Yifan Wang, Xinhuan Wang, Jun Chen, Gordon Wallace, Qi Gu
Cardiovascular disease has emerged as the leading cause of death worldwide. Since coronary arteries, carotid arteries, and other blood vessels are prone to narrowing, small-diameter artificial blood channels offer a crucial solution for restoring blood flow. Ideal grafts must emulate the structure of natural blood vessels, possess adequate mechanical strength, ensure long-term patency, and incorporate functional cells with minimal immunogenicity. Enhanced cell sources and engineering methods are vital for the creation of functional small-diameter blood vessels (SDBVs). Among potential cell sources, stem cells stand out due to their ability to differentiate into multiple cell types, self-renew, and exhibit low immunogenicity. Additionally, three-dimensionally (3D) printed vascular stents have attracted widespread attention for their precision and controllable bioink application. The need for tissue-engineered blood vessels is currently rising, and innovative design concepts integrating stem cells and 3D printing present promising solutions. Herein, the construction requirements of vascular grafts are reviewed, current status of using stem cells as a cell source and 3D printing as an engineering strategy is described, and prospects and challenges for the development of SDBVs in the medical field are discussed.
{"title":"Stem-Cell-Based Small-Diameter Blood Vessels with 3D Printing","authors":"Yifan Wang, Xinhuan Wang, Jun Chen, Gordon Wallace, Qi Gu","doi":"10.1002/smsc.202400261","DOIUrl":"https://doi.org/10.1002/smsc.202400261","url":null,"abstract":"Cardiovascular disease has emerged as the leading cause of death worldwide. Since coronary arteries, carotid arteries, and other blood vessels are prone to narrowing, small-diameter artificial blood channels offer a crucial solution for restoring blood flow. Ideal grafts must emulate the structure of natural blood vessels, possess adequate mechanical strength, ensure long-term patency, and incorporate functional cells with minimal immunogenicity. Enhanced cell sources and engineering methods are vital for the creation of functional small-diameter blood vessels (SDBVs). Among potential cell sources, stem cells stand out due to their ability to differentiate into multiple cell types, self-renew, and exhibit low immunogenicity. Additionally, three-dimensionally (3D) printed vascular stents have attracted widespread attention for their precision and controllable bioink application. The need for tissue-engineered blood vessels is currently rising, and innovative design concepts integrating stem cells and 3D printing present promising solutions. Herein, the construction requirements of vascular grafts are reviewed, current status of using stem cells as a cell source and 3D printing as an engineering strategy is described, and prospects and challenges for the development of SDBVs in the medical field are discussed.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"11 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qun-Gao Chen, Xingke Cai, Chu-Chen Chueh, Wen-Ya Lee
Elastomeric polymer materials are of interest due to their stretchability, low-temperature processing, and scalability. In addition, the incorporation of 2D materials can further enhance the dielectric properties and capacitance of elastic polymer materials, thereby reducing the driving voltage and energy consumption. In this study, titanium dioxide (TiO2) nanosheets are cross-linked with nitrile butadiene rubber using thiol-ene click chemistry, which leads to the preparation of nanocomposite dielectric films with stretchability and high dielectric constant. Furthermore, by controlling the doping amount of the nanosheets, it is observed that the capacitance of the nanocomposite films increases from 25.61 to 684.67 nF cm−2, and the dielectric constant increases from 14.96 to 161.98. Finally, the stretchable nanocomposite films exhibit good insulating properties even at 50% strain. In this study, insight is provided into the potential of in situ cross-linking between elastic polymer materials and 2D materials to produce high-k dielectric materials with both stretchability and high insulating properties.
{"title":"Photo-Curable Stretchable High-k Polymer/TiO2 Nanosheet Hybrid Dielectrics for Field-Effect Transistors","authors":"Qun-Gao Chen, Xingke Cai, Chu-Chen Chueh, Wen-Ya Lee","doi":"10.1002/smsc.202400197","DOIUrl":"https://doi.org/10.1002/smsc.202400197","url":null,"abstract":"Elastomeric polymer materials are of interest due to their stretchability, low-temperature processing, and scalability. In addition, the incorporation of 2D materials can further enhance the dielectric properties and capacitance of elastic polymer materials, thereby reducing the driving voltage and energy consumption. In this study, titanium dioxide (TiO<sub>2</sub>) nanosheets are cross-linked with nitrile butadiene rubber using thiol-ene click chemistry, which leads to the preparation of nanocomposite dielectric films with stretchability and high dielectric constant. Furthermore, by controlling the doping amount of the nanosheets, it is observed that the capacitance of the nanocomposite films increases from 25.61 to 684.67 nF cm<sup>−2</sup>, and the dielectric constant increases from 14.96 to 161.98. Finally, the stretchable nanocomposite films exhibit good insulating properties even at 50% strain. In this study, insight is provided into the potential of in situ cross-linking between elastic polymer materials and 2D materials to produce high-k dielectric materials with both stretchability and high insulating properties.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"68 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shaoyang Wang, Tim Kodalle, Sam Millar, Carolin M. Sutter-Fella, Lethy Krishnan Jagadamma
Halide perovskite indoor photovoltaics (PVs) are highly promising to autonomously power the billions of microelectronic sensors in the emerging and disruptive technology of the Internet of Things (IoT). However, how the wide range of different types of hole extraction layers (HELs) impacts the indoor light harvesting of perovskite solar cells is still elusive, which hinders the material selection and industrial-scale fabrication of indoor perovskite photovoltaics. In the present study, new insights are provided regarding the judicial selection of HELs at the buried interface of halide perovskite indoor photovoltaics. This study unravels the detrimental and severe light-soaking effect of metal oxide transport layer-based PV devices under the indoor lighting effect for the first time, which then necessitates the interface passivation/engineering for their reliant performance. This is not a stringent criterion under 1 sun illumination. By systematically investigating the charge carrier dynamics and sequence of measurements from dark, light-soaked, interlayer-passivated device, the bulk and interface defects are decoupled and reveal the gradual defect passivation from shallow to deep level traps. Thus, the present study puts forward a useful design strategy to overcome the deleterious effect of metal oxide HELs and employ them in halide perovskite indoor PVs.
{"title":"Metal Oxide vs Organic Semiconductor Charge Extraction Layers for Halide Perovskite Indoor Photovoltaics","authors":"Shaoyang Wang, Tim Kodalle, Sam Millar, Carolin M. Sutter-Fella, Lethy Krishnan Jagadamma","doi":"10.1002/smsc.202400292","DOIUrl":"https://doi.org/10.1002/smsc.202400292","url":null,"abstract":"Halide perovskite indoor photovoltaics (PVs) are highly promising to autonomously power the billions of microelectronic sensors in the emerging and disruptive technology of the Internet of Things (IoT). However, how the wide range of different types of hole extraction layers (HELs) impacts the indoor light harvesting of perovskite solar cells is still elusive, which hinders the material selection and industrial-scale fabrication of indoor perovskite photovoltaics. In the present study, new insights are provided regarding the judicial selection of HELs at the buried interface of halide perovskite indoor photovoltaics. This study unravels the detrimental and severe light-soaking effect of metal oxide transport layer-based PV devices under the indoor lighting effect for the first time, which then necessitates the interface passivation/engineering for their reliant performance. This is not a stringent criterion under 1 sun illumination. By systematically investigating the charge carrier dynamics and sequence of measurements from dark, light-soaked, interlayer-passivated device, the bulk and interface defects are decoupled and reveal the gradual defect passivation from shallow to deep level traps. Thus, the present study puts forward a useful design strategy to overcome the deleterious effect of metal oxide HELs and employ them in halide perovskite indoor PVs.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"79 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The regulation of glial cell activation is a critical step for the treatment or prevention of neuroinflammation-based brain diseases. However, the development of therapeutic drugs that pass the blood–brain barrier (BBB) and inhibit the glia cell activation remains a significant challenge. Herein, an ultrasmall 2D vanadium carbide quantum dots (V2C QDs) that are capable of crossing the BBB are prepared, and the admirable anti-neuroinflammatory effects are presented. The prepared 2D V2C QDs with an average size of 2.54 nm show good hydrophilicity, physiological stability, and effective BBB-crossing ability. The biological effect of V2C QDs on inflammatory reactions demonstrates fascinating results in preventing the impairment of learning and memory in BALB/c mice stimulated by lipopolysaccharide. Investigation of molecular mechanism reveals that V2C QDs not only inhibit the toll-like receptor 4/myeloid differentiation factor 88-mediated nuclear factor kappa B and mitogen-activated protein kinase pathways, but also prevent eukaryotic translation initiation factor 2α/activating transcription factor 4/C/EBP homologous protein-signaling pathway and reduce oxidative stress via activating the NF-E2-related factor-2/heme oxygenase-1-signaling pathway, leading to greatly inhibited activation of microglia and astrocytes and weakened production of inflammatory cytokines. In summary, V2C QDs exert potent anti-inflammatory effects through multiple pathways, thus offer great potential for the treatment of neurodegenerative diseases.
{"title":"Vanadium Carbide Quantum Dots Exert Efficient Anti-Inflammatory Effects in Lipopolysaccharide-Induced BV2 Microglia and Mice","authors":"Zhijun He, Qiqi Yang, Xiaoqian Li, Zi Wang, Shengwu Wen, Ming-Jie Dong, Weiyun Zhang, Youcong Gong, Zijia Zhou, Qiong Liu, Haifeng Dong","doi":"10.1002/smsc.202300334","DOIUrl":"https://doi.org/10.1002/smsc.202300334","url":null,"abstract":"The regulation of glial cell activation is a critical step for the treatment or prevention of neuroinflammation-based brain diseases. However, the development of therapeutic drugs that pass the blood–brain barrier (BBB) and inhibit the glia cell activation remains a significant challenge. Herein, an ultrasmall 2D vanadium carbide quantum dots (V<sub>2</sub>C QDs) that are capable of crossing the BBB are prepared, and the admirable anti-neuroinflammatory effects are presented. The prepared 2D V<sub>2</sub>C QDs with an average size of 2.54 nm show good hydrophilicity, physiological stability, and effective BBB-crossing ability. The biological effect of V<sub>2</sub>C QDs on inflammatory reactions demonstrates fascinating results in preventing the impairment of learning and memory in BALB/c mice stimulated by lipopolysaccharide. Investigation of molecular mechanism reveals that V<sub>2</sub>C QDs not only inhibit the toll-like receptor 4/myeloid differentiation factor 88-mediated nuclear factor kappa B and mitogen-activated protein kinase pathways, but also prevent eukaryotic translation initiation factor 2α/activating transcription factor 4/C/EBP homologous protein-signaling pathway and reduce oxidative stress via activating the NF-E2-related factor-2/heme oxygenase-1-signaling pathway, leading to greatly inhibited activation of microglia and astrocytes and weakened production of inflammatory cytokines. In summary, V<sub>2</sub>C QDs exert potent anti-inflammatory effects through multiple pathways, thus offer great potential for the treatment of neurodegenerative diseases.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"45 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marie Elis, Tim Tjardts, Josiah Ngenev Shondo, Ainura Aliyeva, Alexander Vahl, Ulrich Schürmann, Thomas Strunskus, Franz Faupel, Cenk Aktas, Lorenz Kienle, Salih Veziroglu
Mixed metal oxide (MMO) nanoparticles (NPs) are hybrids consisting of two or more nanoscale metal oxides. Advantages of MMO NPs over single metal oxides include improved catalytic activity, enhanced electrical and magnetic properties, and increased thermal stability due to the synergy of the different oxide components. This study presents a novel fabrication route for TiO2-CeO2 NPs enriched with oxygen vacancies using a Haberland-type gas aggregation cluster source. The NPs, deposited from different segmented Ti/Ce targets under varying O2 addition, were examined with respect to final composition, morphology, and Ti, Ce surface oxidation states. Particle formation mechanisms are proposed for the observed morphologies. Additionally, available O2 during deposition and its impact on the formation of defective sites were investigated. Defective sites in TiO2-CeO2 NPs were analyzed using transfer to X-ray photoelectron spectroscopy and transmission electron microscopy without contact to ambient oxygen. The incorporation of Ce to the target exhibits synergistic effects on the synthesis process. Segmented Ti/Ce targets enable the deposition of a broad range of mixed oxide NPs with diverse compositions and morphologies at considerably enhanced deposition rates, which is vital for practical applications. The presented fabrication approach is expected to be applicable for a broad variety of MMO NPs.
{"title":"A New Approach to Single-Step Fabrication of TiOx-CeOx Nanoparticles","authors":"Marie Elis, Tim Tjardts, Josiah Ngenev Shondo, Ainura Aliyeva, Alexander Vahl, Ulrich Schürmann, Thomas Strunskus, Franz Faupel, Cenk Aktas, Lorenz Kienle, Salih Veziroglu","doi":"10.1002/smsc.202400305","DOIUrl":"https://doi.org/10.1002/smsc.202400305","url":null,"abstract":"Mixed metal oxide (MMO) nanoparticles (NPs) are hybrids consisting of two or more nanoscale metal oxides. Advantages of MMO NPs over single metal oxides include improved catalytic activity, enhanced electrical and magnetic properties, and increased thermal stability due to the synergy of the different oxide components. This study presents a novel fabrication route for TiO<sub>2</sub>-CeO<sub>2</sub> NPs enriched with oxygen vacancies using a Haberland-type gas aggregation cluster source. The NPs, deposited from different segmented Ti/Ce targets under varying O<sub>2</sub> addition, were examined with respect to final composition, morphology, and Ti, Ce surface oxidation states. Particle formation mechanisms are proposed for the observed morphologies. Additionally, available O<sub>2</sub> during deposition and its impact on the formation of defective sites were investigated. Defective sites in TiO<sub>2</sub>-CeO<sub>2</sub> NPs were analyzed using transfer to X-ray photoelectron spectroscopy and transmission electron microscopy without contact to ambient oxygen. The incorporation of Ce to the target exhibits synergistic effects on the synthesis process. Segmented Ti/Ce targets enable the deposition of a broad range of mixed oxide NPs with diverse compositions and morphologies at considerably enhanced deposition rates, which is vital for practical applications. The presented fabrication approach is expected to be applicable for a broad variety of MMO NPs.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"393 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Degenerative joint diseases, as a global public health issue, impose significant burdens on patients’ lives and substantial economic costs on society. Currently, the primary modalities include physical therapy, pharmaceutical intervention, and surgical procedures. None of these approaches can alter the course of this degenerative process. Due to their commendable biocompatibility, biodegradability, and heightened efficacy in drug delivery, hydrogels present themselves as a novel noninvasive remedy for degenerative joint ailments. However, the clinical application of hydrogels still faces some challenges, including the uncontrolled discharge of encapsulated medications, the absence of adequate mechanical reinforcement for destabilized joints, and adaptability to fluctuating microenvironments. Recently, nanocomposite hydrogels, formed by introducing nanomaterials into hydrogels by physical or chemical means, can improve the limitations of hydrogels and extend their potential for biological applications in degenerative joint diseases. In this study, the pathologic features of degenerative joint diseases and the multiple applications of different types of nanocomposite hydrogels in targeting these different pathologic features are briefly described. It also concludes with an outlook on the use of nanocomposite hydrogels in clinical settings and discusses their challenges and limitations.
{"title":"Nanocomposite Hydrogels: A Promising Approach for the Treatment of Degenerative Joint Diseases","authors":"Qizhu Chen, Zitian Zheng, Mian Lin, Zhengyu Guo, Hongjie Huang, Qingyun Xue, Shengdan Jiang, Jianquan Wang, Aimin Wu","doi":"10.1002/smsc.202400236","DOIUrl":"https://doi.org/10.1002/smsc.202400236","url":null,"abstract":"Degenerative joint diseases, as a global public health issue, impose significant burdens on patients’ lives and substantial economic costs on society. Currently, the primary modalities include physical therapy, pharmaceutical intervention, and surgical procedures. None of these approaches can alter the course of this degenerative process. Due to their commendable biocompatibility, biodegradability, and heightened efficacy in drug delivery, hydrogels present themselves as a novel noninvasive remedy for degenerative joint ailments. However, the clinical application of hydrogels still faces some challenges, including the uncontrolled discharge of encapsulated medications, the absence of adequate mechanical reinforcement for destabilized joints, and adaptability to fluctuating microenvironments. Recently, nanocomposite hydrogels, formed by introducing nanomaterials into hydrogels by physical or chemical means, can improve the limitations of hydrogels and extend their potential for biological applications in degenerative joint diseases. In this study, the pathologic features of degenerative joint diseases and the multiple applications of different types of nanocomposite hydrogels in targeting these different pathologic features are briefly described. It also concludes with an outlook on the use of nanocomposite hydrogels in clinical settings and discusses their challenges and limitations.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"393 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhuozhi Wang, Jue Hu, Jeffrey S. Marschall, Ling Yang, Erliang Zeng, Shaoping Zhang, Hongli Sun
α-ketoglutarate (AKG), a key component of the tricarboxylic acid cycle, has attracted attention for its antiaging properties. In the recent study, it is indicated that locally delivered cell-permeable AKG significantly promotes osteogenic differentiation and mouse bone regeneration. However, the cytotoxicity and rapid hydrolysis of the metabolite limit its application. In this study, novel AKG-based polymeric microparticles (PAKG MPs) are synthesized for sustained release. In vitro data suggest that the chemical components, hydrophilicity, and size of the MPs can significantly affect their cytotoxicity and pro-osteogenic activity. Excitingly, these biodegradable PAKG MPs are highly phagocytosable for nonphagocytic pre-osteoblasts MC3T3-E1 and primary bone marrow mesenchymal stem cells, significantly promoting their osteoblastic differentiation. RNA-Sequencing (RNA-Seq) data suggest that PAKG MPs strongly activate Wnt/β-catenin and PI3K–Akt pathways for osteogenic differentiation. Moreover, PAKG enables poly(L-lactic acid) and poly(lactic-co-glycolic acid) MPs (PLGA MPs) for efficient phagocytosis. In this data, it is indicated that PLGA–PAKG-MPs-mediated intracellular drug delivery can significantly promote stronger osteoblastic differentiation compared to PLGA-MPs-delivered phenamil. Notably, PAKG MPs significantly improve large bone regeneration in a mouse cranial bone defect model. Thus, the novel PAKG-based MPs show great promise to improve osteogenic differentiation and bone regeneration and enable efficient intracellular drug delivery for broad regenerative medicine.
{"title":"Antiaging Metabolite-Based Polymeric Microparticles for Intracellular Drug Delivery and Bone Regeneration","authors":"Zhuozhi Wang, Jue Hu, Jeffrey S. Marschall, Ling Yang, Erliang Zeng, Shaoping Zhang, Hongli Sun","doi":"10.1002/smsc.202400201","DOIUrl":"https://doi.org/10.1002/smsc.202400201","url":null,"abstract":"α-ketoglutarate (AKG), a key component of the tricarboxylic acid cycle, has attracted attention for its antiaging properties. In the recent study, it is indicated that locally delivered cell-permeable AKG significantly promotes osteogenic differentiation and mouse bone regeneration. However, the cytotoxicity and rapid hydrolysis of the metabolite limit its application. In this study, novel AKG-based polymeric microparticles (PAKG MPs) are synthesized for sustained release. In vitro data suggest that the chemical components, hydrophilicity, and size of the MPs can significantly affect their cytotoxicity and pro-osteogenic activity. Excitingly, these biodegradable PAKG MPs are highly phagocytosable for nonphagocytic pre-osteoblasts MC3T3-E1 and primary bone marrow mesenchymal stem cells, significantly promoting their osteoblastic differentiation. RNA-Sequencing (RNA-Seq) data suggest that PAKG MPs strongly activate Wnt/β-catenin and PI3K–Akt pathways for osteogenic differentiation. Moreover, PAKG enables poly(L-lactic acid) and poly(lactic<i>-co</i>-glycolic acid) MPs (PLGA MPs) for efficient phagocytosis. In this data, it is indicated that PLGA–PAKG-MPs-mediated intracellular drug delivery can significantly promote stronger osteoblastic differentiation compared to PLGA-MPs-delivered phenamil. Notably, PAKG MPs significantly improve large bone regeneration in a mouse cranial bone defect model. Thus, the novel PAKG-based MPs show great promise to improve osteogenic differentiation and bone regeneration and enable efficient intracellular drug delivery for broad regenerative medicine.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"9 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chaebeen Kwon, Sanghyeon Lee, Chihyeong Won, Kyu Hyoung Lee, Byeonggwan Kim, Sungjoon Cho, Taeyoon Lee
As the field of wearable electronics continues to expand, the integration of inorganic thermoelectric (TE) materials into fabrics has emerged as a promising development due to their excellent TE properties. However, conventional thermal methods for fabricating TE fabrics are unsuitable for wearable applications because of their high temperatures, resulting in rigid TE materials. Herein, a nonthermally fabricated silver selenide (Ag2Se) TE fabric is developed that can be effectively integrated into wearable applications. Ag2Se nanoparticles are densely formed within the fabric through a simple in situ chemical reduction process, resulting in remarkable electrical stability even after 10 000 cycles of mechanical deformation, such as stretching and compression. Notably, the fabricated Ag2Se TE fabric exhibits superior stretchability, stretching ≈1.36 times more than the thermally treated Ag2Se TE fabrics, while retaining its excellent electrical conductivity. Moreover, the TE unit exhibits 9.80 μW m−1 K−2 power factor, 134.45 S cm−1 electrical conductivity, and −26.98 μV K−1 Seebeck coefficient at 370 K. A haptic sensing glove based on the Ag2Se TE fabric as a sensor for detecting potential hazards is demonstrated. The glove effectively distinguishes between simple touch, physical pain, and high-temperature hazards, ensuring user safety and prompt response.
随着可穿戴电子设备领域的不断扩大,无机热电(TE)材料因其卓越的 TE 特性而被广泛应用于织物中。然而,传统的热法制造 TE 织物因温度过高而导致 TE 材料僵硬,不适合可穿戴应用。在此,我们开发了一种非热法制造的硒化银(Ag2Se)TE 织物,可有效地集成到可穿戴应用中。通过简单的原位化学还原工艺,Ag2Se 纳米粒子在织物内密集形成,即使在拉伸和压缩等机械变形循环 10,000 次后,仍具有显著的电气稳定性。值得注意的是,制成的 Ag2Se TE 织物具有卓越的拉伸性,其拉伸程度是热处理 Ag2Se TE 织物的 1.36 倍,同时还保持了出色的导电性。此外,这种 TE 单元在 370 K 时的功率因数为 9.80 μW m-1 K-2,导电率为 134.45 S cm-1,塞贝克系数为 -26.98 μV K-1。该手套能有效区分简单的触摸、身体疼痛和高温危险,确保了用户的安全和及时响应。
{"title":"Stretchable Ag2Se Thermoelectric Fabric with Simple and Nonthermal Fabrication for Wearable Electronics","authors":"Chaebeen Kwon, Sanghyeon Lee, Chihyeong Won, Kyu Hyoung Lee, Byeonggwan Kim, Sungjoon Cho, Taeyoon Lee","doi":"10.1002/smsc.202400230","DOIUrl":"https://doi.org/10.1002/smsc.202400230","url":null,"abstract":"As the field of wearable electronics continues to expand, the integration of inorganic thermoelectric (TE) materials into fabrics has emerged as a promising development due to their excellent TE properties. However, conventional thermal methods for fabricating TE fabrics are unsuitable for wearable applications because of their high temperatures, resulting in rigid TE materials. Herein, a nonthermally fabricated silver selenide (Ag<sub>2</sub>Se) TE fabric is developed that can be effectively integrated into wearable applications. Ag<sub>2</sub>Se nanoparticles are densely formed within the fabric through a simple in situ chemical reduction process, resulting in remarkable electrical stability even after 10 000 cycles of mechanical deformation, such as stretching and compression. Notably, the fabricated Ag<sub>2</sub>Se TE fabric exhibits superior stretchability, stretching ≈1.36 times more than the thermally treated Ag<sub>2</sub>Se TE fabrics, while retaining its excellent electrical conductivity. Moreover, the TE unit exhibits 9.80 μW m<sup>−1</sup> K<sup>−2</sup> power factor, 134.45 S cm<sup>−1</sup> electrical conductivity, and −26.98 μV K<sup>−1</sup> Seebeck coefficient at 370 K. A haptic sensing glove based on the Ag<sub>2</sub>Se TE fabric as a sensor for detecting potential hazards is demonstrated. The glove effectively distinguishes between simple touch, physical pain, and high-temperature hazards, ensuring user safety and prompt response.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"45 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chanho Shin, Eun Hye Lee, Hyeong Ju Eun, Jinwook Jung, Jong H. Kim, Tse Nga Ng
The redox activities of polyaniline (PANI) are hindered by the instability of pernigraniline salt (PS) state which degrades into oligo-aniline. In this work, the use of protic additives is examined to mitigate capacity fading and increase utilization of PANI in nonaqueous electrolytes. The protic additive propylene glycol, with its hydrogen-bonding capabilities, stabilizes the PS PANI and promotes reversible redox reactions, facilitating high capacity and an extended cycle lifetime for applications in metal ion supercapacitors. The use of this protic nonaqueous electrolyte in a PANI–zinc device results in an energy density of 255 Wh kg−1 at a power density of 1.8 kW kg−1 and a robust cycle lifetime of 3,850 charge/discharge cycles. The PANI at a high current density of 6.5 mA cm−2 reaches a capacity of 257 mAh g−1, equivalent to 87% of the its theoretical capacity, showcasing the effectiveness of the protic additive in improving both capacity and cycle life in electrochemical supercapacitors.
聚苯胺(PANI)的氧化还原活动受到过新苯胺盐(PS)状态不稳定的阻碍,PS 会降解成低聚苯胺。在这项工作中,我们研究了如何使用原生添加剂来减轻容量衰减并提高 PANI 在非水电解质中的利用率。原生添加剂丙二醇具有氢键功能,可稳定 PS PANI 并促进可逆氧化还原反应,从而提高容量并延长循环寿命,适用于金属离子超级电容器。在 PANI-zinc 器件中使用这种原生非水电解质,可使能量密度达到 255 Wh kg-1,功率密度为 1.8 kW kg-1,循环寿命长达 3,850 次充放电循环。在 6.5 mA cm-2 的高电流密度下,PANI 的容量达到 257 mAh g-1,相当于其理论容量的 87%,显示了原生添加剂在提高电化学超级电容器容量和循环寿命方面的有效性。
{"title":"Protic Stabilization Engenders High Energy Density and Long Cycle Life in Polyaniline–Zinc Supercapacitors","authors":"Chanho Shin, Eun Hye Lee, Hyeong Ju Eun, Jinwook Jung, Jong H. Kim, Tse Nga Ng","doi":"10.1002/smsc.202400295","DOIUrl":"https://doi.org/10.1002/smsc.202400295","url":null,"abstract":"The redox activities of polyaniline (PANI) are hindered by the instability of pernigraniline salt (PS) state which degrades into oligo-aniline. In this work, the use of protic additives is examined to mitigate capacity fading and increase utilization of PANI in nonaqueous electrolytes. The protic additive propylene glycol, with its hydrogen-bonding capabilities, stabilizes the PS PANI and promotes reversible redox reactions, facilitating high capacity and an extended cycle lifetime for applications in metal ion supercapacitors. The use of this protic nonaqueous electrolyte in a PANI–zinc device results in an energy density of 255 Wh kg<sup>−1</sup> at a power density of 1.8 kW kg<sup>−1</sup> and a robust cycle lifetime of 3,850 charge/discharge cycles. The PANI at a high current density of 6.5 mA cm<sup>−2</sup> reaches a capacity of 257 mAh g<sup>−1</sup>, equivalent to 87% of the its theoretical capacity, showcasing the effectiveness of the protic additive in improving both capacity and cycle life in electrochemical supercapacitors.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"33 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Changbai Li, Sajjad Naeimipour, Fatemeh Rasti Boroojeni, Tobias Abrahamsson, Xenofon Strakosas, Yangpeiqi Yi, Rebecka Rilemark, Caroline Lindholm, Venkata K. Perla, Chiara Musumeci, Yuyang Li, Hanne Biesmans, Marios Savvakis, Eva Olsson, Klas Tybrandt, Mary J. Donahue, Jennifer Y. Gerasimov, Robert Selegård, Magnus Berggren, Daniel Aili, Daniel T. Simon
Hydrogels are promising materials for medical devices interfacing with neural tissues due to their similar mechanical properties. Traditional hydrogel-based bio-interfaces lack sufficient electrical conductivity, relying on low ionic conductivity, which limits signal transduction distance. Conducting polymer hydrogels offer enhanced ionic and electronic conductivities and biocompatibility but often face challenges in processability and require aggressive polymerization methods. Herein, we demonstrate in situ enzymatic polymerization of π-conjugated monomers in a hyaluronan (HA)-based hydrogel bioink to create cell-compatible, electrically conductive hydrogel structures. These structures were fabricated using 3D bioprinting of HA-based bioinks loaded with conjugated monomers, followed by enzymatic polymerization via horseradish peroxidase. This process increased the hydrogels’ stiffness from about 0.6 to 1.5 kPa and modified their electroactivity. The components and polymerization process were well-tolerated by human primary dermal fibroblasts and PC12 cells. This work presents a novel method to fabricate cytocompatible and conductive hydrogels suitable for bioprinting. These hybrid materials combine tissue-like mechanical properties with mixed ionic and electronic conductivity, providing new ways to use electricity to influence cell behavior in a native-like microenvironment.
由于水凝胶具有类似的机械特性,因此是与神经组织连接的医疗设备的理想材料。传统的水凝胶生物界面缺乏足够的导电性,依赖于低离子导电性,这限制了信号传导距离。导电聚合物水凝胶具有更高的离子和电子传导性以及生物相容性,但在加工性方面往往面临挑战,并且需要采用激进的聚合方法。在此,我们展示了π-共轭单体在透明质酸(HA)基水凝胶生物墨水中的原位酶聚合,以创建细胞兼容的导电水凝胶结构。这些结构是用三维生物打印技术制造的,先将含有共轭单体的 HA 基生物墨水打印出来,然后通过辣根过氧化物酶进行酶聚合。这一过程将水凝胶的硬度从 0.6 千帕提高到 1.5 千帕,并改变了它们的电活性。人类原代真皮成纤维细胞和 PC12 细胞对这些成分和聚合过程的耐受性良好。这项研究提出了一种新方法来制造适合生物打印的细胞相容性导电水凝胶。这些混合材料将类似组织的机械特性与混合离子和电子导电性结合在一起,为在类似原生的微环境中使用电来影响细胞行为提供了新方法。
{"title":"Engineering Conductive Hydrogels with Tissue-like Properties: A 3D Bioprinting and Enzymatic Polymerization Approach","authors":"Changbai Li, Sajjad Naeimipour, Fatemeh Rasti Boroojeni, Tobias Abrahamsson, Xenofon Strakosas, Yangpeiqi Yi, Rebecka Rilemark, Caroline Lindholm, Venkata K. Perla, Chiara Musumeci, Yuyang Li, Hanne Biesmans, Marios Savvakis, Eva Olsson, Klas Tybrandt, Mary J. Donahue, Jennifer Y. Gerasimov, Robert Selegård, Magnus Berggren, Daniel Aili, Daniel T. Simon","doi":"10.1002/smsc.202400290","DOIUrl":"https://doi.org/10.1002/smsc.202400290","url":null,"abstract":"Hydrogels are promising materials for medical devices interfacing with neural tissues due to their similar mechanical properties. Traditional hydrogel-based bio-interfaces lack sufficient electrical conductivity, relying on low ionic conductivity, which limits signal transduction distance. Conducting polymer hydrogels offer enhanced ionic and electronic conductivities and biocompatibility but often face challenges in processability and require aggressive polymerization methods. Herein, we demonstrate in situ enzymatic polymerization of <i>π</i>-conjugated monomers in a hyaluronan (HA)-based hydrogel bioink to create cell-compatible, electrically conductive hydrogel structures. These structures were fabricated using 3D bioprinting of HA-based bioinks loaded with conjugated monomers, followed by enzymatic polymerization via horseradish peroxidase. This process increased the hydrogels’ stiffness from about 0.6 to 1.5 kPa and modified their electroactivity. The components and polymerization process were well-tolerated by human primary dermal fibroblasts and PC12 cells. This work presents a novel method to fabricate cytocompatible and conductive hydrogels suitable for bioprinting. These hybrid materials combine tissue-like mechanical properties with mixed ionic and electronic conductivity, providing new ways to use electricity to influence cell behavior in a native-like microenvironment.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"9 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}