首页 > 最新文献

ACS Environmental Au最新文献

英文 中文
Photocatalytic Hydrolysis─A Sustainable Option for the Chemical Upcycling of Polylactic Acid 光催化水解─聚乳酸化学升级循环的可持续选择
Q1 ENGINEERING, ENVIRONMENTAL Pub Date : 2023-10-02 DOI: 10.1021/acsenvironau.3c00040
Antonia Garratt, Klaudia Nguyen, Alexander Brooke, Martin J. Taylor and Maria Grazia Francesconi*, 

Plastic waste is a critical global issue, yet current strategies to avoid committing plastic waste to landfills include incineration, gasification, or pyrolysis high carbon emitting and energy consuming approaches. However, plastic waste can become a resource instead of a problem if high value products, such as fine chemicals and liquid fuel molecules, can be liberated from controlled its decomposition. This letter presents proof of concept on a low-cost, low energy approach to controlled decomposition of plastic, photocatalytic hydrolysis. This approach integrates photolysis and hydrolysis, both slow natural decomposition processes, with a photocatalytic process. The photocatalyst, α-Fe2O3, is embedded into a polylactic acid (PLA) plastic matrix. The photocatalyst/plastic composite is then immersed in water and subjected to low-energy (25 W) UV light for 90 h. The monomer lactide is produced as the major product. α-Fe2O3 (6.9 wt %) was found to accelerate the PLA degradation pathway, achieving 32% solid transformation into liquid phase products, in comparison to PLA on its own, which was found to not decompose, using the same conditions. This highlights a low energy route toward plastic waste upgrade and valorization that is less carbon intensive than pyrolysis and faster than natural degradation. By directly comparing a 25 W (0.025 kWh) UV bulb with a 13 kWh furnace, the photocatalytic reaction would directly consume 520× less energy than a conventional thermochemical pathway. Furthermore, this technology can be extended and applied to other plastics, and other photocatalysts can be used.

塑料垃圾是一个重要的全球性问题,目前避免塑料垃圾填埋的策略包括焚烧、气化或热解等高碳排放和高能耗的方法。然而,如果高价值产品,如精细化学品和液体燃料分子,可以从受控的分解中解放出来,塑料废物可以成为一种资源,而不是一个问题。这封信提出了一种低成本,低能量的方法来控制塑料的分解,光催化水解的概念证明。这种方法结合了光解和水解,两者都是缓慢的自然分解过程,光催化过程。光催化剂α-Fe2O3嵌入聚乳酸(PLA)塑料基体中。然后将光催化剂/塑料复合材料浸入水中,并在低能量(25 W)紫外光下照射90小时。作为主要产品的单体丙交酯被生产出来。α-Fe2O3 (6.9 wt %)加速了PLA的降解途径,达到32%的固相转化为液相产物,而在相同条件下,PLA本身不分解。这凸显了塑料废物升级和增值的低能耗途径,比热解的碳密度更低,比自然降解更快。通过直接比较25瓦(0.025千瓦时)的紫外线灯泡和13千瓦时的电炉,光催化反应直接消耗的能量比传统的热化学途径少520倍。此外,该技术还可推广应用于其他塑料,并可使用其他光催化剂。
{"title":"Photocatalytic Hydrolysis─A Sustainable Option for the Chemical Upcycling of Polylactic Acid","authors":"Antonia Garratt,&nbsp;Klaudia Nguyen,&nbsp;Alexander Brooke,&nbsp;Martin J. Taylor and Maria Grazia Francesconi*,&nbsp;","doi":"10.1021/acsenvironau.3c00040","DOIUrl":"https://doi.org/10.1021/acsenvironau.3c00040","url":null,"abstract":"<p >Plastic waste is a critical global issue, yet current strategies to avoid committing plastic waste to landfills include incineration, gasification, or pyrolysis high carbon emitting and energy consuming approaches. However, plastic waste can become a resource instead of a problem if high value products, such as fine chemicals and liquid fuel molecules, can be liberated from controlled its decomposition. This letter presents proof of concept on a low-cost, low energy approach to controlled decomposition of plastic, photocatalytic hydrolysis. This approach integrates photolysis and hydrolysis, both slow natural decomposition processes, with a photocatalytic process. The photocatalyst, α-Fe<sub>2</sub>O<sub>3</sub>, is embedded into a polylactic acid (PLA) plastic matrix. The photocatalyst/plastic composite is then immersed in water and subjected to low-energy (25 W) UV light for 90 h. The monomer lactide is produced as the major product. α-Fe<sub>2</sub>O<sub>3</sub> (6.9 wt %) was found to accelerate the PLA degradation pathway, achieving 32% solid transformation into liquid phase products, in comparison to PLA on its own, which was found to not decompose, using the same conditions. This highlights a low energy route toward plastic waste upgrade and valorization that is less carbon intensive than pyrolysis and faster than natural degradation. By directly comparing a 25 W (0.025 kWh) UV bulb with a 13 kWh furnace, the photocatalytic reaction would directly consume 520× less energy than a conventional thermochemical pathway. Furthermore, this technology can be extended and applied to other plastics, and other photocatalysts can be used.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"3 6","pages":"342–347"},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.3c00040","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109142891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
We Are All Stars─Collaboration Builds Constellations and Galaxies 我们是全明星合作构建星座和星系。
Q1 ENGINEERING, ENVIRONMENTAL Pub Date : 2023-09-20 DOI: 10.1021/acsenvironau.3c00042
Yujun Tao*, 
{"title":"We Are All Stars─Collaboration Builds Constellations and Galaxies","authors":"Yujun Tao*,&nbsp;","doi":"10.1021/acsenvironau.3c00042","DOIUrl":"10.1021/acsenvironau.3c00042","url":null,"abstract":"","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"3 5","pages":"249"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0d/95/vg3c00042.PMC10515707.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41167879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental Contaminants─Today, Tomorrow, and Forever 今天、明天和永远的环境污染物。
Q1 ENGINEERING, ENVIRONMENTAL Pub Date : 2023-09-20 DOI: 10.1021/acsenvironau.3c00051
Peter Vikesland*, 
A a field, environmental science and engineering has long focused on improving our collective understanding of the processes dictating the formation, transport, and ultimate disposition of environmental contaminants. While the identities of the contaminants of interest continually change, our focus on these fundamental processes remains the same. The five contributions in this issue address a range of pollutants, including both airborne and waterborne. Yeh et al. describe the development of a “Soft Sensor” that relies upon machine learning algorithms to relate input signals acquired by common in-line sensors to water quality parameter outputs that are challenging to measure in the field. In particular, they are interested in using machine learning to predict chemical oxygen demand (COD), total suspended solids (TSS), or Escherichia coli concentrations, based upon inline turbidity, pH, ammonium ion, nitrate ion, and electrical conductivity measurements. The researchers evaluate the potential of this approach using two years of data collected at an onsite wastewater treatment system operating in a South African informal settlement. Encouragingly, their approach was successful at predicting COD (mean absolute percentage error (MAPE) of 14.5%; R2 = 0.96) and TSS (MAPE 24.8%; R2 = 0.99). However, E. coli (MAPE 71.4%; R2 = 0.22) detection remains a challenge and will require extended experimentation and the collection of larger data sets for model parametrization. In their contribution, Zambrana and Boehm reviewed the occurrence of human viruses on fomites (i.e., inanimate objects that may play a role in disease transmission). Using a systemic review based-approach, they surveyed the literature and, based upon the 134 articles that met their search criteria, found that a variety of different virus families have been detected on fomites and that the Coronaviridae are the most commonly reported. They note, however, that this finding most likely reflects expanded interrogation of fomites for SARS-CoV-2 during the COVID-19 pandemic. This contribution highlights the need to expand the range of viral targets examined on fomite surfaces. Such expansion could result in the development of fomite monitoring as a means to quantify the circulation of infectious diseases within a community. As the authors note, however, such a monitoring approach will require additional development of standardized fomite sampling protocols, standardized reporting units, and sample analysis methods that differentiate infectious viruses from noninfectious viral DNA or RNA. James and de Vos et al. examine the environmental impacts of a highly different type of pollution episode. In 2021, an onboard explosion led the M/V X-Press Pearl to catch fire off the coast of Sri Lanka, prior to its ultimate sinking. This fire resulted in the release of hundreds of tons of high-density polyethylene and low density polyethylene resin pellets, or nurdles. Because of the onboard fire, these nurdles
{"title":"Environmental Contaminants─Today, Tomorrow, and Forever","authors":"Peter Vikesland*,&nbsp;","doi":"10.1021/acsenvironau.3c00051","DOIUrl":"10.1021/acsenvironau.3c00051","url":null,"abstract":"A a field, environmental science and engineering has long focused on improving our collective understanding of the processes dictating the formation, transport, and ultimate disposition of environmental contaminants. While the identities of the contaminants of interest continually change, our focus on these fundamental processes remains the same. The five contributions in this issue address a range of pollutants, including both airborne and waterborne. Yeh et al. describe the development of a “Soft Sensor” that relies upon machine learning algorithms to relate input signals acquired by common in-line sensors to water quality parameter outputs that are challenging to measure in the field. In particular, they are interested in using machine learning to predict chemical oxygen demand (COD), total suspended solids (TSS), or Escherichia coli concentrations, based upon inline turbidity, pH, ammonium ion, nitrate ion, and electrical conductivity measurements. The researchers evaluate the potential of this approach using two years of data collected at an onsite wastewater treatment system operating in a South African informal settlement. Encouragingly, their approach was successful at predicting COD (mean absolute percentage error (MAPE) of 14.5%; R2 = 0.96) and TSS (MAPE 24.8%; R2 = 0.99). However, E. coli (MAPE 71.4%; R2 = 0.22) detection remains a challenge and will require extended experimentation and the collection of larger data sets for model parametrization. In their contribution, Zambrana and Boehm reviewed the occurrence of human viruses on fomites (i.e., inanimate objects that may play a role in disease transmission). Using a systemic review based-approach, they surveyed the literature and, based upon the 134 articles that met their search criteria, found that a variety of different virus families have been detected on fomites and that the Coronaviridae are the most commonly reported. They note, however, that this finding most likely reflects expanded interrogation of fomites for SARS-CoV-2 during the COVID-19 pandemic. This contribution highlights the need to expand the range of viral targets examined on fomite surfaces. Such expansion could result in the development of fomite monitoring as a means to quantify the circulation of infectious diseases within a community. As the authors note, however, such a monitoring approach will require additional development of standardized fomite sampling protocols, standardized reporting units, and sample analysis methods that differentiate infectious viruses from noninfectious viral DNA or RNA. James and de Vos et al. examine the environmental impacts of a highly different type of pollution episode. In 2021, an onboard explosion led the M/V X-Press Pearl to catch fire off the coast of Sri Lanka, prior to its ultimate sinking. This fire resulted in the release of hundreds of tons of high-density polyethylene and low density polyethylene resin pellets, or nurdles. Because of the onboard fire, these nurdles ","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"3 5","pages":"250–251"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e6/64/vg3c00051.PMC10515706.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41170234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liquid–Liquid Phase Separation Can Drive Aerosol Droplet Growth in Supersaturated Regimes 液-液相分离可以在过饱和状态下驱动气溶胶液滴的生长
Q1 ENGINEERING, ENVIRONMENTAL Pub Date : 2023-09-11 DOI: 10.1021/acsenvironau.3c00015
Kotiba Malek, Kanishk Gohil, Esther A. Olonimoyo, Nahin Ferdousi-Rokib, Qishen Huang, Kiran R. Pitta, Lucy Nandy, Katelyn A. Voss, Timothy M. Raymond*, Dabrina D Dutcher*, Miriam Arak Freedman* and Akua Asa-Awuku*, 

It is well known that atmospheric aerosol size and composition impact air quality, climate, and health. The aerosol composition is typically a mixture and consists of a wide range of organic and inorganic particles that interact with each other. Furthermore, water vapor is ubiquitous in the atmosphere, in indoor air, and within the human body’s respiratory system, and the presence of water can alter the aerosol morphology and propensity to form droplets. Specifically, aerosol mixtures can undergo liquid–liquid phase separation (LLPS) in the presence of water vapor. However, the experimental conditions for which LLPS impacts water uptake and the subsequent prediction of aerosol mixtures are poorly understood. To improve our understanding of aerosol mixtures and droplets, this study explores two ternary systems that undergo LLPS, namely, the 2MGA system (sucrose + ammonium sulfate + 2-methylglutaric acid) and the PEG1000 system (sucrose + ammonium sulfate + polyethylene glycol 1000). In this study, the ratio of species and the O:C ratios are systematically changed, and the hygroscopic properties of the resultant aerosol were investigated. Here, we show that the droplet activation above 100% RH of the 2MGA system was influenced by LLPS, while the droplet activation of the PEG1000 system was observed to be linearly additive regardless of chemical composition, O:C ratio, and LLPS. A theoretical model that accounts for LLPS with O:C ratios was developed and predicts the water uptake of internally mixed systems of different compositions and phase states. Hence, this study provides a computationally efficient algorithm to account for the LLPS and solubility parameterized by the O:C ratio for droplet activation at supersaturated relative humidity conditions and may thus be extended to mixed inorganic–organic aerosol populations with unspeciated organic composition found in the ambient environment.

众所周知,大气气溶胶的大小和组成影响空气质量、气候和健康。气溶胶组成物通常是一种混合物,由各种相互作用的有机和无机颗粒组成。此外,水蒸气在大气、室内空气和人体呼吸系统中无处不在,水的存在可以改变气溶胶的形态和形成水滴的倾向。具体来说,气溶胶混合物可以在水蒸气存在的情况下进行液-液相分离(LLPS)。然而,LLPS影响水分吸收和随后气溶胶混合物预测的实验条件尚不清楚。为了提高我们对气溶胶混合物和液滴的理解,本研究探索了两种经过LLPS的三元体系,即2MGA体系(蔗糖+硫酸铵+ 2-甲基戊二酸)和PEG1000体系(蔗糖+硫酸铵+聚乙二醇1000)。在这项研究中,物种比和O:C比被系统地改变,并研究了由此产生的气溶胶的吸湿特性。在这里,我们发现,在2MGA体系中,液滴在100% RH以上的活化受到LLPS的影响,而PEG1000体系的液滴活化与化学成分、O:C比和LLPS无关,都是线性加性的。建立了一个考虑O:C比的LLPS理论模型,并预测了不同成分和相态的内部混合系统的吸水率。因此,本研究提供了一种计算效率高的算法来考虑在过饱和相对湿度条件下液滴活化的O:C比参数化的LLPS和溶解度,从而可以扩展到环境环境中具有未指定有机成分的混合无机-有机气溶胶种群。
{"title":"Liquid–Liquid Phase Separation Can Drive Aerosol Droplet Growth in Supersaturated Regimes","authors":"Kotiba Malek,&nbsp;Kanishk Gohil,&nbsp;Esther A. Olonimoyo,&nbsp;Nahin Ferdousi-Rokib,&nbsp;Qishen Huang,&nbsp;Kiran R. Pitta,&nbsp;Lucy Nandy,&nbsp;Katelyn A. Voss,&nbsp;Timothy M. Raymond*,&nbsp;Dabrina D Dutcher*,&nbsp;Miriam Arak Freedman* and Akua Asa-Awuku*,&nbsp;","doi":"10.1021/acsenvironau.3c00015","DOIUrl":"https://doi.org/10.1021/acsenvironau.3c00015","url":null,"abstract":"<p >It is well known that atmospheric aerosol size and composition impact air quality, climate, and health. The aerosol composition is typically a mixture and consists of a wide range of organic and inorganic particles that interact with each other. Furthermore, water vapor is ubiquitous in the atmosphere, in indoor air, and within the human body’s respiratory system, and the presence of water can alter the aerosol morphology and propensity to form droplets. Specifically, aerosol mixtures can undergo liquid–liquid phase separation (LLPS) in the presence of water vapor. However, the experimental conditions for which LLPS impacts water uptake and the subsequent prediction of aerosol mixtures are poorly understood. To improve our understanding of aerosol mixtures and droplets, this study explores two ternary systems that undergo LLPS, namely, the 2MGA system (sucrose + ammonium sulfate + 2-methylglutaric acid) and the PEG1000 system (sucrose + ammonium sulfate + polyethylene glycol 1000). In this study, the ratio of species and the O:C ratios are systematically changed, and the hygroscopic properties of the resultant aerosol were investigated. Here, we show that the droplet activation above 100% RH of the 2MGA system was influenced by LLPS, while the droplet activation of the PEG1000 system was observed to be linearly additive regardless of chemical composition, O:C ratio, and LLPS. A theoretical model that accounts for LLPS with O:C ratios was developed and predicts the water uptake of internally mixed systems of different compositions and phase states. Hence, this study provides a computationally efficient algorithm to account for the LLPS and solubility parameterized by the O:C ratio for droplet activation at supersaturated relative humidity conditions and may thus be extended to mixed inorganic–organic aerosol populations with unspeciated organic composition found in the ambient environment.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"3 6","pages":"348–360"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.3c00015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"109143021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of 6PPD-Quinone in Rubberized Asphalt Concrete Mixtures 6PPD醌在橡胶沥青混凝土混合料中的应用研究
Q1 ENGINEERING, ENVIRONMENTAL Pub Date : 2023-07-26 DOI: 10.1021/acsenvironau.3c00023
Srinidhi Lokesh, Siththarththan Arunthavabalan, Elie Hajj, Edgard Hitti and Yu Yang*, 

N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD)-quinone (6PPD-Q), a transformation byproduct of 6PPD used in tires as an antiozonant and antioxidant, was recently discovered as the chemical primarily responsible for the acute lethal toxicity of urban storm runoff to coho salmon. The asphalt concrete (AC) surface layer is the primary medium to contact 6PPD-Q immediately upon its release from tires, and the addition of recycled tire rubber (RTR) to the asphalt binder and mixture is a widely accepted practice in asphalt production. Therefore, it is urgent to understand the fate of 6PPD-Q at the asphalt concrete surface layer–water interface. This study analyzed the sorption and desorption of 6PPD-Q by compacted and crushed loose (loose particles, ∼5 mm) rubberized asphalt mixtures and their mobilization from compacted asphalt mixtures during simulated rainfall events. It should be noted that the crushed loose asphalt mixtures demonstrated the physicochemical properties of the asphalt materials, while the compacted asphalt mixtures represent in-service AC layers. Sorption of 6PPD-Q by crushed loose and compacted asphalt mixtures reached equilibrium within 12 days, with a sorption coefficient of 151.57–257.51 L/kg for compacted asphalt mixtures. Within 12 days, desorption of 6PPD-Q from crushed loose and compacted rubberized asphalt mixtures (20 g particles/L) to the double deionized (DDI) water and synthetic stormwater was 0.01–0.09 and 0.025–0.05 μg/L, respectively. Through the rainfall simulation experiments, 0.0015–0.0049 μg/L 6PPD-Q was detected in the runoff water, much lower than the lethal concentration (LC50) of 6PPD-Q of 0.095 μg/L and 308.67 μg/L for coho salmon and zebrafish larvae. Our results indicate that, while the release of 6PPD-Q from compacted rubberized asphalt mixtures is minor, the mixtures can serve as sorbents for tire-derived 6PPD-Q and retain this emerging contaminant.

N-(1,3-二甲基丁基)-N ' -苯基-对苯二胺(6PPD)-醌(6PPD- q)是6PPD在轮胎中用作抗臭氧剂和抗氧化剂的转化副产物,最近被发现是导致城市暴雨径流对鲑鱼急性致死毒性的主要化学物质。沥青混凝土(AC)表层是6PPD-Q从轮胎中释放出来后立即接触的主要介质,在沥青粘结剂和混合料中添加再生轮胎橡胶(RTR)是沥青生产中广泛接受的做法。因此,迫切需要了解6PPD-Q在沥青混凝土面层-水界面的命运。该研究分析了压实和粉碎的松散(松散颗粒,约5毫米)橡胶沥青混合料对6PPD-Q的吸附和解吸,以及它们在模拟降雨事件中从压实沥青混合料中的动员。需要注意的是,破碎后的松散沥青混合料表现了沥青材料的物理化学性质,而压实后的沥青混合料则代表了使用中的交流层。破碎后松散沥青混合料和压实沥青混合料对6PPD-Q的吸附在12天内达到平衡,压实沥青混合料的吸附系数为151.57 ~ 257.51 L/kg。在12天内,从破碎的松散和压实的橡胶沥青混合料(20 g颗粒/L)中,6PPD-Q对双去离子(DDI)水和合成雨水的解吸量分别为0.01 ~ 0.09和0.025 ~ 0.05 μg/L。通过降雨模拟实验,径流水中6PPD-Q的检测值为0.0015 ~ 0.0049 μg/L,远低于6PPD-Q对银鲑和斑马鱼幼鱼0.095 μg/L和308.67 μg/L的致死浓度(LC50)。我们的研究结果表明,虽然从压实的橡胶沥青混合料中释放的6PPD-Q很少,但这些混合料可以作为轮胎衍生的6PPD-Q的吸附剂,并保留这种新出现的污染物。
{"title":"Investigation of 6PPD-Quinone in Rubberized Asphalt Concrete Mixtures","authors":"Srinidhi Lokesh,&nbsp;Siththarththan Arunthavabalan,&nbsp;Elie Hajj,&nbsp;Edgard Hitti and Yu Yang*,&nbsp;","doi":"10.1021/acsenvironau.3c00023","DOIUrl":"10.1021/acsenvironau.3c00023","url":null,"abstract":"<p >N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD)-quinone (6PPD-Q), a transformation byproduct of 6PPD used in tires as an antiozonant and antioxidant, was recently discovered as the chemical primarily responsible for the acute lethal toxicity of urban storm runoff to coho salmon. The asphalt concrete (AC) surface layer is the primary medium to contact 6PPD-Q immediately upon its release from tires, and the addition of recycled tire rubber (RTR) to the asphalt binder and mixture is a widely accepted practice in asphalt production. Therefore, it is urgent to understand the fate of 6PPD-Q at the asphalt concrete surface layer–water interface. This study analyzed the sorption and desorption of 6PPD-Q by compacted and crushed loose (loose particles, ∼5 mm) rubberized asphalt mixtures and their mobilization from compacted asphalt mixtures during simulated rainfall events. It should be noted that the crushed loose asphalt mixtures demonstrated the physicochemical properties of the asphalt materials, while the compacted asphalt mixtures represent in-service AC layers. Sorption of 6PPD-Q by crushed loose and compacted asphalt mixtures reached equilibrium within 12 days, with a sorption coefficient of 151.57–257.51 L/kg for compacted asphalt mixtures. Within 12 days, desorption of 6PPD-Q from crushed loose and compacted rubberized asphalt mixtures (20 g particles/L) to the double deionized (DDI) water and synthetic stormwater was 0.01–0.09 and 0.025–0.05 μg/L, respectively. Through the rainfall simulation experiments, 0.0015–0.0049 μg/L 6PPD-Q was detected in the runoff water, much lower than the lethal concentration (LC<sub>50</sub>) of 6PPD-Q of 0.095 μg/L and 308.67 μg/L for coho salmon and zebrafish larvae. Our results indicate that, while the release of 6PPD-Q from compacted rubberized asphalt mixtures is minor, the mixtures can serve as sorbents for tire-derived 6PPD-Q and retain this emerging contaminant.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"3 6","pages":"336–341"},"PeriodicalIF":0.0,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.3c00023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45868344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Occurrence of Human Viruses on Fomites in the Environment: A Systematic Review and Meta-analysis 环境中人类病毒对螨虫的发生:系统综述和荟萃分析。
Q1 ENGINEERING, ENVIRONMENTAL Pub Date : 2023-07-25 DOI: 10.1021/acsenvironau.3c00025
Winnie Zambrana,  and , Alexandria B. Boehm*, 

Documenting the occurrence of viruses on fomites is crucial in determining the significance of fomite-mediated transmission and the potential use of fomites for environmental disease surveillance. We conducted a systematic review and meta-analysis to compile information on the occurrence of human viruses on fomites in the environment; we identified 134 peer-reviewed papers. We compiled sampling and measurement methods, results, quality control information, and whether virus data were compared with community health data from the papers. We conducted univariate and multivariate analyses to investigate if presence of virus on fomites was associated with virus type (enveloped, nonenveloped), sampling location (healthcare setting, nonhealthcare temporary setting, nonhealthcare nontemporary setting), and area of fomite swabbed (<50, 50–100, >100 cm2). Across 275 data sets from the 134 papers, there was the most data available for Coronaviridae and from fomites at hospitals. Positivity rates, defined as the percent positive fomite samples, were low (median = 6%). Data were available on viruses from 16 different viral families, but data on viruses from 9 families had few (n < 5) data sets. Many human virus families were not identified in this review (11 families). Less than 15% of the data sets reported virus concentrations in externally valid units (viruses per area of surface), and 16% provided a quantitative comparison between virus and health data. Virus type and area swabbed were significant predictors of virus presence on fomites, and the positivity rate of data sets collected from healthcare settings and nonhealthcare nontemporary settings (e.g., individual housing) were significantly higher than those collected in nonhealthcare temporary settings (e.g., restaurants). Data from this review indicates that viruses may be present on fomites, that fomite-mediated virus transmission may occur, and that fomites may provide information on circulation of infectious diseases in the community. However, more quantitative data on diverse viruses are needed, and method reporting needs significant improvements.

记录fomite上病毒的发生对于确定fomite介导的传播的重要性以及fomite在环境疾病监测中的潜在用途至关重要。我们进行了一项系统综述和荟萃分析,以汇编环境中fomites上人类病毒发生的信息;我们鉴定了134篇同行评审论文。我们汇编了采样和测量方法、结果、质量控制信息,以及病毒数据是否与论文中的社区卫生数据进行了比较。我们进行了单变量和多变量分析,以调查fomite上病毒的存在是否与病毒类型(包膜、非包膜)、采样位置(医疗环境、非医疗临时环境、非卫生临时环境)和fomite拭子面积(100 cm2)有关。在134篇论文中的275个数据集中,冠状病毒科和医院感染者的数据最多。阳性率,定义为阳性fomite样本的百分比,较低(中位数=6%)。来自16个不同病毒家族的病毒数据可用,但来自9个家族的病毒的数据集很少(n<5)。许多人类病毒家族在这篇综述中没有被确定(11个家族)。不到15%的数据集以外部有效单位(每表面面积的病毒)报告了病毒浓度,16%的数据集提供了病毒和健康数据之间的定量比较。病毒类型和拭子面积是fomites上病毒存在的重要预测因素,从医疗保健环境和非医疗保健非临时环境(如个人住房)收集的数据集的阳性率显著高于在非医疗保健临时环境(例如餐馆)收集的数据集。这篇综述的数据表明,病毒可能存在于fomite上,可能发生fomite介导的病毒传播,fomite可能提供有关传染病在社区中传播的信息。然而,还需要更多关于不同病毒的定量数据,报告方法也需要显著改进。
{"title":"Occurrence of Human Viruses on Fomites in the Environment: A Systematic Review and Meta-analysis","authors":"Winnie Zambrana,&nbsp; and ,&nbsp;Alexandria B. Boehm*,&nbsp;","doi":"10.1021/acsenvironau.3c00025","DOIUrl":"10.1021/acsenvironau.3c00025","url":null,"abstract":"<p >Documenting the occurrence of viruses on fomites is crucial in determining the significance of fomite-mediated transmission and the potential use of fomites for environmental disease surveillance. We conducted a systematic review and meta-analysis to compile information on the occurrence of human viruses on fomites in the environment; we identified 134 peer-reviewed papers. We compiled sampling and measurement methods, results, quality control information, and whether virus data were compared with community health data from the papers. We conducted univariate and multivariate analyses to investigate if presence of virus on fomites was associated with virus type (enveloped, nonenveloped), sampling location (healthcare setting, nonhealthcare temporary setting, nonhealthcare nontemporary setting), and area of fomite swabbed (&lt;50, 50–100, &gt;100 cm<sup>2</sup>). Across 275 data sets from the 134 papers, there was the most data available for Coronaviridae and from fomites at hospitals. Positivity rates, defined as the percent positive fomite samples, were low (median = 6%). Data were available on viruses from 16 different viral families, but data on viruses from 9 families had few (<i>n</i> &lt; 5) data sets. Many human virus families were not identified in this review (11 families). Less than 15% of the data sets reported virus concentrations in externally valid units (viruses per area of surface), and 16% provided a quantitative comparison between virus and health data. Virus type and area swabbed were significant predictors of virus presence on fomites, and the positivity rate of data sets collected from healthcare settings and nonhealthcare nontemporary settings (e.g., individual housing) were significantly higher than those collected in nonhealthcare temporary settings (e.g., restaurants). Data from this review indicates that viruses may be present on fomites, that fomite-mediated virus transmission may occur, and that fomites may provide information on circulation of infectious diseases in the community. However, more quantitative data on diverse viruses are needed, and method reporting needs significant improvements.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"3 5","pages":"277–294"},"PeriodicalIF":0.0,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fb/83/vg3c00025.PMC10515712.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41167878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Responding Together to Global Challenges 共同应对全球挑战
Q1 ENGINEERING, ENVIRONMENTAL Pub Date : 2023-07-19 DOI: 10.1021/acsenvironau.3c00031
Desirée L. Plata, 
T shepherd sustainable systems through times of global development and change, the environmental research community has long drawn on an interdisciplinary skill set. This includes environmental chemistry, biology, physics, materials science, and the engineering pursuits required to translate those advances in fundamental knowledge to tangible benefit for society. This past week, the biannual meeting of the Association of Environmental Engineering and Science Professors (AEESP) convened in Boston, MA, USA under the theme “Responding Together to Global Challenges.” Of particular focus at the meeting was the evolving role of environmental engineers and scientists in the context of climate change. The traditional contributions of the field have been central to the growth of civilizations, ecosystem services, and striving for ecological preservation, but are now called upon to meet the accelerating demands of a climate changed world. These include prediction of novel patterns of precipitation and drought, better and bespoke agricultural practices, water, sanitation, and hygiene (WASH), as well as decarbonization technologies, geochemical impact assessment, climate justice, and sustainable resources and energy. Innovative thinkers from a spectrum of environmental professions and adjacent implementers (e.g., philanthropists, financers, policymakers, utility and infrastructure experts) are needed to support the grand goal of our collective work: protecting human and ecological health while promoting sustainable systems. Indeed, adapting to and mitigating the impacts of climate change are often articulated as the technological and policy challenge of our time. The readership and authors in the ACS Environmental Au community are empowered with the skills required to provide solutions to these challenges, and this new issue contains a collection of four Articles and a Review illustrating key progress in this pursuit.
{"title":"Responding Together to Global Challenges","authors":"Desirée L. Plata,&nbsp;","doi":"10.1021/acsenvironau.3c00031","DOIUrl":"10.1021/acsenvironau.3c00031","url":null,"abstract":"T shepherd sustainable systems through times of global development and change, the environmental research community has long drawn on an interdisciplinary skill set. This includes environmental chemistry, biology, physics, materials science, and the engineering pursuits required to translate those advances in fundamental knowledge to tangible benefit for society. This past week, the biannual meeting of the Association of Environmental Engineering and Science Professors (AEESP) convened in Boston, MA, USA under the theme “Responding Together to Global Challenges.” Of particular focus at the meeting was the evolving role of environmental engineers and scientists in the context of climate change. The traditional contributions of the field have been central to the growth of civilizations, ecosystem services, and striving for ecological preservation, but are now called upon to meet the accelerating demands of a climate changed world. These include prediction of novel patterns of precipitation and drought, better and bespoke agricultural practices, water, sanitation, and hygiene (WASH), as well as decarbonization technologies, geochemical impact assessment, climate justice, and sustainable resources and energy. Innovative thinkers from a spectrum of environmental professions and adjacent implementers (e.g., philanthropists, financers, policymakers, utility and infrastructure experts) are needed to support the grand goal of our collective work: protecting human and ecological health while promoting sustainable systems. Indeed, adapting to and mitigating the impacts of climate change are often articulated as the technological and policy challenge of our time. The readership and authors in the ACS Environmental Au community are empowered with the skills required to provide solutions to these challenges, and this new issue contains a collection of four Articles and a Review illustrating key progress in this pursuit.","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"3 4","pages":"193–194"},"PeriodicalIF":0.0,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1a/d0/vg3c00031.PMC10360196.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9858761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fire and Oil Led to Complex Mixtures of PAHs on Burnt and Unburnt Plastic during the M/V X-Press Pearl Disaster 在M/V X-Press珍珠灾难中,火灾和石油导致燃烧和未燃烧塑料上的多环芳烃的复杂混合物
Q1 ENGINEERING, ENVIRONMENTAL Pub Date : 2023-07-12 DOI: 10.1021/acsenvironau.3c00011
Bryan D. James*, Christopher M. Reddy, Mark E. Hahn, Robert K. Nelson, Asha de Vos*, Lihini I. Aluwihare, Terry L. Wade, Anthony H. Knap and Gopal Bera, 

In May 2021, the M/V X-Press Pearl container ship burned for 2 weeks, leading to the largest maritime spill of resin pellets (nurdles). The disaster was exacerbated by the leakage of other cargo and the ship’s underway fuel. This disaster affords the unique opportunity to study a time-stamped, geolocated release of plastic under real-world conditions. Field samples collected from beaches in Sri Lanka nearest to the ship comprised nurdles exposed to heat and combustion, burnt plastic pieces (pyroplastic), and oil-plastic agglomerates (petroplastic). An unresolved question is whether the 1600+ tons of spilled and recovered plastic should be considered hazardous waste. Due to the known formation and toxicity of combustion-derived polycyclic aromatic hydrocarbons (PAHs), we measured 20 parent and 21 alkylated PAHs associated with several types of spilled plastic. The maximum PAH content of the sampled pyroplastic had the greatest amount of PAHs recorded for marine plastic debris (199,000 ng/g). In contrast, the sampled unburnt white nurdles had two orders of magnitude less PAH content. The PAH composition varied between the types of spilled plastic and presented features typical of and conflicting with petrogenic and pyrogenic sources. Nevertheless, specific markers and compositional changes for burning plastics were identified, revealing that the fire was the main source of PAHs. Eight months after the spill, the PAH contents of sampled stray nurdles and pyroplastic were reduced by more than 50%. Due to their PAH content exceeding levels allowable for plastic consumer goods, classifying burnt plastic as hazardous waste may be warranted. Following a largely successful cleanup, we recommend that the Sri Lankans re-evaluate the identification, handling, and disposal of the plastic debris collected from beaches and the potential exposure of responders and the public to PAHs from handling it. The maritime disaster underscores pyroplastic as a type of plastic pollution that has yet to be fully explored, despite the pervasiveness of intentional and unintentional burning of plastic globally.

2021年5月,M/V X-Press Pearl集装箱船燃烧了2周,导致最大规模的树脂颗粒(nurdles)海上泄漏。其他货物和船上正在行驶的燃料泄漏加剧了这场灾难。这场灾难提供了一个独特的机会来研究在现实世界条件下塑料的时间戳、地理定位释放。从离船最近的斯里兰卡海滩采集的现场样本包括暴露在高温和燃烧中的nurdles、燃烧过的塑料片(热塑性塑料)和油塑性团聚体(岩塑性塑料。一个尚未解决的问题是,1600多吨溢出和回收的塑料是否应被视为危险废物。由于已知燃烧衍生的多环芳烃(PAHs)的形成和毒性,我们测量了与几种类型的溢出塑料相关的20种母体和21种烷基化PAHs。采样的热塑性塑料中PAH含量最高的是海洋塑料碎片中记录的PAHs含量最高的(199000纳克/克)。相比之下,取样的未燃烧白色nurdles的PAH含量减少了两个数量级。PAH成分在不同类型的溢出塑料之间变化,并呈现出典型的特征,与岩石和热解源相冲突。然而,对燃烧塑料的特定标志物和成分变化进行了鉴定,表明火灾是多环芳烃的主要来源。泄漏事件发生8个月后,采样的杂散nurdles和热塑性塑料中的PAH含量减少了50%以上。由于其PAH含量超过了塑料消费品的允许水平,因此有必要将燃烧过的塑料归类为危险废物。在基本成功的清理工作之后,我们建议斯里兰卡人重新评估从海滩收集的塑料碎片的识别、处理和处置,以及响应者和公众在处理过程中可能接触到的多环芳烃。这场海洋灾难突显了热塑性塑料是一种尚未充分探索的塑料污染,尽管在全球范围内有意和无意焚烧塑料的行为普遍存在。
{"title":"Fire and Oil Led to Complex Mixtures of PAHs on Burnt and Unburnt Plastic during the M/V X-Press Pearl Disaster","authors":"Bryan D. James*,&nbsp;Christopher M. Reddy,&nbsp;Mark E. Hahn,&nbsp;Robert K. Nelson,&nbsp;Asha de Vos*,&nbsp;Lihini I. Aluwihare,&nbsp;Terry L. Wade,&nbsp;Anthony H. Knap and Gopal Bera,&nbsp;","doi":"10.1021/acsenvironau.3c00011","DOIUrl":"https://doi.org/10.1021/acsenvironau.3c00011","url":null,"abstract":"<p >In May 2021, the M/V <i>X-Press Pearl</i> container ship burned for 2 weeks, leading to the largest maritime spill of resin pellets (nurdles). The disaster was exacerbated by the leakage of other cargo and the ship’s underway fuel. This disaster affords the unique opportunity to study a time-stamped, geolocated release of plastic under real-world conditions. Field samples collected from beaches in Sri Lanka nearest to the ship comprised nurdles exposed to heat and combustion, burnt plastic pieces (pyroplastic), and oil-plastic agglomerates (petroplastic). An unresolved question is whether the 1600+ tons of spilled and recovered plastic should be considered hazardous waste. Due to the known formation and toxicity of combustion-derived polycyclic aromatic hydrocarbons (PAHs), we measured 20 parent and 21 alkylated PAHs associated with several types of spilled plastic. The maximum PAH content of the sampled pyroplastic had the greatest amount of PAHs recorded for marine plastic debris (199,000 ng/g). In contrast, the sampled unburnt white nurdles had two orders of magnitude less PAH content. The PAH composition varied between the types of spilled plastic and presented features typical of and conflicting with petrogenic and pyrogenic sources. Nevertheless, specific markers and compositional changes for burning plastics were identified, revealing that the fire was the main source of PAHs. Eight months after the spill, the PAH contents of sampled stray nurdles and pyroplastic were reduced by more than 50%. Due to their PAH content exceeding levels allowable for plastic consumer goods, classifying burnt plastic as hazardous waste may be warranted. Following a largely successful cleanup, we recommend that the Sri Lankans re-evaluate the identification, handling, and disposal of the plastic debris collected from beaches and the potential exposure of responders and the public to PAHs from handling it. The maritime disaster underscores pyroplastic as a type of plastic pollution that has yet to be fully explored, despite the pervasiveness of intentional and unintentional burning of plastic globally.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"3 5","pages":"319–335"},"PeriodicalIF":0.0,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.3c00011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49768646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Development of a Soft Sensor Using Machine Learning Algorithms for Predicting the Water Quality of an Onsite Wastewater Treatment System 利用机器学习算法开发用于预测现场污水处理系统水质的软传感器。
Q1 ENGINEERING, ENVIRONMENTAL Pub Date : 2023-06-30 DOI: 10.1021/acsenvironau.2c00072
Hsiang-Yang Shyu, Cynthia J. Castro, Robert A. Bair, Qing Lu and Daniel H. Yeh*, 

Developing advanced onsite wastewater treatment systems (OWTS) requires accurate and consistent water quality monitoring to evaluate treatment efficiency and ensure regulatory compliance. However, off-line parameters such as chemical oxygen demand (COD), total suspended solids (TSS), and Escherichia coli (E. coli) require sample collection and time-consuming laboratory analyses that do not provide real-time information of system performance or component failure. While real-time COD analyzers have emerged in recent years, they are not economically viable for onsite systems due to cost and chemical consumables. This study aimed to design and implement a real-time remote monitoring system for OWTS by developing several multi-input and single-output soft sensors. The soft sensor integrates data that can be obtained from well-established in-line sensors to accurately predict key water quality parameters, including COD, TSS, and E. coli concentrations. The temporal and spatial water quality data of an existing field-tested OWTS operated for almost two years (n = 56 data points) were used to evaluate the prediction performance of four machine learning algorithms. These algorithms, namely, partial least square regression (PLS), support vector regression (SVR), cubist regression (CUB), and quantile regression neural network (QRNN), were chosen as candidate algorithms for their prior application and effectiveness in wastewater treatment predictions. Water quality parameters that can be measured in-line, including turbidity, color, pH, NH4+, NO3, and electrical conductivity, were selected as model inputs for predicting COD, TSS, and E. coli. The results revealed that the trained SVR model provided a statistically significant prediction for COD with a mean absolute percentage error (MAPE) of 14.5% and R2 of 0.96. The CUB model provided the optimal predictive performance for TSS, with a MAPE of 24.8% and R2 of 0.99. None of the models were able to achieve optimal prediction results for E. coli; however, the CUB model performed the best with a MAPE of 71.4% and R2 of 0.22. Given the large fluctuation in the concentrations of COD, TSS, and E. coli within the OWTS wastewater dataset, the proposed soft sensor models adequately predicted COD and TSS, while E. coli prediction was comparatively less accurate and requires further improvement. These results indicate that although water quality datasets for the OWTS are relatively small, machine learning-based soft sensors can provide useful predictive estimates of off-line parameters and provide real-time monitoring capabilities that can be used to make adjustments to OWTS operations.

开发先进的现场废水处理系统(OWTS)需要准确和一致的水质监测,以评估处理效率并确保遵守法规。然而,离线参数,如化学需氧量(COD)、总悬浮固体(TSS)和大肠杆菌(E.coli),需要收集样本和耗时的实验室分析,无法提供系统性能或组件故障的实时信息。虽然近年来出现了实时COD分析仪,但由于成本和化学耗材的原因,它们在经济上不适用于现场系统。本研究旨在通过开发多个多输入和单输出软传感器来设计和实现OWTS的实时远程监控系统。该软传感器集成了可以从成熟的在线传感器获得的数据,以准确预测关键的水质参数,包括COD、TSS和大肠杆菌浓度。使用运行了近两年的现有现场测试OWTS的时间和空间水质数据(n=56个数据点)来评估四种机器学习算法的预测性能。这些算法,即偏最小二乘回归(PLS)、支持向量回归(SVR)、立体主义回归(CUB)和分位数回归神经网络(QRNN),因其在废水处理预测中的先前应用和有效性而被选为候选算法。选择可以在线测量的水质参数,包括浊度、颜色、pH、NH4+、NO3-和电导率,作为预测COD、TSS和大肠杆菌的模型输入。结果表明,训练的SVR模型对COD提供了具有统计学意义的预测,平均绝对百分比误差(MAPE)为14.5%,R2为0.96。CUB模型为TSS提供了最佳的预测性能,MAPE为24.8%,R2为0.99。没有一个模型能够实现对大肠杆菌的最佳预测结果;CUB模型表现最好,MAPE为71.4%,R2为0.22。考虑到OWTS废水数据集中COD、TSS和大肠杆菌的浓度波动较大,所提出的软传感器模型充分预测了COD和TSS,而大肠杆菌的预测相对不那么准确,需要进一步改进。这些结果表明,尽管OWTS的水质数据集相对较小,但基于机器学习的软传感器可以提供离线参数的有用预测估计,并提供可用于调整OWTS操作的实时监测能力。
{"title":"Development of a Soft Sensor Using Machine Learning Algorithms for Predicting the Water Quality of an Onsite Wastewater Treatment System","authors":"Hsiang-Yang Shyu,&nbsp;Cynthia J. Castro,&nbsp;Robert A. Bair,&nbsp;Qing Lu and Daniel H. Yeh*,&nbsp;","doi":"10.1021/acsenvironau.2c00072","DOIUrl":"10.1021/acsenvironau.2c00072","url":null,"abstract":"<p >Developing advanced onsite wastewater treatment systems (OWTS) requires accurate and consistent water quality monitoring to evaluate treatment efficiency and ensure regulatory compliance. However, off-line parameters such as chemical oxygen demand (COD), total suspended solids (TSS), and <i>Escherichia coli</i> (<i>E. coli</i>) require sample collection and time-consuming laboratory analyses that do not provide real-time information of system performance or component failure. While real-time COD analyzers have emerged in recent years, they are not economically viable for onsite systems due to cost and chemical consumables. This study aimed to design and implement a real-time remote monitoring system for OWTS by developing several multi-input and single-output soft sensors. The soft sensor integrates data that can be obtained from well-established in-line sensors to accurately predict key water quality parameters, including COD, TSS, and <i>E. coli</i> concentrations. The temporal and spatial water quality data of an existing field-tested OWTS operated for almost two years (<i>n</i> = 56 data points) were used to evaluate the prediction performance of four machine learning algorithms. These algorithms, namely, partial least square regression (PLS), support vector regression (SVR), cubist regression (CUB), and quantile regression neural network (QRNN), were chosen as candidate algorithms for their prior application and effectiveness in wastewater treatment predictions. Water quality parameters that can be measured in-line, including turbidity, color, pH, NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>–</sup>, and electrical conductivity, were selected as model inputs for predicting COD, TSS, and <i>E. coli</i>. The results revealed that the trained SVR model provided a statistically significant prediction for COD with a mean absolute percentage error (MAPE) of 14.5% and <i>R</i><sup>2</sup> of 0.96. The CUB model provided the optimal predictive performance for TSS, with a MAPE of 24.8% and <i>R</i><sup>2</sup> of 0.99. None of the models were able to achieve optimal prediction results for <i>E. coli</i>; however, the CUB model performed the best with a MAPE of 71.4% and <i>R</i><sup>2</sup> of 0.22. Given the large fluctuation in the concentrations of COD, TSS, and <i>E. coli</i> within the OWTS wastewater dataset, the proposed soft sensor models adequately predicted COD and TSS, while <i>E. coli</i> prediction was comparatively less accurate and requires further improvement. These results indicate that although water quality datasets for the OWTS are relatively small, machine learning-based soft sensors can provide useful predictive estimates of off-line parameters and provide real-time monitoring capabilities that can be used to make adjustments to OWTS operations.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"3 5","pages":"308–318"},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.2c00072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41158195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Direct Air Capture of CO2 Using Amine/Alumina Sorbents at Cold Temperature 利用胺/氧化铝吸附剂在低温下直接捕集二氧化碳
Q1 ENGINEERING, ENVIRONMENTAL Pub Date : 2023-06-29 DOI: 10.1021/acsenvironau.3c00010
Pranjali Priyadarshini, Guanhe Rim, Cornelia Rosu, MinGyu Song and Christopher W. Jones*, 

Rising CO2 emissions are responsible for increasing global temperatures causing climate change. Significant efforts are underway to develop amine-based sorbents to directly capture CO2 from air (called direct air capture (DAC)) to combat the effects of climate change. However, the sorbents’ performances have usually been evaluated at ambient temperatures (25 °C) or higher, most often under dry conditions. A significant portion of the natural environment where DAC plants can be deployed experiences temperatures below 25 °C, and ambient air always contains some humidity. In this study, we assess the CO2 adsorption behavior of amine (poly(ethyleneimine) (PEI) and tetraethylenepentamine (TEPA)) impregnated into porous alumina at ambient (25 °C) and cold temperatures (−20 °C) under dry and humid conditions. CO2 adsorption capacities at 25 °C and 400 ppm CO2 are highest for 40 wt% TEPA-incorporated γ-Al2O3 samples (1.8 mmol CO2/g sorbent), while 40 wt % PEI-impregnated γ-Al2O3 samples exhibit moderate uptakes (0.9 mmol g–1). CO2 capacities for both PEI- and TEPA-incorporated γ-Al2O3 samples decrease with decreasing amine content and temperatures. The 40 and 20 wt % TEPA sorbents show the best performance at −20 °C under dry conditions (1.6 and 1.1 mmol g–1, respectively). Both the TEPA samples also exhibit stable and high working capacities (0.9 and 1.2 mmol g–1) across 10 cycles of adsorption–desorption (adsorption at −20 °C and desorption conducted at 60 °C). Introducing moisture (70% RH at −20 and 25 °C) improves the CO2 capacity of the amine-impregnated sorbents at both temperatures. The 40 wt% PEI, 40 wt % TEPA, and 20 wt% TEPA samples show good CO2 uptakes at both temperatures. The results presented here indicate that γ-Al2O3 impregnated with PEI and TEPA are potential materials for DAC at ambient and cold conditions, with further opportunities to optimize these materials for the scalable deployment of DAC plants at different environmental conditions.

二氧化碳排放量的增加是全球气温上升导致气候变化的原因。目前正在大力开发胺基吸收剂,直接从空气中捕获二氧化碳(称为直接空气捕获(DAC)),以对抗气候变化的影响。然而,吸附剂的性能通常在环境温度(25°C)或更高的温度下进行评估,通常在干燥条件下进行评估。DAC工厂所在的自然环境的很大一部分温度低于25°C,环境空气中总是含有一些湿度。在本研究中,我们评估了在环境(25°C)和低温(−20°C)下,在干燥和潮湿条件下,浸渍到多孔氧化铝中的胺(聚乙烯亚胺(PEI)和四乙烯五胺(TEPA))对CO2的吸附行为。掺入40 wt%TEPA的γ-Al2O3样品(1.8 mmol CO2/g吸附剂)在25°C和400 ppm CO2下的CO2吸附能力最高,而掺入40 wt%PEI的γ-Al2O3样品表现出中等的吸收(0.9 mmol g–1)。掺入PEI和TEPA的γ-Al2O3样品的CO2容量随着胺含量和温度的降低而降低。40和20 wt%的TEPA吸附剂在−20°C的干燥条件下表现出最佳性能(分别为1.6和1.1 mmol g–1)。两种TEPA样品在10个吸附-解吸循环(−20°C下吸附和60°C下解吸)中也表现出稳定和高的工作容量(0.9和1.2 mmol g–1)。引入水分(−20和25°C时的相对湿度为70%)可提高胺浸渍吸收剂在两种温度下的CO2容量。40wt%PEI、40wt%TEPA和20wt%TEPA样品在两种温度下都显示出良好的CO2吸收。本文的结果表明,在环境和寒冷条件下,用PEI和TEPA浸渍的γ-Al2O3是DAC的潜在材料,为在不同环境条件下可扩展部署DAC工厂提供了进一步的机会。
{"title":"Direct Air Capture of CO2 Using Amine/Alumina Sorbents at Cold Temperature","authors":"Pranjali Priyadarshini,&nbsp;Guanhe Rim,&nbsp;Cornelia Rosu,&nbsp;MinGyu Song and Christopher W. Jones*,&nbsp;","doi":"10.1021/acsenvironau.3c00010","DOIUrl":"https://doi.org/10.1021/acsenvironau.3c00010","url":null,"abstract":"<p >Rising CO<sub>2</sub> emissions are responsible for increasing global temperatures causing climate change. Significant efforts are underway to develop amine-based sorbents to directly capture CO<sub>2</sub> from air (called direct air capture (DAC)) to combat the effects of climate change. However, the sorbents’ performances have usually been evaluated at ambient temperatures (25 °C) or higher, most often under dry conditions. A significant portion of the natural environment where DAC plants can be deployed experiences temperatures below 25 °C, and ambient air always contains some humidity. In this study, we assess the CO<sub>2</sub> adsorption behavior of amine (poly(ethyleneimine) (PEI) and tetraethylenepentamine (TEPA)) impregnated into porous alumina at ambient (25 °C) and cold temperatures (−20 °C) under dry and humid conditions. CO<sub>2</sub> adsorption capacities at 25 °C and 400 ppm CO<sub>2</sub> are highest for 40 wt% TEPA-incorporated γ-Al<sub>2</sub>O<sub>3</sub> samples (1.8 mmol CO<sub>2</sub>/g sorbent), while 40 wt % PEI-impregnated γ-Al<sub>2</sub>O<sub>3</sub> samples exhibit moderate uptakes (0.9 mmol g<sup>–1</sup>). CO<sub>2</sub> capacities for both PEI- and TEPA-incorporated γ-Al<sub>2</sub>O<sub>3</sub> samples decrease with decreasing amine content and temperatures. The 40 and 20 wt % TEPA sorbents show the best performance at −20 °C under dry conditions (1.6 and 1.1 mmol g<sup>–1</sup>, respectively). Both the TEPA samples also exhibit stable and high working capacities (0.9 and 1.2 mmol g<sup>–1</sup>) across 10 cycles of adsorption–desorption (adsorption at −20 °C and desorption conducted at 60 °C). Introducing moisture (70% RH at −20 and 25 °C) improves the CO<sub>2</sub> capacity of the amine-impregnated sorbents at both temperatures. The 40 wt% PEI, 40 wt % TEPA, and 20 wt% TEPA samples show good CO<sub>2</sub> uptakes at both temperatures. The results presented here indicate that γ-Al<sub>2</sub>O<sub>3</sub> impregnated with PEI and TEPA are potential materials for DAC at ambient and cold conditions, with further opportunities to optimize these materials for the scalable deployment of DAC plants at different environmental conditions.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"3 5","pages":"295–307"},"PeriodicalIF":0.0,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.3c00010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49768526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
ACS Environmental Au
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1