Rice grain consumption is a primary pathway of human mercury exposure. To trace the source of rice grain mercury in China, we developed a rice paddy mercury transport and transformation model with a grid resolution of 1 km × 1 km by using the unit cell mass conservation method. The simulated total mercury (THg) and methylmercury (MeHg) concentrations in Chinese rice grain ranged from 0.08 to 243.6 and 0.03 to 238.6 μg/kg, respectively, in 2017. Approximately, 81.3% of the national average rice grain THg concentration was due to atmospheric mercury deposition. However, soil heterogeneity, especially the variation in soil mercury, led to the wide rice grain THg distribution across grids. Approximately, 64.8% of the national average rice grain MeHg concentration was due to soil mercury. In situ methylation was the main pathway via which the rice grain MeHg concentration was increased. The coupled impact of high mercury input and methylation potential led to extremely high rice grain MeHg in partial grids among Guizhou province and junctions with surrounding provinces. The spatial variation in soil organic matter significantly impacted the methylation potential among grids, especially in Northeast China. Based on the high-resolution rice grain THg concentration, we identified 0.72% of grids as heavily polluted THg grids (rice grain THg > 20 μg/kg). These grids mainly corresponded to areas in which the human activities of nonferrous metal smelting, cement clinker production, and mercury and other metal mining were conducted. Thus, we recommended measures that are targeted at the control of heavy pollution of rice grain by THg according to the pollution sources. In addition, we observed a wide spatial variation range of MeHg to THg ratios not only in China but also in other regions of the world, which highlights the potential risk of rice intake.
Reactive oxygen species (ROS) play a critical role in the chemical transformation of atmospheric secondary organic aerosols (SOA) and aerosol health effects by causing oxidative stress in vivo. Acidity is an important physicochemical property of atmospheric aerosols, but its effects on the ROS formation from SOA have been poorly characterized. By applying the electron paramagnetic resonance spin-trapping technique and the Diogenes chemiluminescence assay, we find highly distinct radical yields and composition at different pH values in the range of 1–7.4 from SOA generated by oxidation of isoprene, α-terpineol, α-pinene, β-pinene, toluene, and naphthalene. We observe that isoprene SOA has substantial hydroxyl radical (•OH) and organic radical yields at neutral pH, which are 1.5–2 times higher compared to acidic conditions in total radical yields. Superoxide (O2•–) is found to be the dominant species generated by all types of SOAs at lower pH. At neutral pH, α-terpineol SOA exhibits a substantial yield of carbon-centered organic radicals, while no radical formation is observed by aromatic SOA. Further experiments with model compounds show that the decomposition of organic peroxide leading to radical formation may be suppressed at lower pH due to acid-catalyzed rearrangement of peroxides. We also observe 1.5–3 times higher molar yields of hydrogen peroxide (H2O2) in acidic conditions compared to neutral pH by biogenic and aromatic SOA, likely due to enhanced decomposition of α-hydroxyhydroperoxides and quinone redox cycling, respectively. These findings are critical to bridge the gap in understanding ROS formation mechanisms and kinetics in atmospheric and physiological environments.
Fungi are prevalent microorganisms in environmental films. Their impacts on the film chemical environment and morphology remains poorly defined. Here we present microscopic and chemical analyses fungi impacts to environmental films over long- and short-time scales. We report bulk properties of films accumulated for 2 months (February and March 2019) and 12 months to contrast short and longer-term effects. Bright field microscopy results show that fungi and fungal-associated aggregates cover close to 14% of the surface after 12 months and include significant numbers of large (tens to hundreds of μm in diameter) particles aggregated with fungal colonies. Data acquired for films accumulated over shorter times (2 months) suggest mechanisms that contribute to these longer-term effects. This is important because the film’s exposed surface will determine what additional material will accumulate over the ensuing weeks or months. A combination of scanning electron microscopy and energy dispersive X-ray spectroscopy provides spatially resolved maps of fugal hypha and nearby elements of interest. We also identify a “nutrient pool” associated with the fungal hypha which extend orthogonally to the growth direction to ca. 50 μm distances. We conclude that fungi have both short-term and long-term effects on the chemistry and morphology of environmental film surfaces. In short, the presence (or absence) of fungi will significantly alter the films’ evolution and should be considered when analyzing environmental film impacts on local processes.
The global COVID-19 pandemic has raised great public concern about the airborne transmission of viral pathogens. Virus-laden aerosols with small size could be suspended in the air for a long duration and remain infectious. Among a series of measures implemented to mitigate the airborne spread of infectious diseases, filtration by face masks, respirators, and air filters is a potent nonpharmacologic intervention. Compared with conventional air filtration media, nanofibrous membranes fabricated via electrospinning are promising candidates for controlling airborne viruses due to their desired characteristics, i.e., a reduced pore size (submicrometers to several micrometers), a larger specific surface area and porosity, and retained surface and volume charges. So far, a wide variety of electrospun nanofibrous membranes have been developed for aerosol filtration, and they have shown excellent filtration performance. However, current studies using electrospinning for controlling airborne viruses vary significantly in the practice of aerosol filtration tests, including setup configurations and operations. The discrepancy among various studies makes it difficult, if not impossible, to compare filtration performance. Therefore, there is a pressing need to establish a standardized protocol for evaluating the electrospun nanofibrous membranes’ performance for removing viral aerosols. In this perspective, we first reviewed the properties and performance of diverse filter media, including electrospun nanofibrous membranes, for removing viral aerosols. Next, aerosol filtration protocols for electrospun nanofibrous membranes were discussed with respect to the aerosol generation, filtration, collection, and detection. Thereafter, standardizing the aerosol filtration test system for electrospun nanofibrous membranes was proposed. In the end, the future advancement of electrospun nanofibrous membranes for enhanced air filtration was discussed. This perspective provides a comprehensive understanding of status and challenges of electrospinning for air filtration, and it sheds light on future nanomaterial and protocol development for controlling airborne viruses, preventing the spread of infectious diseases, and beyond.
A myriad of studies have attempted to use ground-level observations to obtain gap-free spatiotemporal variations of PM2.5, in support of air quality management and impact studies. Statistical methods (machine learning, etc.) or numerical methods by combining chemical transport modeling and observations with data assimilation techniques have been typically applied, yet the significance of site placement has not been well recognized. In this study, we apply five proper orthogonal decomposition (POD)-based sensor placement algorithms to identify optimal site locations and systematically evaluate their reconstruction ability. We demonstrate that the QR pivot is relatively more reliable in deciding optimal monitoring site locations. When the number of planned sites (sensors) is limited, using a lower number of modes would yield lower estimation errors. However, the dimension of POD modes has little impact on reconstruction quality when sufficient sensors are available. The locations of sites guided by the QR pivot algorithm are mainly located in regions where PM2.5 pollution is severe. We compare reconstructed PM2.5 pollution based on QR pivot-guided sites and existing China National Environmental Monitoring Center (CNEMC) sites and find that the QR pivot-guided sites are superior to existing sites with respect to reconstruction accuracy. The current planning of monitoring stations is likely to miss sources of pollution in less-populated regions, while our QR pivot-guided sites are planned based on the severity of PM2.5 pollution. This planning methodology has additional potentials in chemical data assimilation studies as duplicate information from current CNEMC-concentrated stations is not likely to boost performance.
Ambient fine particulate matter (PM2.5) could be a potential environmental risk for decreasing the available solar energy resources and solar photovoltaic (PV) power generation. This study quantifies the attenuation effects of PM2.5 on surface solar irradiance and system performance of different solar PV technologies in Hong Kong. The analysis based on observational irradiation data shows that the global horizontal irradiance decreased by more than 5% in most months under the conditions of PM2.5 concentration exceeding 33.5 μg/m3. During the experiment, the average PM2.5-related losses in the energy output of crystalline silicon and thin-film PV systems could be up to 7.00 and 9.73%, respectively. The measured energy outputs of the experimental PV modules suggest that PM2.5 affects the energy performance of thin-film solar cells with a larger band gap more significantly than that of crystalline silicon PV modules. Moreover, an increasing trend in the performance ratio of monocrystalline silicon, polycrystalline silicon, and copper indium gallium selenide PV systems with the increase of PM2.5 concentration is observed. In contrast, the amorphous silicon and cadmium telluride PV systems with a narrower spectral response range show a decreasing trend in the performance ratio over the experiment. Results indicate that the losses in the available solar energy resources and PV energy potential are expected to increase in areas where heavier PM2.5 pollution exists.
Cyclic volatile methyl siloxanes (cVMS) are anthropogenic chemicals that have come under scrutiny due to their widespread use and environmental persistence. Significant data on environmental concentrations and persistence of these chemicals exists, but their oxidation mechanism is poorly understood, preventing a comprehensive understanding of the environmental fate and impact of cVMS. We performed experiments in an environmental chamber to characterize the first-generation oxidation products of hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5) under different peroxy radical fates (unimolecular reaction or bimolecular reaction with either NO or HO2) that approximate a range of atmospheric compositions. While the identity of the oxidation products from D3 changed as a function of the peroxy radical fate, the identity and yield of D4 and D5 oxidation products remained largely constant. We compare our results against the output from a kinetic model of cVMS oxidation chemistry. The reaction mechanism used in the model is developed using a combination of previously proposed cVMS oxidation reactions and standard atmospheric oxidation radical chemistry. We find that the model is unable to reproduce our measurements, particularly in the case of D4 and D5. The products that are poorly represented in the model help to identify possible branching points in the mechanism, which require further investigation. Additionally, we estimated the physical properties of the cVMS oxidation products using structure–activity relationships and found that they should not be significantly partitioned to organic or aqueous aerosol. The results suggest that cVMS first-generation oxidation products are also long-lived in the atmosphere and that environmental monitoring of these compounds is necessary to understand the environmental chemistry and loading of cVMS.
The silicone polymer polydimethysiloxane (PDMS) is a popular passive sampler for in situ and ex situ sampling of hydrophobic organic chemicals. Despite its limited sorptive capacity for polar and ionizable organic chemicals (IOC), IOCs have been found in PDMS when extracting sediment and suspended particulate matter. The pH-dependent partitioning of 190 organics and IOCs covering a range of octanol–water partition constants log Kow from −0.3 to 7.7 was evaluated with a 10-day shaking method using mixtures composed of all chemicals at varying ratios of mass of PDMS to volume of water. This method reproduced the PDMS–water partition constant KPDMS/w of neutral chemicals from the literature and extended the dataset by 93 neutral chemicals. The existing quantitative structure–activity relationship between the log Kow and KPDMS/w could be extended with the measured KPDMS/w linearly to a log Kow of −0.3. Fully charged organics were not taken up into PDMS. Thirty-eight monoprotic organic acids and 42 bases showed negligible uptake of the charged species, and the pH dependence of the apparent DPDMS/w(pH) could be explained by the fraction of neutral species multiplied by the KPDMS/w of the neutral species of these IOCs. Seventeen multiprotic chemicals with up to three acidity constants pKa also showed a pH dependence of DPDMS/w(pH) with the tendency that the neutral and zwitterionic forms showed the highest DPDMS/w(pH). DPDMS/w(pH) of charged species of more hydrophobic multiprotic chemicals such as tetrabromobisphenol A and telmisartan was smaller but not negligible. Since these chemicals show high bioactivity, their contribution to mixture effects has to be considered when testing passive sampling extracts with in vitro bioassays. This work has further implications for understanding the role of microplastic as a vector for organic micropollutants.