M. Yatsiuk, A. Shevchenko, R. P. Bozhenko, S. M. Lyutnitsky
The article highlights the results of research on assessing the ecological state of the land near the silt fields №1 and №3 of Bortnytska aeration station in the Zolochiv village community of Boryspil district in Kyiv region. The presence of previously recorded increased content of heavy metals in soils compared to the background content, both in terms of their gross content and the content of mobile forms was confirmed within the certain areas near the silt fields. For the elements-pollutants (Zn, Cu, Cr, Pb) at some points within the agricultural land, exceeding the values of their gross content and the content of mobile forms (Zn, Cu) of the maximum permissible concentrations was recorded at 1.1-6.2 and 1.1 -2.6 times, respectively. The average values of heavy metals content for floodplains (settlement) and agricultural land near silt fields indicate their prevailing values for the latter in almost all elements, as well as exceeding the background values and maximum permissible concentrations for the land where silt deposits were previously applied as fertilizers. Within the surveyed areas, soils are classified as unsalted, but the increased content of exchangeable magnesium may adversely affect soil fertility. Increased mineralization and content of ammonium and nitrates in groundwater are observed near silt fields, which is obviously related to the impact of silt water and can lead to deterioration of groundwater quality in the area of their transit and discharge, in particular within the village Gnidyn. The area of land with an extremely dangerous pollution rate in terms of total heavy metal is about 300 hectares, with a dangerous pollution rate is 260 hectares, and the estimated damage from crop failure may be 1.65 million UAH/year and 0.3 million UAH/year respectively. Within the areas adjacent to the silt fields, the condition of soils, water resources, cultivated products and the health of the population should be constantly monitored, especially when using the polluted land for agricultural use or housing.
{"title":"The effects of silt fields of Bortnytska aeration station on ecological state of land and water in the adjacent areas","authors":"M. Yatsiuk, A. Shevchenko, R. P. Bozhenko, S. M. Lyutnitsky","doi":"10.31073/mivg202102-292","DOIUrl":"https://doi.org/10.31073/mivg202102-292","url":null,"abstract":"The article highlights the results of research on assessing the ecological state of the land near the silt fields №1 and №3 of Bortnytska aeration station in the Zolochiv village community of Boryspil district in Kyiv region. The presence of previously recorded increased content of heavy metals in soils compared to the background content, both in terms of their gross content and the content of mobile forms was confirmed within the certain areas near the silt fields. For the elements-pollutants (Zn, Cu, Cr, Pb) at some points within the agricultural land, exceeding the values of their gross content and the content of mobile forms (Zn, Cu) of the maximum permissible concentrations was recorded at 1.1-6.2 and 1.1 -2.6 times, respectively. The average values of heavy metals content for floodplains (settlement) and agricultural land near silt fields indicate their prevailing values for the latter in almost all elements, as well as exceeding the background values and maximum permissible concentrations for the land where silt deposits were previously applied as fertilizers. Within the surveyed areas, soils are classified as unsalted, but the increased content of exchangeable magnesium may adversely affect soil fertility. \u0000Increased mineralization and content of ammonium and nitrates in groundwater are observed near silt fields, which is obviously related to the impact of silt water and can lead to deterioration of groundwater quality in the area of their transit and discharge, in particular within the village Gnidyn. The area of land with an extremely dangerous pollution rate in terms of total heavy metal is about 300 hectares, with a dangerous pollution rate is 260 hectares, and the estimated damage from crop failure may be 1.65 million UAH/year and 0.3 million UAH/year respectively. Within the areas adjacent to the silt fields, the condition of soils, water resources, cultivated products and the health of the population should be constantly monitored, especially when using the polluted land for agricultural use or housing.","PeriodicalId":298682,"journal":{"name":"Міжвідомчий тематичний науковий збірник \"Меліорація і водне господарство\"","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130117477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Dudchenko, T. M. Petrenko, O. I. Flinta, M. M. Datsiuk
During the cultivation of rice in the field for 3 months, the required water layer is maintained. In these conditions, there are the processes that lead to changes in the composition of organic and mineral components of the soil, namely: removal of easily soluble substances and mobile forms of nutrients, the dominance of reduction processes over oxidation ones. Irrigation of rice crops using drip irrigation also causes changes in salt and water-air regimes, which leads to the formation of salt bags and toxic salinization of the soil in a layer of 0-60 cm. The negative effect of drip irrigation is not so noticeable compared to flooding conditions and can be eliminated by observing crop rotation with the rate of the main crop not more than 50%. The research was conducted during 2016-2020 in the territory of the Rice Institute of NAAS and its experimental farm (Skadovsk district, Kherson region), where the soil cover is represented by dark chestnut saline soil. The study of the effect of rice cultivation in flood conditions was carried out on a rice irrigation system with an area of 190 ha, and under drip irrigation - on a demonstration trail with an area of 4 ha. The oxidation-reduction status of the arable soil layer of rice crop rotations when rice growing, is seasonal. In the period of water layer maintaining in the field, in the arable layer reduction processes predominate, while after harvesting and checks draining the intensity of the reduction processes is moderate and decreases. A model describing this process by the equation of a quadratic parabola was constructed. Growing rice under drip irrigation also reduces the oxidation-reduction soil capacity to negative values, but for a short period, which does not adversely affect the soil. The dynamics of this indicator in the conditions of drip irrigation is described by the equation of a quadratic parabola. Continuous monitoring of this process enables to evaluate the stability of fluctuations of the oxidation-reduction soil balance, which is important for assessing soil quality.
{"title":"Effect of the irrigation regime of rise on soil oxidation-reduction status","authors":"K. Dudchenko, T. M. Petrenko, O. I. Flinta, M. M. Datsiuk","doi":"10.31073/mivg202102-294","DOIUrl":"https://doi.org/10.31073/mivg202102-294","url":null,"abstract":"During the cultivation of rice in the field for 3 months, the required water layer is maintained. In these conditions, there are the processes that lead to changes in the composition of organic and mineral components of the soil, namely: removal of easily soluble substances and mobile forms of nutrients, the dominance of reduction processes over oxidation ones. Irrigation of rice crops using drip irrigation also causes changes in salt and water-air regimes, which leads to the formation of salt bags and toxic salinization of the soil in a layer of 0-60 cm. The negative effect of drip irrigation is not so noticeable compared to flooding conditions and can be eliminated by observing crop rotation with the rate of the main crop not more than 50%. \u0000The research was conducted during 2016-2020 in the territory of the Rice Institute of NAAS and its experimental farm (Skadovsk district, Kherson region), where the soil cover is represented by dark chestnut saline soil. The study of the effect of rice cultivation in flood conditions was carried out on a rice irrigation system with an area of 190 ha, and under drip irrigation - on a demonstration trail with an area of 4 ha. The oxidation-reduction status of the arable soil layer of rice crop rotations when rice growing, is seasonal. In the period of water layer maintaining in the field, in the arable layer reduction processes predominate, while after harvesting and checks draining the intensity of the reduction processes is moderate and decreases. \u0000A model describing this process by the equation of a quadratic parabola was constructed. Growing rice under drip irrigation also reduces the oxidation-reduction soil capacity to negative values, but for a short period, which does not adversely affect the soil. The dynamics of this indicator in the conditions of drip irrigation is described by the equation of a quadratic parabola. Continuous monitoring of this process enables to evaluate the stability of fluctuations of the oxidation-reduction soil balance, which is important for assessing soil quality.","PeriodicalId":298682,"journal":{"name":"Міжвідомчий тематичний науковий збірник \"Меліорація і водне господарство\"","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133590738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. V. Charnyy, Ye. M. Matseluk, V. Levytska, S. Marysyk, N. M. Chernova
The current state and formation of water quality in reservoirs that serve as sources of drinking water supply were considered. It was revealed that phytoplankton becomes one of the main factors influencing the formation of water quality in reservoirs in the warm period from June to November, especially during the period of reservoirs “blooming”. Mostly these processes are triggered by the explosive development of blue-green algae (cyanobacteria). The factors accompanying this phenomenon are shown. The characteristic of the influence of global climate change and new composition of wastewater on water quality in surface water supply sources is given. If earlier the sewage contained significant volumes of heavy metals, oil products, phenols, etc., now they are observed to decrease at several times and vice versa - an increase in the volume of biogenic compounds, especially phosphates is observed. The emergence of phosphates is caused both by the ingress of phosphate fertilizers into water bodies, and by household reasons - the massive distribution of phosphate-based detergents and the inability of existing sewage treatment plants to efficiently process them. Screening monitoring of the Dnieper river basin showed extremely high levels of the predicted safe concentration of herbicides, insecticides, fungicides, as well as pharmaceutical substances such as carbomazepine, lopinavir, diclofenac, efavirenz, etc. in water. That is, among organic pollutants, the focus changes from classic petrochemical products to the products related to agricultural and pharmaceutical production, which, in certain concentrations, can stimulate the development of phytoplankton. The effective methods for treating surface water in modern conditions are as follows: - physical retention of coarse fractions of phytoplankton using new designs of water intake structures; - the use of new filter materials that effectively trap finely dispersed phytoplankton fractions at the main treatment facilities and are capable of regenerating the filter media; - the use of new oxidizing agents-disinfectants that do not form toxic organochlorine compounds, with preliminary extraction of phytoplankton masses;
{"title":"Peculiarities of formation of water quality of surface sources of water supply as a factor of a choice of a method of water treatment","authors":"D. V. Charnyy, Ye. M. Matseluk, V. Levytska, S. Marysyk, N. M. Chernova","doi":"10.31073/mivg202102-307","DOIUrl":"https://doi.org/10.31073/mivg202102-307","url":null,"abstract":"The current state and formation of water quality in reservoirs that serve as sources of drinking water supply were considered. It was revealed that phytoplankton becomes one of the main factors influencing the formation of water quality in reservoirs in the warm period from June to November, especially during the period of reservoirs “blooming”. Mostly these processes are triggered by the explosive development of blue-green algae (cyanobacteria). The factors accompanying this phenomenon are shown. The characteristic of the influence of global climate change and new composition of wastewater on water quality in surface water supply sources is given. If earlier the sewage contained significant volumes of heavy metals, oil products, phenols, etc., now they are observed to decrease at several times and vice versa - an increase in the volume of biogenic compounds, especially phosphates is observed. The emergence of phosphates is caused both by the ingress of phosphate fertilizers into water bodies, and by household reasons - the massive distribution of phosphate-based detergents and the inability of existing sewage treatment plants to efficiently process them. Screening monitoring of the Dnieper river basin showed extremely high levels of the predicted safe concentration of herbicides, insecticides, fungicides, as well as pharmaceutical substances such as carbomazepine, lopinavir, diclofenac, efavirenz, etc. in water. \u0000That is, among organic pollutants, the focus changes from classic petrochemical products to the products related to agricultural and pharmaceutical production, which, in certain concentrations, can stimulate the development of phytoplankton. \u0000The effective methods for treating surface water in modern conditions are as follows: \u0000- physical retention of coarse fractions of phytoplankton using new designs of water intake structures; \u0000- the use of new filter materials that effectively trap finely dispersed phytoplankton fractions at the main treatment facilities and are capable of regenerating the filter media; \u0000- the use of new oxidizing agents-disinfectants that do not form toxic organochlorine compounds, with preliminary extraction of phytoplankton masses;","PeriodicalId":298682,"journal":{"name":"Міжвідомчий тематичний науковий збірник \"Меліорація і водне господарство\"","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114665667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Romashchenko, A. Shatkovskyi, A. Sardak, Y. A. Cherevichny, N. Didenko, O. A. Marinkov
The results of experimental researches on studying of features of formation of a water mode of soils, water consumption processes, and corn yield under different schemes of irrigation pipelines (IP) under subsurface drip irrigation (SDI) in the Steppe of Ukraine. The wetting zone of dark-chestnut residual-saline sandy soil (SI "SF "Brylivske") changed. There is a shift of the center relative to the drip water outlet into deeper horizons of the soil profile (up to 52 cm) with the increasing norm; soil layer 0-15 cm is almost not moistened, regardless of watering rate. At a distance of IP 1,0 m closing of wetting zones, occur at irrigation rates of 2,7 m3/100 running meter (r. m), and at a distance of IP 1,4 m does not occur even at irrigation rates of 3,7 m3/100 r. m, while the depth of wetting reaches 90 cm. The wetting zone of chernozem sandy loam on the loess species (SI "SF "Velyki Klyny") with irrigation rates of 2,7 m3/100 r. m was observed on the soil surface. The maximum depth of wetting, with irrigation norms of 3,7 m3/100 r. m, reached 70 cm with a maximum diameter of 79 cm at a depth of 25 cm. Closing of wetting zones was not observed. Studies at SI "SF "Brylivske" have confirmed that the depth of IP placement (on the soil surface or at a depth of 30 cm) influenced the formation of the soil water regime and the corn yield. The minimum total water consumption was 6271 m3/ha under drip irrigation (DI) (IP 1,4 m), 17 % more than SDI (IP 1,4 m), and 29% more than SDI (IP 1,0 m). The highest yield was obtained in the case of DI (IP 1,4 m) of 15,72 t/ha. SDI (IP 1,0 m) received 13,93 t/ha, and SDI (IP 1,4 m) received 13,50 t/ha. The distance between the IP in 1,0 m and 1.4 m of the SDI system did not significantly affect corn yield (13.93 and 13.50 t/ha, respectively), but at a distance of IP 1.4 m, the water consumption ratio was 6.8% less compared to IP 1,0 m. The value of the irrigation rate in the variants SDI (IP 1.0 m) was higher than SDI (IP 1,4 m) by 13,6 %. Therefore, in terms of irrigation water consumption and capital expenditures, the SDI (IP 1,4 m) is more economical. Experimental studies conducted in the SI "SF "Velyki Klyny" show that the depth of placement of IP (on the soil surface or at a depth of 20 cm) did not affect the corn yield. For DI (IP 1,0 m) the yield was 12,00 t/ha and for SDI (IP 1.0 m) was 12,10 t/ha, with a water consumption ratio of 533,8 m3/t, and for DI (IP 1,0 m) by 3,6 % more. The research results confirm the importance of the parameters of SDI system for the formation of soil water regime and, accordingly, the realization of the potential of varieties and hybrids of crops for their cultivation by SDI.
{"title":"Aspects of formation of soil water regime and water consumption of corn under subsurface drip irrigation","authors":"M. Romashchenko, A. Shatkovskyi, A. Sardak, Y. A. Cherevichny, N. Didenko, O. A. Marinkov","doi":"10.31073/mivg202102-298","DOIUrl":"https://doi.org/10.31073/mivg202102-298","url":null,"abstract":"The results of experimental researches on studying of features of formation of a water mode of soils, water consumption processes, and corn yield under different schemes of irrigation pipelines (IP) under subsurface drip irrigation (SDI) in the Steppe of Ukraine. The wetting zone of dark-chestnut residual-saline sandy soil (SI \"SF \"Brylivske\") changed. There is a shift of the center relative to the drip water outlet into deeper horizons of the soil profile (up to 52 cm) with the increasing norm; soil layer 0-15 cm is almost not moistened, regardless of watering rate. At a distance of IP 1,0 m closing of wetting zones, occur at irrigation rates of 2,7 m3/100 running meter (r. m), and at a distance of IP 1,4 m does not occur even at irrigation rates of 3,7 m3/100 r. m, while the depth of wetting reaches 90 cm. The wetting zone of chernozem sandy loam on the loess species (SI \"SF \"Velyki Klyny\") with irrigation rates of 2,7 m3/100 r. m was observed on the soil surface. The maximum depth of wetting, with irrigation norms of 3,7 m3/100 r. m, reached 70 cm with a maximum diameter of 79 cm at a depth of 25 cm. Closing of wetting zones was not observed. \u0000Studies at SI \"SF \"Brylivske\" have confirmed that the depth of IP placement (on the soil surface or at a depth of 30 cm) influenced the formation of the soil water regime and the corn yield. The minimum total water consumption was 6271 m3/ha under drip irrigation (DI) (IP 1,4 m), 17 % more than SDI (IP 1,4 m), and 29% more than SDI (IP 1,0 m). The highest yield was obtained in the case of DI (IP 1,4 m) of 15,72 t/ha. SDI (IP 1,0 m) received 13,93 t/ha, and SDI (IP 1,4 m) received 13,50 t/ha. \u0000The distance between the IP in 1,0 m and 1.4 m of the SDI system did not significantly affect corn yield (13.93 and 13.50 t/ha, respectively), but at a distance of IP 1.4 m, the water consumption ratio was 6.8% less compared to IP 1,0 m. The value of the irrigation rate in the variants SDI (IP 1.0 m) was higher than SDI (IP 1,4 m) by 13,6 %. Therefore, in terms of irrigation water consumption and capital expenditures, the SDI (IP 1,4 m) is more economical. \u0000Experimental studies conducted in the SI \"SF \"Velyki Klyny\" show that the depth of placement of IP (on the soil surface or at a depth of 20 cm) did not affect the corn yield. For DI (IP 1,0 m) the yield was 12,00 t/ha and for SDI (IP 1.0 m) was 12,10 t/ha, with a water consumption ratio of 533,8 m3/t, and for DI (IP 1,0 m) by 3,6 % more. \u0000The research results confirm the importance of the parameters of SDI system for the formation of soil water regime and, accordingly, the realization of the potential of varieties and hybrids of crops for their cultivation by SDI.","PeriodicalId":298682,"journal":{"name":"Міжвідомчий тематичний науковий збірник \"Меліорація і водне господарство\"","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132594493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An integrated method of functional diagnostics of basin geosystems through quantitative assessment of anthropogenic (drainage reclamation) or natural factors (climate) on the change of hydrochemical composition of surface and groundwater is presented. The method is based on the natural latitudinal and vertical zonation of the hydrochemical composition of surface and groundwater, as a manifestation of the geomembrane properties of the pedosphere. The stages of the quantitative assessment of the impact of increasing drainage reclamation areas in the Styr and Irpin river basins, were a linear regression analysis of chronological series of the content of each of the macrocomponents of the river water composition in the closing line for 1947-1989, and also the dynamics of increasing reclamation areas and correlation analysis of the obtained dependencies. To increase the closeness of the correlation, the hydrochemical composition was presented in %-equivalent form, which most accurately characterizes the ratio of macrocomponents, but does not depend on the total mineralization of water. A decrease in the content of such typomorphic ions as hydrocarbons and calcium and an increase in the content of other macrocomponents and mineralization were found statistically significantly with increasing drainage areas. In general, with increasing areas of drainage reclamation, there is an aridization of the hydrochemical composition of river water. The change of hydrochemical type of river water according to the classification of О.О. Alekina. The obtained parametric models of time trends of the content of macrocomponents of hydrochemical composition allowed to determine the limiting area of reclamation of the basins of two rivers and to predict changes in the hydrochemical type of water in the direction of its aridization. Stopping the construction of new reclamation systems and reducing the efficiency of agricultural use of drained lands leads to the restoration of the hydrochemical composition of rivers in the direction of their reclamation development. Approbation of the created method of functional diagnostics was carried out on five reclamation systems of Prykarpattia and in the basin of the Western Bug river and its branches proved its high efficiency and perspective for the creation of parametric models of the influence of natural and anthropogenic factors on chemical composition and quality of water resources.
{"title":"Metamorphization of zonal hydrochemical composition of surface and groundwater of Ukraine under the influence of anthropogenic and natural factors","authors":"M. Romashchenko, S. S. Kolomiyets', A. Sardak","doi":"10.31073/mivg202102-309","DOIUrl":"https://doi.org/10.31073/mivg202102-309","url":null,"abstract":"An integrated method of functional diagnostics of basin geosystems through quantitative assessment of anthropogenic (drainage reclamation) or natural factors (climate) on the change of hydrochemical composition of surface and groundwater is presented. The method is based on the natural latitudinal and vertical zonation of the hydrochemical composition of surface and groundwater, as a manifestation of the geomembrane properties of the pedosphere. The stages of the quantitative assessment of the impact of increasing drainage reclamation areas in the Styr and Irpin river basins, were a linear regression analysis of chronological series of the content of each of the macrocomponents of the river water composition in the closing line for 1947-1989, and also the dynamics of increasing reclamation areas and correlation analysis of the obtained dependencies. To increase the closeness of the correlation, the hydrochemical composition was presented in %-equivalent form, which most accurately characterizes the ratio of macrocomponents, but does not depend on the total mineralization of water. A decrease in the content of such typomorphic ions as hydrocarbons and calcium and an increase in the content of other macrocomponents and mineralization were found statistically significantly with increasing drainage areas. In general, with increasing areas of drainage reclamation, there is an aridization of the hydrochemical composition of river water. The change of hydrochemical type of river water according to the classification of О.О. Alekina. The obtained parametric models of time trends of the content of macrocomponents of hydrochemical composition allowed to determine the limiting area of reclamation of the basins of two rivers and to predict changes in the hydrochemical type of water in the direction of its aridization. \u0000Stopping the construction of new reclamation systems and reducing the efficiency of agricultural use of drained lands leads to the restoration of the hydrochemical composition of rivers in the direction of their reclamation development. \u0000Approbation of the created method of functional diagnostics was carried out on five reclamation systems of Prykarpattia and in the basin of the Western Bug river and its branches proved its high efficiency and perspective for the creation of parametric models of the influence of natural and anthropogenic factors on chemical composition and quality of water resources.","PeriodicalId":298682,"journal":{"name":"Міжвідомчий тематичний науковий збірник \"Меліорація і водне господарство\"","volume":"10 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133135557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For today, pollution of the environment, in particular of surface waters, has led to an environmental crisis in many countries of the world. One of the reasons for this is the use of outdated approaches to the treatment and recovery of sewage sludge. The article presents the results of the study of literary sources in order to analyze the proposals for the treatment of secondary sludge of domestic sewage in different countries. To neutralize sewage sludge, scientists consider the possibility of obtaining fertilizes under conditions of biosulfidogenesis during the dissimilation recovery of poorly soluble sulfates or the use of enhanced oxidation technology. A new concept of domestic sewage treatment has also been proposed, which can solve the issue of sewage sludge control at the place of its forming. The main areas of sustainable sludge control are its use in agriculture as fertilizer and for the reclamation of devastated or degraded lands, as well as energy recovery by burning and alternative thermal methods such as pyrolysis, quasi-pyrolysis and gasification. It was established that the applicability of this or that technology of sewage sludge recovery depends on many local factors, in particular: productivity of sewage station; composition and methods of sewage treatment and its sediments; efficiency of sewage treatment plants; climatic zone of the sewage system location; availability of energy and material resources, etc. Today, it is relevant to monitor the qualitative composition of sewage sludge, as well as soils and natural waters regarding pollutants that can be detected in the sewage of the corresponding settlement, in order to make operational decisions to control environmental risks, as well as conduct scientific research to improve recycling and recovery technologies for sewage sludge of various composition in agricultural systems, which will help to protect the environment against pollution and rational use of land.
{"title":"Modern approaches to treatment and recovery of secondary sludge of domestic sewage","authors":"O. Zorina, Y. Mavrykin","doi":"10.31073/mivg202102-301","DOIUrl":"https://doi.org/10.31073/mivg202102-301","url":null,"abstract":"For today, pollution of the environment, in particular of surface waters, has led to an environmental crisis in many countries of the world. One of the reasons for this is the use of outdated approaches to the treatment and recovery of sewage sludge. The article presents the results of the study of literary sources in order to analyze the proposals for the treatment of secondary sludge of domestic sewage in different countries. To neutralize sewage sludge, scientists consider the possibility of obtaining fertilizes under conditions of biosulfidogenesis during the dissimilation recovery of poorly soluble sulfates or the use of enhanced oxidation technology. \u0000A new concept of domestic sewage treatment has also been proposed, which can solve the issue of sewage sludge control at the place of its forming. The main areas of sustainable sludge control are its use in agriculture as fertilizer and for the reclamation of devastated or degraded lands, as well as energy recovery by burning and alternative thermal methods such as pyrolysis, quasi-pyrolysis and gasification. It was established that the applicability of this or that technology of sewage sludge recovery depends on many local factors, in particular: productivity of sewage station; composition and methods of sewage treatment and its sediments; efficiency of sewage treatment plants; climatic zone of the sewage system location; availability of energy and material resources, etc. \u0000Today, it is relevant to monitor the qualitative composition of sewage sludge, as well as soils and natural waters regarding pollutants that can be detected in the sewage of the corresponding settlement, in order to make operational decisions to control environmental risks, as well as conduct scientific research to improve recycling and recovery technologies for sewage sludge of various composition in agricultural systems, which will help to protect the environment against pollution and rational use of land.","PeriodicalId":298682,"journal":{"name":"Міжвідомчий тематичний науковий збірник \"Меліорація і водне господарство\"","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121678626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. S. Kolomiiets, A. Bilobrova, V. M. Vyr’ovka, T. Tarasenko
The results of actual research on profile variability of soil water-physical properties of undisturbed structure at the plots, where traditional plowing and no-till technology have been applied for 11 years, are given. The comparative research was conducted based on a stationary field experiment, which is carried out at Panfily Research Station of the National Scientific Center "Institute of Agriculture NAAS" when applying a system of laboratory diagnostics of water-physical properties created in the Institute of Water Problems and Land Reclamation of NAAS based on hydrophysical methods. The characteristics of main hydrophysical functions, namely moisture conductivity and water holding capacity, as well as hydrological constants - maximum hygroscopic moisture, withering point, minimal water holding capacity, maximum water holding capacity, specific surface area and active moisture range were obtained for three different depths. Based on the results of comparison, it was found that mesoporosity was more developed in the soil on the plots under plowing, while macroporosity was more developed on the no-till plots. The fundamental result is determining the inversion type of profile distribution of moisture conductivity in unsaturated soil. Thus, under on the no-till plots the highest values of moisture conductivity were observed in the deepest soil layer (0,70-0,85 m), decreasing to the soil surface, while on the plots under plowing the highest values of moisture conductivity were observed in cultivated soil layer (0,00-0,15 m), which naturally decreased in depth. The profile distribution of moisture conductivity on the no-till plots contributed to the infiltration supply of groundwater and capillary feeding of soil root layers from the deeper ones.
{"title":"Comparative analysis of the profile variability of black soil water-physical properties when long-term applying plowing and no-till technologies use (the case of Panfily Research Station)","authors":"S. S. Kolomiiets, A. Bilobrova, V. M. Vyr’ovka, T. Tarasenko","doi":"10.31073/mivg202102-289","DOIUrl":"https://doi.org/10.31073/mivg202102-289","url":null,"abstract":"The results of actual research on profile variability of soil water-physical properties of undisturbed structure at the plots, where traditional plowing and no-till technology have been applied for 11 years, are given. The comparative research was conducted based on a stationary field experiment, which is carried out at Panfily Research Station of the National Scientific Center \"Institute of Agriculture NAAS\" when applying a system of laboratory diagnostics of water-physical properties created in the Institute of Water Problems and Land Reclamation of NAAS based on hydrophysical methods. The characteristics of main hydrophysical functions, namely moisture conductivity and water holding capacity, as well as hydrological constants - maximum hygroscopic moisture, withering point, minimal water holding capacity, maximum water holding capacity, specific surface area and active moisture range were obtained for three different depths. \u0000Based on the results of comparison, it was found that mesoporosity was more developed in the soil on the plots under plowing, while macroporosity was more developed on the no-till plots. The fundamental result is determining the inversion type of profile distribution of moisture conductivity in unsaturated soil. Thus, under on the no-till plots the highest values of moisture conductivity were observed in the deepest soil layer (0,70-0,85 m), decreasing to the soil surface, while on the plots under plowing the highest values of moisture conductivity were observed in cultivated soil layer (0,00-0,15 m), which naturally decreased in depth. The profile distribution of moisture conductivity on the no-till plots contributed to the infiltration supply of groundwater and capillary feeding of soil root layers from the deeper ones.","PeriodicalId":298682,"journal":{"name":"Міжвідомчий тематичний науковий збірник \"Меліорація і водне господарство\"","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123043738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The article describes the climate change in the study region for the period 1968-2020. It was specified that over the past fifty-nine years there has been an increase in average annual air temperature by 2,5°C, a decrease in relative humidity by 6,0% and average annual rainfall by 5 mm. According to the analysis, it was determined that during the period 2009-2020 significant damage to pine plantations of Kyiv Polissya is caused by the pests like common pine sawfly (Diprion pini L.), pine bark beetle (Aradus cinnamomeus Panz), pine silkworm (Dendrolimus pini L.), pine weevil (Leucaspis pusilla Loew), and pine star weaver (Acantholyda nemoralis Matsumura). Heterobasidion annosum (Fr.) Bref. has also caused a significant damage to pine forests over the past eleven years; the damaged area is of 12,8-15,9 thousand hectares. According to the hydrothermal analysis of the study area, it was determined that 2009 and 2015 were characterized as years of medium drought; 2010, 2016, 2017, 2020 were the years of low drought; 2011–2014, 2018, 2019 were the years of sufficient moisture supply. The analysis of the number W influence found that in the years of increased solar activity the number of phytopests increases, while in the years of minimal solar activity it decreases. Based on the statistical indicators, the analysis of CO2 emissions into the environment for the period 2009-2020 and it was found that since 2012 the amount of carbon dioxide emissions has decreased from 10,2 million tons to 3.7 million tons. Correlation analysis of all indicators showed the interaction between the area of damaged trees by insect pests and the Wolf number, CO2 emissions into the environment, average annual precipitation amounts and hydrothermal moisture coefficient of Selyaninov G.T. There is also a correlation between the area of damaged plantations by pine fungus and the average annual air temperature, relative humidity and CO2 emissions.
{"title":"Сurrent condition of pine plantations of Kyiv Polisya under the influence of environmental factors","authors":"V. Moroz, Yu.A. Nykytyuk","doi":"10.31073/mivg202102-302","DOIUrl":"https://doi.org/10.31073/mivg202102-302","url":null,"abstract":"The article describes the climate change in the study region for the period 1968-2020. It was specified that over the past fifty-nine years there has been an increase in average annual air temperature by 2,5°C, a decrease in relative humidity by 6,0% and average annual rainfall by 5 mm. According to the analysis, it was determined that during the period 2009-2020 significant damage to pine plantations of Kyiv Polissya is caused by the pests like common pine sawfly (Diprion pini L.), pine bark beetle (Aradus cinnamomeus Panz), pine silkworm (Dendrolimus pini L.), pine weevil (Leucaspis pusilla Loew), and pine star weaver (Acantholyda nemoralis Matsumura). Heterobasidion annosum (Fr.) Bref. has also caused a significant damage to pine forests over the past eleven years; the damaged area is of 12,8-15,9 thousand hectares. \u0000According to the hydrothermal analysis of the study area, it was determined that 2009 and 2015 were characterized as years of medium drought; 2010, 2016, 2017, 2020 were the years of low drought; 2011–2014, 2018, 2019 were the years of sufficient moisture supply. The analysis of the number W influence found that in the years of increased solar activity the number of phytopests increases, while in the years of minimal solar activity it decreases. Based on the statistical indicators, the analysis of CO2 emissions into the environment for the period 2009-2020 and it was found that since 2012 the amount of carbon dioxide emissions has decreased from 10,2 million tons to 3.7 million tons. Correlation analysis of all indicators showed the interaction between the area of damaged trees by insect pests and the Wolf number, CO2 emissions into the environment, average annual precipitation amounts and hydrothermal moisture coefficient of Selyaninov G.T. There is also a correlation between the area of damaged plantations by pine fungus and the average annual air temperature, relative humidity and CO2 emissions.","PeriodicalId":298682,"journal":{"name":"Міжвідомчий тематичний науковий збірник \"Меліорація і водне господарство\"","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127308323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Romashchenko, R. Saidak, T. V. Matyash, M. Yatsiuk
The article provides an analytical review of the achieved crop yields under irrigation in experimental and production conditions. For today, the best production experience in the use of irrigated land indicates that, subject to all agrotechnical requirements, the yield of early grain crops reaches 8-10 t / ha, corn - 10-14 t / ha, oilseeds - 4-6 t / ha, vegetable crops - over 60 t / ha, which is about 90% of their productivity achieved in the experiments of scientific institutions. The comparative assessment of grain production in different climatic zones of Ukraine for the period of the most intense climatic change shows that over the past thirty years, the share of grain production in the Steppe zone has decreased from 45 to 35% of the total in Ukraine. The analysis of service cost for the transportation of water for irrigation in the southern regions of Ukraine is given. It was revealed that, despite a unified standard method for calculating the cost of water transportation, its price varies significantly by operational units of the State Agency for Water Resources of Ukraine. The main factors of fluctuations in the cost and fees for the transportation services of water for irrigation are the budgetary funding level of operating organizations, providing these services, the number of water transfers, the volume of actual irrigation on irrigated lands, the share of irrigated areas in the service area. The economic assessment of irrigation efficiency when having different water and other technological costs, taking into account the depreciation of capital investments, indicates that having a water price of 4,0-5,0 UAH/m3, the gross profit from growing the most profitable field crops is 35-40 % higher than the efficiency in rainfed agriculture. At the cost of water is 3,0-3,5 UAH/m3 and the use of the production capacity of the inter-farm irrigation network by 60-70%, financial prerequisites will be created for the effective operation of these networks.
{"title":"Irrigation efficiency depending on water cost","authors":"M. Romashchenko, R. Saidak, T. V. Matyash, M. Yatsiuk","doi":"10.31073/mivg202102-308","DOIUrl":"https://doi.org/10.31073/mivg202102-308","url":null,"abstract":"The article provides an analytical review of the achieved crop yields under irrigation in experimental and production conditions. For today, the best production experience in the use of irrigated land indicates that, subject to all agrotechnical requirements, the yield of early grain crops reaches 8-10 t / ha, corn - 10-14 t / ha, oilseeds - 4-6 t / ha, vegetable crops - over 60 t / ha, which is about 90% of their productivity achieved in the experiments of scientific institutions. The comparative assessment of grain production in different climatic zones of Ukraine for the period of the most intense climatic change shows that over the past thirty years, the share of grain production in the Steppe zone has decreased from 45 to 35% of the total in Ukraine. The analysis of service cost for the transportation of water for irrigation in the southern regions of Ukraine is given. It was revealed that, despite a unified standard method for calculating the cost of water transportation, its price varies significantly by operational units of the State Agency for Water Resources of Ukraine. The main factors of fluctuations in the cost and fees for the transportation services of water for irrigation are the budgetary funding level of operating organizations, providing these services, the number of water transfers, the volume of actual irrigation on irrigated lands, the share of irrigated areas in the service area. \u0000The economic assessment of irrigation efficiency when having different water and other technological costs, taking into account the depreciation of capital investments, indicates that having a water price of 4,0-5,0 UAH/m3, the gross profit from growing the most profitable field crops is 35-40 % higher than the efficiency in rainfed agriculture. At the cost of water is 3,0-3,5 UAH/m3 and the use of the production capacity of the inter-farm irrigation network by 60-70%, financial prerequisites will be created for the effective operation of these networks.","PeriodicalId":298682,"journal":{"name":"Міжвідомчий тематичний науковий збірник \"Меліорація і водне господарство\"","volume":"87 11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132686716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Shevchuk, O. Zorina, A. Shevchenko, O. M. Kozytsky, Y. Mavrykin
Analyzed the results of their own research to assess the impact of the Vyrovsky granite quarry on the state of surface and ground waters within the village of Vyry, Sarny district, Rivne region of Ukraine. Research methods: hydrogeological, sanitary-chemical, analytical. It has been established that the technological process of extracting granite and producing construction crushed stone does not involve the use of a large amount of water. Pit water is used as process water without additional intake of surface or groundwater. The main problems during the exploitation of the car, which are found on the enterprises, are connected with water. The stench is overwhelmed by the surging of ground and surface waters and the need for input for the safety of normal minds of their exploitation. Significant watering of the area's surface is due to the abundance of atmospheric precipitation, relatively flat relief, the presence of a small thickness of sedimentary rocks covering the crystalline massifs. So, the chemical and biological pollution of the river. The extraction by quarry waters does not occur, since the results of laboratory studies of the quarry water did not show its contamination. In general, the Vyrovsky granite quarry does not affect the volume of the river flow. Alignment, for a long time of operation of the Vyrovsky granite quarry, the groundwater levels of the aquifer have already been established and currently remain relatively stable. Further development of the open pit area will not affect the lowering of the groundwater level within the village. Vyry. Decrease in water levels in wells and wells within the village. Vyry in recent years (2015-2020) is associated with climatic changes, which led to a decrease in precipitation, an increase in temperature and evaporation and, as a consequence, a very low water content in rivers practically throughout Ukraine.
{"title":"Assessment of the influence of the Viriva granite quarry on the condition of the surface and ground waters within the Vyry village","authors":"S. Shevchuk, O. Zorina, A. Shevchenko, O. M. Kozytsky, Y. Mavrykin","doi":"10.31073/mivg202102-290","DOIUrl":"https://doi.org/10.31073/mivg202102-290","url":null,"abstract":"Analyzed the results of their own research to assess the impact of the Vyrovsky granite quarry on the state of surface and ground waters within the village of Vyry, Sarny district, Rivne region of Ukraine. Research methods: hydrogeological, sanitary-chemical, analytical. It has been established that the technological process of extracting granite and producing construction crushed stone does not involve the use of a large amount of water. Pit water is used as process water without additional intake of surface or groundwater. The main problems during the exploitation of the car, which are found on the enterprises, are connected with water. The stench is overwhelmed by the surging of ground and surface waters and the need for input for the safety of normal minds of their exploitation. Significant watering of the area's surface is due to the abundance of atmospheric precipitation, relatively flat relief, the presence of a small thickness of sedimentary rocks covering the crystalline massifs. So, the chemical and biological pollution of the river. The extraction by quarry waters does not occur, since the results of laboratory studies of the quarry water did not show its contamination. In general, the Vyrovsky granite quarry does not affect the volume of the river flow. Alignment, for a long time of operation of the Vyrovsky granite quarry, the groundwater levels of the aquifer have already been established and currently remain relatively stable. Further development of the open pit area will not affect the lowering of the groundwater level within the village. Vyry. Decrease in water levels in wells and wells within the village. Vyry in recent years (2015-2020) is associated with climatic changes, which led to a decrease in precipitation, an increase in temperature and evaporation and, as a consequence, a very low water content in rivers practically throughout Ukraine.","PeriodicalId":298682,"journal":{"name":"Міжвідомчий тематичний науковий збірник \"Меліорація і водне господарство\"","volume":"102 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126580647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}