio engineering and mathematical modeling are used according to optimal signal reception theory.Results. The presented model for a multi-element, spatially-distributed, in-phase receiving antenna of various configurations, featuring an electronically adjustable radiation pattern, is designed to ameliorate the multipath nature of signal propagation. A simulation of a multipath communication channel was carried out in the presence of one main and three reflected beams of radio wave propagation, as well as with harmonic interference at two angles of its arrival and different frequency detuning relative to the frequency of the useful signal. The probability of a bit error when receiving discrete information using the proposed antenna is estimated.Conclusions. The proposed signal processing algorithm on the receiving side can be used to partially compensate for the influence of the multipath effect. As a result, the noise immunity of information reception in comparison with reception on an omnidirectional antenna with one antenna element increases: for a bit error probability of 10−3, the energy gain ranges from 2 dB for two beams to 7–10 dB for three or four beams. In the presence of concentrated harmonic interference in the radio channel, its simultaneous spatial (by the antenna) and spectral (by the demodulator) filtering is also observed, the effectiveness of which depends on the direction of arrival and the frequency detuning of the interference, which also leads to a significant decrease in the error probability.","PeriodicalId":282368,"journal":{"name":"Russian Technological Journal","volume":"9 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138972629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}