Md Mofasser Mallick, Leonard Franke, Mohamed Hussein, Andres Georg Rösch, Zhongmin Long, Yolita Maria Eggeler, Uli Lemmer
Printed thermoelectric generators (TEGs) show promising potential for converting waste heat into useful electricity at a low cost but fall short of exhibiting a conversion efficiency anticipated from materials’ properties. The output power of conventionally printed TEGs in the “π-type” geometry suffers due to low thermal voltage and low current because of high thermal and electrical contact resistance, respectively. Herein, a type of printed p–n junction TEGs (PN-TEGs) as a possible remedy is explored. Two printed PN-TEGs with different thicknesses are fabricated using printed p-type Bi0.5Sb1.5Te3 and n-type Bi2Te2.7Se0.3 materials. The PN-TEGs show a promising way to minimize the influence of thermal and electrical resistance in printed TEGs. In the experimental and simulation results, the significant impact of PN-TEGs’ dimensions on their power outputs is revealed. Also, a conventional “π-type” printed TEG is fabricated and its performance is studied. The optimized PN-TEG with a single thermocouple yields ≈14 times higher power output density of 5.3 μW cm−2 at a ΔT of 25 K compared to “π-type” printed TEGs.
{"title":"Printed Lateral p–n Junction for Thermoelectric Generation","authors":"Md Mofasser Mallick, Leonard Franke, Mohamed Hussein, Andres Georg Rösch, Zhongmin Long, Yolita Maria Eggeler, Uli Lemmer","doi":"10.1002/smsc.202400257","DOIUrl":"https://doi.org/10.1002/smsc.202400257","url":null,"abstract":"Printed thermoelectric generators (TEGs) show promising potential for converting waste heat into useful electricity at a low cost but fall short of exhibiting a conversion efficiency anticipated from materials’ properties. The output power of conventionally printed TEGs in the “π-type” geometry suffers due to low thermal voltage and low current because of high thermal and electrical contact resistance, respectively. Herein, a type of printed p–n junction TEGs (PN-TEGs) as a possible remedy is explored. Two printed PN-TEGs with different thicknesses are fabricated using printed p-type Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> and n-type Bi<sub>2</sub>Te<sub>2.7</sub>Se<sub>0.3</sub> materials. The PN-TEGs show a promising way to minimize the influence of thermal and electrical resistance in printed TEGs. In the experimental and simulation results, the significant impact of PN-TEGs’ dimensions on their power outputs is revealed. Also, a conventional “π-type” printed TEG is fabricated and its performance is studied. The optimized PN-TEG with a single thermocouple yields ≈14 times higher power output density of 5.3 μW cm<sup>−2</sup> at a Δ<i>T</i> of 25 K compared to “π-type” printed TEGs.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"7 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chia-Chi Chang, Min-Hsien Shen, Yuan-Shuo Hsu, Hsisheng Teng, Jeng-Shiung Jan
Quasi-solid and composite polymer electrolytes (QSPEs and CPEs) used in lithium-ion battery (LIB) have recently been a novel strategy owing to their high-safety comparing to traditional liquid counterparts. This study reported the preparation of CPEs based on boron moiety, poly(ethylene glycol) (PEG), and octahedral polyhedral oligomeric silsesquioxane (POSS) via in situ thermal polymerization method directly onto the lithium anode to improve the interfacial contact and electrochemical performance. The synergistic effect between the incorporation of anion-trapping boron moiety and in situ polymerization rendered the QSPEs exhibiting higher electrochemical voltage window, ionic conductivity, and transference number as well as better electrochemical performance than the PEG-based counterpart. Due to the Lewis acid effect, anion-trapping boron moiety could promote the dissociation of lithium salts, allowing more lithium ions to be in the free state, thereby enhancing the lithium-ion conductivity. With an optimal addition of POSS, the as-prepared CPEs exhibited lower overpotential during the lithium plating-stripping test and better electrochemical performance than the QSPE counterparts. The optimal POSS addition could facilitate the lithium-ion conduction and establishment of continuous ion pathways, further improving their electrochemical performance. This study pointed a promising approach for developing high performance lithium-ion batteries.
{"title":"In Situ Formed Composite Polymer Electrolytes Based on Anion-Trapping Boron Moiety and Polyhedral Oligomeric Silsesquioxane for High Performance Lithium Metal Batteries","authors":"Chia-Chi Chang, Min-Hsien Shen, Yuan-Shuo Hsu, Hsisheng Teng, Jeng-Shiung Jan","doi":"10.1002/smsc.202400183","DOIUrl":"https://doi.org/10.1002/smsc.202400183","url":null,"abstract":"Quasi-solid and composite polymer electrolytes (QSPEs and CPEs) used in lithium-ion battery (LIB) have recently been a novel strategy owing to their high-safety comparing to traditional liquid counterparts. This study reported the preparation of CPEs based on boron moiety, poly(ethylene glycol) (PEG), and octahedral polyhedral oligomeric silsesquioxane (POSS) via in situ thermal polymerization method directly onto the lithium anode to improve the interfacial contact and electrochemical performance. The synergistic effect between the incorporation of anion-trapping boron moiety and in situ polymerization rendered the QSPEs exhibiting higher electrochemical voltage window, ionic conductivity, and transference number as well as better electrochemical performance than the PEG-based counterpart. Due to the Lewis acid effect, anion-trapping boron moiety could promote the dissociation of lithium salts, allowing more lithium ions to be in the free state, thereby enhancing the lithium-ion conductivity. With an optimal addition of POSS, the as-prepared CPEs exhibited lower overpotential during the lithium plating-stripping test and better electrochemical performance than the QSPE counterparts. The optimal POSS addition could facilitate the lithium-ion conduction and establishment of continuous ion pathways, further improving their electrochemical performance. This study pointed a promising approach for developing high performance lithium-ion batteries.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"68 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manoj Settem, Melisa M. Gianetti, Roberto Guerra, Nicola Manini, Riccardo Ferrando, Alberto Giacomello
Adopting an advanced microscopic model of the Au–graphite interaction, a systematic study of Au nanoclusters (up to sizes of 11 238 atoms) on graphene and on graphite is carried out to explore their structure and energy landscape. Using parallel tempering molecular dynamics, structural distribution as a function of temperature is calculated in the entire temperature range. Low-energy structures are identified through a combination of structural optimization and Wulff–Kaischew construction which are then used to explore the energy landscape. The potential energy surface (PES), which is energy as a function of translation and rotation, is calculated for a few Au nanoclusters along specific directions on carbon lattice. Minimum-energy pathways are identified on the PES indicating a reduced barrier for pathways involving simultaneous rotation and translation. Diffusion simulations of Au233 on graphite show that diffusion mechanism is directly related to the PES, and the information of the cluster pinning events is already present in the PES. Finally, a comparison of various interaction models highlights the importance of reasonably correct Au–C interactions which is crucial for studying the energy landscape and cluster sliding.
采用先进的金-石墨相互作用微观模型,对石墨烯和石墨上的金纳米团簇(大小可达 11 238 个原子)进行了系统研究,以探索它们的结构和能量分布。利用平行回火分子动力学,计算了整个温度范围内作为温度函数的结构分布。通过结构优化和 Wulff-Kaischew 构建相结合的方法确定了低能结构,然后利用这些低能结构探索能量分布。计算了碳晶格上几个金纳米团簇沿特定方向的势能面(PES),即能量与平移和旋转的函数关系。在势能面上确定了最小能量路径,表明涉及同时旋转和平移的路径障碍减少。Au233 在石墨上的扩散模拟表明,扩散机制与 PES 直接相关,并且簇钉住事件的信息已经存在于 PES 中。最后,对各种相互作用模型的比较强调了合理正确的 Au-C 相互作用的重要性,这对于研究能量景观和簇滑动至关重要。
{"title":"Gold Clusters on Graphene/Graphite—Structure and Energy Landscape","authors":"Manoj Settem, Melisa M. Gianetti, Roberto Guerra, Nicola Manini, Riccardo Ferrando, Alberto Giacomello","doi":"10.1002/smsc.202400078","DOIUrl":"https://doi.org/10.1002/smsc.202400078","url":null,"abstract":"Adopting an advanced microscopic model of the Au–graphite interaction, a systematic study of Au nanoclusters (up to sizes of 11 238 atoms) on graphene and on graphite is carried out to explore their structure and energy landscape. Using parallel tempering molecular dynamics, structural distribution as a function of temperature is calculated in the entire temperature range. Low-energy structures are identified through a combination of structural optimization and Wulff–Kaischew construction which are then used to explore the energy landscape. The potential energy surface (PES), which is energy as a function of translation and rotation, is calculated for a few Au nanoclusters along specific directions on carbon lattice. Minimum-energy pathways are identified on the PES indicating a reduced barrier for pathways involving simultaneous rotation and translation. Diffusion simulations of Au<sub>233</sub> on graphite show that diffusion mechanism is directly related to the PES, and the information of the cluster pinning events is already present in the PES. Finally, a comparison of various interaction models highlights the importance of reasonably correct Au–C interactions which is crucial for studying the energy landscape and cluster sliding.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"97 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Florian Mayer, Paul Schweng, Simone Braeuer, Sebastian Hummer, Gunda Koellensperger, Andreas Mautner, Robert Woodward, Alexander Bismarck
Efficient water treatment ideally combines ion exchange for the removal of hardness elements and toxic trace metals as well as ultrafiltration for the removal of particulate matter. Although promising for adsorption, many high-surface-area polymer materials cannot be easily processed into freestanding membranes or packed bed columns, due to poor solution processability and high back pressures, respectively. The preparation of hybrid membranes comprising sulfonated hypercrosslinked polymers entrapped in nanocellulose papers is described. The hybrid membranes are effective for simultaneous ultrafiltration and ion exchange. Increasing the polymer loading of the hybrid membrane produces synergy by increasing the permeance of the membranes while enhancing the ion adsorption capacity to values exceeding those of bulk hypercrosslinked polymers. The maximum ion adsorption capacity for copper is determined to be ≈100 mg g−1 outperforming that of pure polymer (71 mg g−1) and commercially available ion exchange resins. Competitive adsorption is tested in samples containing water hardness elements and trace toxic metal ions showing high ion-exchange capacities. Even when fully loaded with water hardness elements, Ba2+ and Sr2+ are still removed from solution.
{"title":"Best of Both Worlds: Adsorptive Ultrafiltration Nanocellulose-Hypercrosslinked Polymer Hybrid Membranes for Metal Ion Removal","authors":"Florian Mayer, Paul Schweng, Simone Braeuer, Sebastian Hummer, Gunda Koellensperger, Andreas Mautner, Robert Woodward, Alexander Bismarck","doi":"10.1002/smsc.202400182","DOIUrl":"https://doi.org/10.1002/smsc.202400182","url":null,"abstract":"Efficient water treatment ideally combines ion exchange for the removal of hardness elements and toxic trace metals as well as ultrafiltration for the removal of particulate matter. Although promising for adsorption, many high-surface-area polymer materials cannot be easily processed into freestanding membranes or packed bed columns, due to poor solution processability and high back pressures, respectively. The preparation of hybrid membranes comprising sulfonated hypercrosslinked polymers entrapped in nanocellulose papers is described. The hybrid membranes are effective for simultaneous ultrafiltration and ion exchange. Increasing the polymer loading of the hybrid membrane produces synergy by increasing the permeance of the membranes while enhancing the ion adsorption capacity to values exceeding those of bulk hypercrosslinked polymers. The maximum ion adsorption capacity for copper is determined to be ≈100 mg g<sup>−1</sup> outperforming that of pure polymer (71 mg g<sup>−1</sup>) and commercially available ion exchange resins. Competitive adsorption is tested in samples containing water hardness elements and trace toxic metal ions showing high ion-exchange capacities. Even when fully loaded with water hardness elements, Ba<sup>2+</sup> and Sr<sup>2+</sup> are still removed from solution.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"192 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sean Lethbridge, Theodoros Pavloudis, James McCormack, Thomas Slater, Joseph Kioseoglou, Richard E. Palmer
Gold Nanoclusters
纳米金簇
{"title":"Stabilization of 2D Raft Structures of Au Nanoclusters with up to 60 Atoms by a Carbon Support","authors":"Sean Lethbridge, Theodoros Pavloudis, James McCormack, Thomas Slater, Joseph Kioseoglou, Richard E. Palmer","doi":"10.1002/smsc.202470033","DOIUrl":"https://doi.org/10.1002/smsc.202470033","url":null,"abstract":"<b>Gold Nanoclusters</b>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"22 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Peng, Pai Zhao, Rakshith Venugopal, Kristian Deneke, Stefanie Haugg, Robert Blick, Robert Zierold
Position-Sensitive Detectors
位置敏感探测器
{"title":"Thermal Sight: A Position-Sensitive Detector for a Pinpoint Heat Spot","authors":"Jun Peng, Pai Zhao, Rakshith Venugopal, Kristian Deneke, Stefanie Haugg, Robert Blick, Robert Zierold","doi":"10.1002/smsc.202470029","DOIUrl":"https://doi.org/10.1002/smsc.202470029","url":null,"abstract":"<b>Position-Sensitive Detectors</b>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"128 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}