Pub Date : 2022-02-08DOI: 10.1186/s43897-022-00025-0
Zoltan Kevei, Silva Demetryus Silva Ferreira, Cristina Maria Perez Casenave, Tomasz Kurowski, Fady Mohareb, Daniel Rickett, Chris Stain, Andrew J Thompson
The bushy root-2 (brt-2) tomato mutant has twisting roots, and slower plant development. Here we used whole genome resequencing and genetic mapping to show that brt-2 is caused by a serine to cysteine (S75C) substitution in the DNA binding domain (DBD) of a heat shock factor class B (HsfB) encoded by SolycHsfB4a. This gene is orthologous to the Arabidopsis SCHIZORIZA gene, also known as AtHsfB4. The brt-2 phenotype is very similar to Arabidopsis lines in which the function of AtHsfB4 is altered: a proliferation of lateral root cap and root meristematic tissues, and a tendency for lateral root cap cells to easily separate. The brt-2 S75C mutation is unusual because all other reported amino acid substitutions in the highly conserved DBD of eukaryotic heat shock factors are dominant negative mutations, but brt-2 is recessive. We further show through reciprocal grafting that brt-2 exerts its effects predominantly through the root genotype even through BRT-2 is expressed at similar levels in both root and shoot meristems. Since AtHsfB4 is induced by root knot nematodes (RKN), and loss-of-function mutants of this gene are resistant to RKNs, BRT-2 could be a target gene for RKN resistance, an important trait in tomato rootstock breeding.Gene & accession numbersSolycHsfB4a - Solyc04g078770.
{"title":"Missense mutation of a class B heat shock factor is responsible for the tomato bushy root-2 phenotype.","authors":"Zoltan Kevei, Silva Demetryus Silva Ferreira, Cristina Maria Perez Casenave, Tomasz Kurowski, Fady Mohareb, Daniel Rickett, Chris Stain, Andrew J Thompson","doi":"10.1186/s43897-022-00025-0","DOIUrl":"https://doi.org/10.1186/s43897-022-00025-0","url":null,"abstract":"<p><p>The bushy root-2 (brt-2) tomato mutant has twisting roots, and slower plant development. Here we used whole genome resequencing and genetic mapping to show that brt-2 is caused by a serine to cysteine (S75C) substitution in the DNA binding domain (DBD) of a heat shock factor class B (HsfB) encoded by SolycHsfB4a. This gene is orthologous to the Arabidopsis SCHIZORIZA gene, also known as AtHsfB4. The brt-2 phenotype is very similar to Arabidopsis lines in which the function of AtHsfB4 is altered: a proliferation of lateral root cap and root meristematic tissues, and a tendency for lateral root cap cells to easily separate. The brt-2 S75C mutation is unusual because all other reported amino acid substitutions in the highly conserved DBD of eukaryotic heat shock factors are dominant negative mutations, but brt-2 is recessive. We further show through reciprocal grafting that brt-2 exerts its effects predominantly through the root genotype even through BRT-2 is expressed at similar levels in both root and shoot meristems. Since AtHsfB4 is induced by root knot nematodes (RKN), and loss-of-function mutants of this gene are resistant to RKNs, BRT-2 could be a target gene for RKN resistance, an important trait in tomato rootstock breeding.Gene & accession numbersSolycHsfB4a - Solyc04g078770.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"2 1","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515254/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41154706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-21DOI: 10.1186/s43897-022-00023-2
Tianhu Sun, Sombir Rao, Xuesong Zhou, Li Li
Carotenoids are isoprenoid metabolites synthesized de novo in all photosynthetic organisms. Carotenoids are essential for plants with diverse functions in photosynthesis, photoprotection, pigmentation, phytohormone synthesis, and signaling. They are also critically important for humans as precursors of vitamin A synthesis and as dietary antioxidants. The vital roles of carotenoids to plants and humans have prompted significant progress toward our understanding of carotenoid metabolism and regulation. New regulators and novel roles of carotenoid metabolites are continuously revealed. This review focuses on current status of carotenoid metabolism and highlights recent advances in comprehension of the intrinsic and multi-dimensional regulation of carotenoid accumulation. We also discuss the functional evolution of carotenoids, the agricultural and horticultural application, and some key areas for future research.
{"title":"Plant carotenoids: recent advances and future perspectives.","authors":"Tianhu Sun, Sombir Rao, Xuesong Zhou, Li Li","doi":"10.1186/s43897-022-00023-2","DOIUrl":"10.1186/s43897-022-00023-2","url":null,"abstract":"<p><p>Carotenoids are isoprenoid metabolites synthesized de novo in all photosynthetic organisms. Carotenoids are essential for plants with diverse functions in photosynthesis, photoprotection, pigmentation, phytohormone synthesis, and signaling. They are also critically important for humans as precursors of vitamin A synthesis and as dietary antioxidants. The vital roles of carotenoids to plants and humans have prompted significant progress toward our understanding of carotenoid metabolism and regulation. New regulators and novel roles of carotenoid metabolites are continuously revealed. This review focuses on current status of carotenoid metabolism and highlights recent advances in comprehension of the intrinsic and multi-dimensional regulation of carotenoid accumulation. We also discuss the functional evolution of carotenoids, the agricultural and horticultural application, and some key areas for future research.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"2 1","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515021/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41168206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-20DOI: 10.1186/s43897-022-00024-1
Feng Zhu, Weiwei Wen, Yunjiang Cheng, Alisdair R Fernie
As the most valuable organ of tomato plants, fruit has attracted considerable attention which most focus on its quality formation during the ripening process. A considerable amount of research has reported that fruit quality is affected by metabolic shifts which are under the coordinated regulation of both structural genes and transcriptional regulators. In recent years, with the development of the next generation sequencing, molecular and genetic analysis methods, lots of genes which are involved in the chlorophyll, carotenoid, cell wall, central and secondary metabolism have been identified and confirmed to regulate pigment contents, fruit softening and other aspects of fruit flavor quality. Here, both research concerning the dissection of fruit quality related metabolic changes, the transcriptional and post-translational regulation of these metabolic pathways are reviewed. Furthermore, a weighted gene correlation network analysis of representative genes of fruit quality has been carried out and the potential of the combined application of the gene correlation network analysis, fine-mapping strategies and next generation sequencing to identify novel candidate genes determinants of fruit quality is discussed.
{"title":"The metabolic changes that effect fruit quality during tomato fruit ripening.","authors":"Feng Zhu, Weiwei Wen, Yunjiang Cheng, Alisdair R Fernie","doi":"10.1186/s43897-022-00024-1","DOIUrl":"10.1186/s43897-022-00024-1","url":null,"abstract":"<p><p>As the most valuable organ of tomato plants, fruit has attracted considerable attention which most focus on its quality formation during the ripening process. A considerable amount of research has reported that fruit quality is affected by metabolic shifts which are under the coordinated regulation of both structural genes and transcriptional regulators. In recent years, with the development of the next generation sequencing, molecular and genetic analysis methods, lots of genes which are involved in the chlorophyll, carotenoid, cell wall, central and secondary metabolism have been identified and confirmed to regulate pigment contents, fruit softening and other aspects of fruit flavor quality. Here, both research concerning the dissection of fruit quality related metabolic changes, the transcriptional and post-translational regulation of these metabolic pathways are reviewed. Furthermore, a weighted gene correlation network analysis of representative genes of fruit quality has been carried out and the potential of the combined application of the gene correlation network analysis, fine-mapping strategies and next generation sequencing to identify novel candidate genes determinants of fruit quality is discussed.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"2 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515270/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41142209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-12DOI: 10.1186/s43897-021-00022-9
Yasin Topcu, Savithri U Nambeesan, Esther van der Knaap
Blossom-end rot (BER) is a devastating physiological disorder affecting vegetable production worldwide. Extensive research into the physiological aspects of the disorder has demonstrated that the underlying causes of BER are associated with perturbed calcium (Ca2+) homeostasis and irregular watering conditions in predominantly cultivated accessions. Further, Reactive Oxygen Species (ROS) are critical players in BER development which, combined with unbalanced Ca2+ concentrations, greatly affect the severity of the disorder. The availability of a high-quality reference tomato genome as well as the whole genome resequencing of many accessions has recently permitted the genetic dissection of BER in segregating populations derived from crosses between cultivated tomato accessions. This has led to the identification of five loci contributing to BER from several studies. The eventual cloning of the genes contributing to BER would result in a deeper understanding of the molecular bases of the disorder. This will undoubtedly create crop improvement strategies for tomato as well as many other vegetables that suffer from BER.
{"title":"Blossom-end rot: a century-old problem in tomato (Solanum lycopersicum L.) and other vegetables.","authors":"Yasin Topcu, Savithri U Nambeesan, Esther van der Knaap","doi":"10.1186/s43897-021-00022-9","DOIUrl":"https://doi.org/10.1186/s43897-021-00022-9","url":null,"abstract":"<p><p>Blossom-end rot (BER) is a devastating physiological disorder affecting vegetable production worldwide. Extensive research into the physiological aspects of the disorder has demonstrated that the underlying causes of BER are associated with perturbed calcium (Ca<sup>2+</sup>) homeostasis and irregular watering conditions in predominantly cultivated accessions. Further, Reactive Oxygen Species (ROS) are critical players in BER development which, combined with unbalanced Ca<sup>2+</sup> concentrations, greatly affect the severity of the disorder. The availability of a high-quality reference tomato genome as well as the whole genome resequencing of many accessions has recently permitted the genetic dissection of BER in segregating populations derived from crosses between cultivated tomato accessions. This has led to the identification of five loci contributing to BER from several studies. The eventual cloning of the genes contributing to BER would result in a deeper understanding of the molecular bases of the disorder. This will undoubtedly create crop improvement strategies for tomato as well as many other vegetables that suffer from BER.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"2 1","pages":"1"},"PeriodicalIF":0.0,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515260/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41111205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isatis indigotica Fort. (Chinese woad) is a species with an ancient and well-documented history as an indigo dye and medicinal plant. It is often confused with Isatis tinctoria L. (European woad), a medicinal plant in Europe. Here, the differences between I. indigotica and I. tinctoria are systematically described. The usage development history, clinical applications and pharmacological activities, and chemical components of I. indigotica are also summarized. Lignans, indole alkaloids, and their corresponding derivatives have been identified as the major active ingredients of I. indigotica and are associated with anti-viral, anti-inflammatory, anti-cancer, and other health-promoting activities. Notable progress has been made in understanding the biosynthetic pathway and regulation mechanism of lignans and indole alkaloids in I. indigotica, the results from which should facilitate the process of targeted metabolic engineering or synthetic biology. Moreover, multiple biotechnology methods such as polyploid breeding and genetic engineering have been used with I. indigotica to result in, for example, greater yields, higher levels of bioactive component accumulation, and enhanced stress tolerance to salt, drought, and insects. Some issues require additional analyses, and suggestions for future research on I. indigotica are also discussed.
{"title":"Isatis indigotica: from (ethno) botany, biochemistry to synthetic biology.","authors":"Jingxian Feng, Doudou Huang, Yingbo Yang, Junfeng Chen, Shi Qiu, Zongyou Lv, Xueqi Ma, Yuanyu Li, Rongrong Li, Ying Xiao, Wansheng Chen","doi":"10.1186/s43897-021-00021-w","DOIUrl":"https://doi.org/10.1186/s43897-021-00021-w","url":null,"abstract":"<p><p>Isatis indigotica Fort. (Chinese woad) is a species with an ancient and well-documented history as an indigo dye and medicinal plant. It is often confused with Isatis tinctoria L. (European woad), a medicinal plant in Europe. Here, the differences between I. indigotica and I. tinctoria are systematically described. The usage development history, clinical applications and pharmacological activities, and chemical components of I. indigotica are also summarized. Lignans, indole alkaloids, and their corresponding derivatives have been identified as the major active ingredients of I. indigotica and are associated with anti-viral, anti-inflammatory, anti-cancer, and other health-promoting activities. Notable progress has been made in understanding the biosynthetic pathway and regulation mechanism of lignans and indole alkaloids in I. indigotica, the results from which should facilitate the process of targeted metabolic engineering or synthetic biology. Moreover, multiple biotechnology methods such as polyploid breeding and genetic engineering have been used with I. indigotica to result in, for example, greater yields, higher levels of bioactive component accumulation, and enhanced stress tolerance to salt, drought, and insects. Some issues require additional analyses, and suggestions for future research on I. indigotica are also discussed.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"1 1","pages":"17"},"PeriodicalIF":0.0,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8668392/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41156114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genetic map is a linear arrangement of the relative positions of sites in the chromosome or genome based on the recombination frequency between genetic markers. It is the important basis for genetic analysis. Several kinds of software have been designed for genetic mapping, but all these tools require users to write or edit code, making it time-costing and difficult for researchers without programming skills to handle with. Here, MG2C, a new online tool was designed, based on PERL and SVG languages.Users can get a standard genetic map, only by providing the location of genes (or quantitative trait loci) and the length of the chromosome, without writing additional code. The operation interface of MG2C contains three sections: data input, data output and parameters. There are 33 attribute parameters in MG2C, which are further divided into 8 modules. Values of the parameters can be changed according to the users' requirements. The information submitted by users will be transformed into the genetic map in SVG file, which can be further modified by other image processing tools.MG2C is a user-friendly and time-saving online tool for drawing genetic maps, especially for those without programming skills. The tool has been running smoothly since 2015, and updated to version 2.1. It significantly lowers the technical barriers for the users, and provides great convenience for the researchers.
{"title":"MG2C: a user-friendly online tool for drawing genetic maps.","authors":"Jiangtao Chao, Zhiyuan Li, Yuhe Sun, Oluwaseun Olayemi Aluko, Xinru Wu, Qian Wang, Guanshan Liu","doi":"10.1186/s43897-021-00020-x","DOIUrl":"https://doi.org/10.1186/s43897-021-00020-x","url":null,"abstract":"<p><p>Genetic map is a linear arrangement of the relative positions of sites in the chromosome or genome based on the recombination frequency between genetic markers. It is the important basis for genetic analysis. Several kinds of software have been designed for genetic mapping, but all these tools require users to write or edit code, making it time-costing and difficult for researchers without programming skills to handle with. Here, MG2C, a new online tool was designed, based on PERL and SVG languages.Users can get a standard genetic map, only by providing the location of genes (or quantitative trait loci) and the length of the chromosome, without writing additional code. The operation interface of MG2C contains three sections: data input, data output and parameters. There are 33 attribute parameters in MG2C, which are further divided into 8 modules. Values of the parameters can be changed according to the users' requirements. The information submitted by users will be transformed into the genetic map in SVG file, which can be further modified by other image processing tools.MG2C is a user-friendly and time-saving online tool for drawing genetic maps, especially for those without programming skills. The tool has been running smoothly since 2015, and updated to version 2.1. It significantly lowers the technical barriers for the users, and provides great convenience for the researchers.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"1 1","pages":"16"},"PeriodicalIF":0.0,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41167881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-24DOI: 10.1186/s43897-021-00019-4
Hagai Shohat, Natanella Illouz Eliaz, David Weiss
The growth-promoting hormone gibberellin (GA) regulates numerous developmental processes throughout the plant life cycle. It also affects plant response to biotic and abiotic stresses. GA metabolism and signaling in tomato (Solanum lycopersicum) have been studied in the last three decades and major components of the pathways were characterized. These include major biosynthesis and catabolism enzymes and signaling components, such as the three GA receptors GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and DELLA protein PROCERA (PRO), the central response suppressor. The role of these components in tomato plant development and response to the environment have been investigated. Cultivated tomato, similar to many other crop plants, are susceptible to water deficiency. Numerous studies on tomato response to drought have been conducted, including the possible role of GA in tomato drought resistance. Most studies showed that reduced levels or activity of GA improves drought tolerance and drought avoidance. This review aims to provide an overview on GA biosynthesis and signaling in tomato, how drought affects these pathways and how changes in GA activity affect tomato plant response to water deficiency. It also presents the potential of using the GA pathway to generate drought-tolerant tomato plants with improved performance under both irrigation and water-limited conditions.
{"title":"Gibberellin in tomato: metabolism, signaling and role in drought responses.","authors":"Hagai Shohat, Natanella Illouz Eliaz, David Weiss","doi":"10.1186/s43897-021-00019-4","DOIUrl":"10.1186/s43897-021-00019-4","url":null,"abstract":"<p><p>The growth-promoting hormone gibberellin (GA) regulates numerous developmental processes throughout the plant life cycle. It also affects plant response to biotic and abiotic stresses. GA metabolism and signaling in tomato (Solanum lycopersicum) have been studied in the last three decades and major components of the pathways were characterized. These include major biosynthesis and catabolism enzymes and signaling components, such as the three GA receptors GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and DELLA protein PROCERA (PRO), the central response suppressor. The role of these components in tomato plant development and response to the environment have been investigated. Cultivated tomato, similar to many other crop plants, are susceptible to water deficiency. Numerous studies on tomato response to drought have been conducted, including the possible role of GA in tomato drought resistance. Most studies showed that reduced levels or activity of GA improves drought tolerance and drought avoidance. This review aims to provide an overview on GA biosynthesis and signaling in tomato, how drought affects these pathways and how changes in GA activity affect tomato plant response to water deficiency. It also presents the potential of using the GA pathway to generate drought-tolerant tomato plants with improved performance under both irrigation and water-limited conditions.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"1 1","pages":"15"},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515025/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41162591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-03DOI: 10.1186/s43897-021-00018-5
Hainan Liu, Qun Shu, Kui Lin-Wang, Andrew C Allan, Richard V Espley, Jun Su, Maosong Pei, Jun Wu
Some cultivars of pear (Pyrus L.) show attractive red fruit skin due to anthocyanin accumulation. This pigmentation can be affected by environmental conditions, especially light. To explore the light-induced regulation network for anthocyanin biosynthesis and fruit coloration in pear, small RNA libraries and mRNA libraries from fruit skins of 'Yunhongyihao' pear were constructed to compare the difference between bagging and debagging treatments. Analysis of RNA-seq of fruit skins with limited light (bagged) and exposed to light (debagged), showed that PyPIF5 was down-regulated after bag removal. PymiR156a was also differentially expressed between bagged and debagged fruit skins. We found that PyPIF5 negatively regulated PymiR156a expression in bagged fruits by directly binding to the G-box motif in its promoter. In addition, PymiR156a overexpression promoted anthocyanin accumulation in both pear skin and apple calli. We confirmed that PymiR156a mediated the cleavage of PySPL9, and that the target PySPL9 protein could form heterodimers with two key anthocyanin regulators (PyMYB114/PyMYB10). We proposed a new module of PyPIF5-PymiR156a-PySPL9-PyMYB114/MYB10. When the bagged fruits were re-exposed to light, PyPIF5 was down-regulated and its inhibitory effect on PymiR156a was weakened, which leads to degradation of the target PySPL, thus eliminating the blocking effect of PySPL on the formation of the regulatory MYB complexes. Ultimately, this promotes anthocyanin biosynthesis in pear skin.
{"title":"The PyPIF5-PymiR156a-PySPL9-PyMYB114/MYB10 module regulates light-induced anthocyanin biosynthesis in red pear.","authors":"Hainan Liu, Qun Shu, Kui Lin-Wang, Andrew C Allan, Richard V Espley, Jun Su, Maosong Pei, Jun Wu","doi":"10.1186/s43897-021-00018-5","DOIUrl":"10.1186/s43897-021-00018-5","url":null,"abstract":"<p><p>Some cultivars of pear (Pyrus L.) show attractive red fruit skin due to anthocyanin accumulation. This pigmentation can be affected by environmental conditions, especially light. To explore the light-induced regulation network for anthocyanin biosynthesis and fruit coloration in pear, small RNA libraries and mRNA libraries from fruit skins of 'Yunhongyihao' pear were constructed to compare the difference between bagging and debagging treatments. Analysis of RNA-seq of fruit skins with limited light (bagged) and exposed to light (debagged), showed that PyPIF5 was down-regulated after bag removal. PymiR156a was also differentially expressed between bagged and debagged fruit skins. We found that PyPIF5 negatively regulated PymiR156a expression in bagged fruits by directly binding to the G-box motif in its promoter. In addition, PymiR156a overexpression promoted anthocyanin accumulation in both pear skin and apple calli. We confirmed that PymiR156a mediated the cleavage of PySPL9, and that the target PySPL9 protein could form heterodimers with two key anthocyanin regulators (PyMYB114/PyMYB10). We proposed a new module of PyPIF5-PymiR156a-PySPL9-PyMYB114/MYB10. When the bagged fruits were re-exposed to light, PyPIF5 was down-regulated and its inhibitory effect on PymiR156a was weakened, which leads to degradation of the target PySPL, thus eliminating the blocking effect of PySPL on the formation of the regulatory MYB complexes. Ultimately, this promotes anthocyanin biosynthesis in pear skin.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"1 1","pages":"14"},"PeriodicalIF":0.0,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514999/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41168208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-13DOI: 10.1186/s43897-021-00017-6
Youzhen Hu, Bin Liu, Huazhong Ren, Liping Chen, Christopher B Watkins, Su-Sheng Gan
Cytokinins (CKs) are a class of adenine-derived plant hormones that plays pervasive roles in plant growth and development including cell division, morphogenesis, lateral bud outgrowth, leaf expansion and senescence. CKs as a "fountain of youth" prolongs leaf longevity by inhibiting leaf senescence, and therefore must be catabolized for senescence to occur. AtNAP, a senescence-specific transcription factor has a key role in promoting leaf senescence. The role of AtNAP in regulating CK catabolism is unknown. Here we report the identification and characterization of AtNAP-AtCKX3 (cytokinin oxidase 3) module by which CKs are catabolized during leaf senescence in Arabidopsis. Like AtNAP, AtCKX3 is highly upregulated during leaf senescence. When AtNAP is chemically induced AtCKX3 is co-induced; and when AtNAP is knocked out, the expression of AtCKX3 is abolished. AtNAP physically binds to the cis element of the AtCKX3 promoter to direct its expression as revealed by yeast one-hybrid assays and in planta experiments. Leaves of the atckx3 knockout lines have higher CK concentrations and a delayed senescence phenotype compared with those of WT. In contrast, leaves with inducible expression of AtCKX3 have lower CK concentrations and exhibit a precocious senescence phenotype compared with WT. This research reveals that AtNAP transcription factor-AtCKX3 module regulates leaf senescence by connecting two antagonist plant hormones abscisic acid and CKs.
{"title":"The leaf senescence-promoting transcription factor AtNAP activates its direct target gene CYTOKININ OXIDASE 3 to facilitate senescence processes by degrading cytokinins.","authors":"Youzhen Hu, Bin Liu, Huazhong Ren, Liping Chen, Christopher B Watkins, Su-Sheng Gan","doi":"10.1186/s43897-021-00017-6","DOIUrl":"10.1186/s43897-021-00017-6","url":null,"abstract":"<p><p>Cytokinins (CKs) are a class of adenine-derived plant hormones that plays pervasive roles in plant growth and development including cell division, morphogenesis, lateral bud outgrowth, leaf expansion and senescence. CKs as a \"fountain of youth\" prolongs leaf longevity by inhibiting leaf senescence, and therefore must be catabolized for senescence to occur. AtNAP, a senescence-specific transcription factor has a key role in promoting leaf senescence. The role of AtNAP in regulating CK catabolism is unknown. Here we report the identification and characterization of AtNAP-AtCKX3 (cytokinin oxidase 3) module by which CKs are catabolized during leaf senescence in Arabidopsis. Like AtNAP, AtCKX3 is highly upregulated during leaf senescence. When AtNAP is chemically induced AtCKX3 is co-induced; and when AtNAP is knocked out, the expression of AtCKX3 is abolished. AtNAP physically binds to the cis element of the AtCKX3 promoter to direct its expression as revealed by yeast one-hybrid assays and in planta experiments. Leaves of the atckx3 knockout lines have higher CK concentrations and a delayed senescence phenotype compared with those of WT. In contrast, leaves with inducible expression of AtCKX3 have lower CK concentrations and exhibit a precocious senescence phenotype compared with WT. This research reveals that AtNAP transcription factor-AtCKX3 module regulates leaf senescence by connecting two antagonist plant hormones abscisic acid and CKs.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"1 1","pages":"12"},"PeriodicalIF":10.6,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515059/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41157427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-11DOI: 10.1186/s43897-021-00016-7
Jing Zou, Peitao Lü, Liwei Jiang, Kun Liu, Tao Zhang, Jin Chen, Yi Yao, Yusen Cui, Junping Gao, Changqing Zhang
Petals and leaves share common evolutionary origins but have different phenotypic characteristics, such as the absence of stomata in the petals of most angiosperm species. Plant NAC transcription factor, NAP, is involved in ABA responses and regulates senescence-associated genes, and especially those that affect stomatal movement. However, the regulatory mechanisms and significance of NAP action in senescing astomatous petals is unclear. A major limiting factor is failure of flower opening and accelerated senescence. Our goal is to understand the finely regulatory mechanism of dehydration tolerance and aging in rose flowers. We functionally characterized RhNAP, an AtNAP-like transcription factor gene that is induced by dehydration and aging in astomatous rose petals. Cytokinins (CKs) are known to delay petal senescence and we found that a cytokinin oxidase/dehydrogenase gene 6 (RhCKX6) shares similar expression patterns with RhNAP. Silencing of RhNAP or RhCKX6 expression in rose petals by virus induced gene silencing markedly reduced petal dehydration tolerance and delayed petal senescence. Endogenous CK levels in RhNAP- or RhCKX6-silenced petals were significantly higher than those of the control. Moreover, RhCKX6 expression was reduced in RhNAP-silenced petals. This suggests that the expression of RhCKX6 is regulated by RhNAP. Yeast one-hybrid experiments and electrophoresis mobility shift assays showed that RhNAP binds to the RhCKX6 promoter in heterologous in vivo system and in vitro, respectively. Furthermore, the expression of putative signal transduction and downstream genes of ABA-signaling pathways were also reduced due to the repression of PP2C homolog genes by RhNAP in rose petals. Taken together, our study indicates that the RhNAP/RhCKX6 interaction represents a regulatory step enhancing dehydration tolerance in young rose petals and accelerating senescence in mature petals in a stomata-independent manner.
{"title":"Regulation of rose petal dehydration tolerance and senescence by RhNAP transcription factor via the modulation of cytokinin catabolism.","authors":"Jing Zou, Peitao Lü, Liwei Jiang, Kun Liu, Tao Zhang, Jin Chen, Yi Yao, Yusen Cui, Junping Gao, Changqing Zhang","doi":"10.1186/s43897-021-00016-7","DOIUrl":"10.1186/s43897-021-00016-7","url":null,"abstract":"<p><p>Petals and leaves share common evolutionary origins but have different phenotypic characteristics, such as the absence of stomata in the petals of most angiosperm species. Plant NAC transcription factor, NAP, is involved in ABA responses and regulates senescence-associated genes, and especially those that affect stomatal movement. However, the regulatory mechanisms and significance of NAP action in senescing astomatous petals is unclear. A major limiting factor is failure of flower opening and accelerated senescence. Our goal is to understand the finely regulatory mechanism of dehydration tolerance and aging in rose flowers. We functionally characterized RhNAP, an AtNAP-like transcription factor gene that is induced by dehydration and aging in astomatous rose petals. Cytokinins (CKs) are known to delay petal senescence and we found that a cytokinin oxidase/dehydrogenase gene 6 (RhCKX6) shares similar expression patterns with RhNAP. Silencing of RhNAP or RhCKX6 expression in rose petals by virus induced gene silencing markedly reduced petal dehydration tolerance and delayed petal senescence. Endogenous CK levels in RhNAP- or RhCKX6-silenced petals were significantly higher than those of the control. Moreover, RhCKX6 expression was reduced in RhNAP-silenced petals. This suggests that the expression of RhCKX6 is regulated by RhNAP. Yeast one-hybrid experiments and electrophoresis mobility shift assays showed that RhNAP binds to the RhCKX6 promoter in heterologous in vivo system and in vitro, respectively. Furthermore, the expression of putative signal transduction and downstream genes of ABA-signaling pathways were also reduced due to the repression of PP2C homolog genes by RhNAP in rose petals. Taken together, our study indicates that the RhNAP/RhCKX6 interaction represents a regulatory step enhancing dehydration tolerance in young rose petals and accelerating senescence in mature petals in a stomata-independent manner.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"1 1","pages":"13"},"PeriodicalIF":10.6,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41136838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}