Beatriz Albero, Paloma Sánchez-Argüello, Antonio Martín-Esteban, Elina Tampio, Ilmari Laaksonen and Rosa Ana Pérez*,
{"title":"","authors":"Beatriz Albero, Paloma Sánchez-Argüello, Antonio Martín-Esteban, Elina Tampio, Ilmari Laaksonen and Rosa Ana Pérez*, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 4","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":6.7,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsenvironau.4c00092","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144631046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qishen Huang*, Huiyuan Guo, Wei Wang, Seju Kang and Peter J. Vikesland*,
{"title":"","authors":"Qishen Huang*, Huiyuan Guo, Wei Wang, Seju Kang and Peter J. Vikesland*, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 4","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":6.7,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsenvironau.4c00149","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144631047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah E. Dowd, Kari L. Organtini, Jean Carlan and Frank L. Dorman*,
{"title":"","authors":"Sarah E. Dowd, Kari L. Organtini, Jean Carlan and Frank L. Dorman*, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 4","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":6.7,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsenvironau.5c00002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144631050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elena Hommel, Maria König, Georg Braun, Martin Krauss, Norbert Kamjunke, Werner Brack, Anna Matousu, Tina Sanders, Ingeborg Bussmann, Eric P. Achterberg, Björn Raupers and Beate I. Escher*,
{"title":"","authors":"Elena Hommel, Maria König, Georg Braun, Martin Krauss, Norbert Kamjunke, Werner Brack, Anna Matousu, Tina Sanders, Ingeborg Bussmann, Eric P. Achterberg, Björn Raupers and Beate I. Escher*, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 4","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":6.7,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsenvironau.4c00059","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144631049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-10DOI: 10.1021/acsenvironau.5c00101
Squire J. Booker, Stephanie L. Brock, Xiangdong Li, Géraldine Masson, Sébastien Perrier, Vivek V. Ranade, Raymond E. Schaak, Gemma C. Solomon and Shelley D. Minteer*,
{"title":"Introducing the Tutorial Manuscript Type at the ACS Au Community Journals","authors":"Squire J. Booker, Stephanie L. Brock, Xiangdong Li, Géraldine Masson, Sébastien Perrier, Vivek V. Ranade, Raymond E. Schaak, Gemma C. Solomon and Shelley D. Minteer*, ","doi":"10.1021/acsenvironau.5c00101","DOIUrl":"https://doi.org/10.1021/acsenvironau.5c00101","url":null,"abstract":"","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 5","pages":"442–443"},"PeriodicalIF":7.7,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsenvironau.5c00101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145094419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-09DOI: 10.1021/acsenvironau.5c00069
Ani Vardanyan*, Adam Ewerth and Gulaim A. Seisenbaeva,
This study focuses on the development of environmentally friendly double enzyme catalysts for the degradation of organic pollutants in water, addressing key environmental concerns. The hybrid tandem system of xanthine oxidase (XO) with horseradish peroxidase (HRP) is designed for sustainable water treatment by using a natural and eco-friendly silicate substrate, perlite, as a support for the enzyme cascade reaction. The catalytic process was optimized for environmental applications. XO-generated hydrogen peroxide through the oxidation of hypoxanthine, which then activated HRP to break down a variety of harmful pollutants, including industrial dyes, pharmaceuticals, and phenolic compounds. The system demonstrated high pollutant removal efficiency, reaching up to 100% in some cases, while maintaining catalytic stability across a range of temperatures and pH values. Importantly, the biocatalytic system addressed secondary pollution─a common issue in conventional treatments. Thus, uric acid, a potential byproduct of the XO catalytic action, was degraded by HRP, preventing the accumulation of harmful byproducts in purified water. This research highlights the potential of the tandem XO-HRP enzyme cascade as a green, efficient, and sustainable solution for water purification, offering an environmentally responsible alternative to traditional methods that often contribute to further contamination.
{"title":"Hybrid Double Enzyme Biocatalyst for Effective Degradation of Organic Pollutants","authors":"Ani Vardanyan*, Adam Ewerth and Gulaim A. Seisenbaeva, ","doi":"10.1021/acsenvironau.5c00069","DOIUrl":"https://doi.org/10.1021/acsenvironau.5c00069","url":null,"abstract":"<p >This study focuses on the development of environmentally friendly double enzyme catalysts for the degradation of organic pollutants in water, addressing key environmental concerns. The hybrid tandem system of xanthine oxidase (XO) with horseradish peroxidase (HRP) is designed for sustainable water treatment by using a natural and eco-friendly silicate substrate, perlite, as a support for the enzyme cascade reaction. The catalytic process was optimized for environmental applications. XO-generated hydrogen peroxide through the oxidation of hypoxanthine, which then activated HRP to break down a variety of harmful pollutants, including industrial dyes, pharmaceuticals, and phenolic compounds. The system demonstrated high pollutant removal efficiency, reaching up to 100% in some cases, while maintaining catalytic stability across a range of temperatures and pH values. Importantly, the biocatalytic system addressed secondary pollution─a common issue in conventional treatments. Thus, uric acid, a potential byproduct of the XO catalytic action, was degraded by HRP, preventing the accumulation of harmful byproducts in purified water. This research highlights the potential of the tandem XO-HRP enzyme cascade as a green, efficient, and sustainable solution for water purification, offering an environmentally responsible alternative to traditional methods that often contribute to further contamination.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 5","pages":"501–510"},"PeriodicalIF":7.7,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsenvironau.5c00069","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145094363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-01DOI: 10.1021/acsenvironau.5c00049
Md. Nizam Uddin, Cassidy Hartog, Emma Murray, Jacob B. Loveless, Lukas Roberson, Asli Aslan, Francisco Cubas and Lewis S. Rowles*,
Disposal of food waste (FW) in landfills remains an unsustainable practice for organic waste management. Simultaneously, pulp and paper mills produce significant amounts of recalcitrant organic waste that is difficult to decompose due to its high lignocellulosic content. In this study, we developed an innovative approach to improve the digestion of pulp and paper mill sludge (PPMS) by amending FW to produce a low chemical oxygen demand (COD) sludge while recovering methane in the process. This codigestion process was evaluated through lab-scale biogas production experiments coupled with a comprehensive economic and environmental sustainability assessment. Biomethane production results revealed that the FW-PPMS codigestion methane yield was 36% higher on average than the PPMS monodigestion. Additionally, metagenomic analysis revealed that microbial communities for both systems transitioned from highly heterogeneous to more adapted uniform communities after digestion. Improved microbial communities contributed to higher COD removal (92%) in the FW-PPMS system compared to monodigestion (80% removal). The sustainability analysis revealed that the codigestion of FW-PPMS had median costs of 236.64 USD·tonne–1·day–1 and emissions of 228.30 kg CO2 eq·tonne–1·day–1, a significant reduction compared to directly disposing the FW in landfills (median costs of 405.13 USD·tonne–1·day–1 and emissions of 556.27 kg CO2 eq·tonne–1·day–1). A nationwide contextual analysis revealed that out of six regions, the US Northeast had the lowest median costs and emissions, while the Mountain Plains region had the highest, highlighting the importance of geographical and infrastructural factors in implementation. Overall, codigesting FW with PPMS is revealed to be a sustainable waste management option to decrease landfill disposal of valuable organic waste.
{"title":"Advancing Circular Bioeconomy through a Systems-Level Assessment of Food Waste and Industrial Sludge Codigestion","authors":"Md. Nizam Uddin, Cassidy Hartog, Emma Murray, Jacob B. Loveless, Lukas Roberson, Asli Aslan, Francisco Cubas and Lewis S. Rowles*, ","doi":"10.1021/acsenvironau.5c00049","DOIUrl":"https://doi.org/10.1021/acsenvironau.5c00049","url":null,"abstract":"<p >Disposal of food waste (FW) in landfills remains an unsustainable practice for organic waste management. Simultaneously, pulp and paper mills produce significant amounts of recalcitrant organic waste that is difficult to decompose due to its high lignocellulosic content. In this study, we developed an innovative approach to improve the digestion of pulp and paper mill sludge (PPMS) by amending FW to produce a low chemical oxygen demand (COD) sludge while recovering methane in the process. This codigestion process was evaluated through lab-scale biogas production experiments coupled with a comprehensive economic and environmental sustainability assessment. Biomethane production results revealed that the FW-PPMS codigestion methane yield was 36% higher on average than the PPMS monodigestion. Additionally, metagenomic analysis revealed that microbial communities for both systems transitioned from highly heterogeneous to more adapted uniform communities after digestion. Improved microbial communities contributed to higher COD removal (92%) in the FW-PPMS system compared to monodigestion (80% removal). The sustainability analysis revealed that the codigestion of FW-PPMS had median costs of 236.64 USD·tonne<sup>–1</sup>·day<sup>–1</sup> and emissions of 228.30 kg CO<sub>2</sub> eq·tonne<sup>–1</sup>·day<sup>–1</sup>, a significant reduction compared to directly disposing the FW in landfills (median costs of 405.13 USD·tonne<sup>–1</sup>·day<sup>–1</sup> and emissions of 556.27 kg CO<sub>2</sub> eq·tonne<sup>–1</sup>·day<sup>–1</sup>). A nationwide contextual analysis revealed that out of six regions, the US Northeast had the lowest median costs and emissions, while the Mountain Plains region had the highest, highlighting the importance of geographical and infrastructural factors in implementation. Overall, codigesting FW with PPMS is revealed to be a sustainable waste management option to decrease landfill disposal of valuable organic waste.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 5","pages":"479–489"},"PeriodicalIF":7.7,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsenvironau.5c00049","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145094418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}