首页 > 最新文献

Molecular Horticulture最新文献

英文 中文
PeachMD: a multi-omics database for peach. PeachMD:桃子的多组学数据库。
IF 10.6 Q1 HORTICULTURE Pub Date : 2025-07-04 DOI: 10.1186/s43897-025-00157-z
Ang Li, Shihang Sun, Hongmei Wang, Akhi Badrunnesa, Junren Meng, Xiongwei Li, Yuan Gao, Liang Niu, Lei Pan, Wenyi Duan, Guochao Cui, Zhiqiang Wang, Wenfang Zeng
{"title":"PeachMD: a multi-omics database for peach.","authors":"Ang Li, Shihang Sun, Hongmei Wang, Akhi Badrunnesa, Junren Meng, Xiongwei Li, Yuan Gao, Liang Niu, Lei Pan, Wenyi Duan, Guochao Cui, Zhiqiang Wang, Wenfang Zeng","doi":"10.1186/s43897-025-00157-z","DOIUrl":"10.1186/s43897-025-00157-z","url":null,"abstract":"","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"37"},"PeriodicalIF":10.6,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12232059/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144561339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A subgroup I bZIP transcription factor PpbZIP18 plays an important role in sucrose accumulation in peach. bZIP转录因子PpbZIP18亚群在桃的蔗糖积累中起重要作用。
IF 10.6 Q1 HORTICULTURE Pub Date : 2025-07-03 DOI: 10.1186/s43897-025-00156-0
Xian Zhang, Wen Xiao, Yudi Liu, Yunpeng Cao, Ruo-Xi Zhang, Yuepeng Han
{"title":"A subgroup I bZIP transcription factor PpbZIP18 plays an important role in sucrose accumulation in peach.","authors":"Xian Zhang, Wen Xiao, Yudi Liu, Yunpeng Cao, Ruo-Xi Zhang, Yuepeng Han","doi":"10.1186/s43897-025-00156-0","DOIUrl":"10.1186/s43897-025-00156-0","url":null,"abstract":"","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"36"},"PeriodicalIF":10.6,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12224830/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144555154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breeding a novel cauliflower with exceptional fragrance. 培育出香味独特的新型花椰菜。
IF 10.6 Q1 HORTICULTURE Pub Date : 2025-07-02 DOI: 10.1186/s43897-025-00178-8
Xiaoli Zhang, Xiaoxu Li, Long Chen, Zhenghua Wen, Fengqing Han, Daping Gong, Minmin Xie, Zhe Zhao, Yu Zhao, Wei Zhang, Mingli Chen, Zhiyuan Li
{"title":"Breeding a novel cauliflower with exceptional fragrance.","authors":"Xiaoli Zhang, Xiaoxu Li, Long Chen, Zhenghua Wen, Fengqing Han, Daping Gong, Minmin Xie, Zhe Zhao, Yu Zhao, Wei Zhang, Mingli Chen, Zhiyuan Li","doi":"10.1186/s43897-025-00178-8","DOIUrl":"10.1186/s43897-025-00178-8","url":null,"abstract":"","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"56"},"PeriodicalIF":10.6,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12220755/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144545149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolomic and evolutionary integration unveils medicinal potential in six Corydalis species. 代谢组学和进化整合揭示了六种延胡索属植物的药用潜力。
IF 10.6 Q1 HORTICULTURE Pub Date : 2025-07-01 DOI: 10.1186/s43897-025-00162-2
Yun Gao, Xiangyu Zhou, Mengxiao Yan, Zhengwei Wang, Xin Zhong, Xiaochen Li, Junjie Zhu, Yu Kong, Wanrong Zhu, Ruolin Geng, Yaping Zhou, Qing Zhao, Yonghong Hu, Ping Xu

The Corydalis genus, one of the largest within the Papaveraceae family, holds a rich diversity of medicinal resources, particularly among its tuberous species. Benzylisoquinoline alkaloids (BIAs) are primarily responsible for the medicinal properties observed in Corydalis plants. In this study, we conducted an integrated evolutionary analysis by combining whole-genome resequencing with comprehensive metabolite profiling across various Corydalis species. Guided by these initial findings, supported by local cultivation practices and an extensive literature review, we further investigated six tuberous Corydalis species: C. yanhusuo, C. decumbens, C. schanginii, C. ledebouriana, C. solida, and the newly identified C. nanchuanensis. Our results revealed conserved alkaloid profiles across these species but highlighted significant variations in key bioactive compounds. Notably, C. nanchuanensis exhibited considerably higher levels of tetrahydropalmatine compared to the commonly used medicinal species C. yanhusuo, while C. solida, originally sourced from the Netherlands, displayed elevated concentrations of corydaline, palmatine, and dehydrocorydaline. Additionally, transcriptome-metabolome correlation analyses pinpointed several critical genes involved in protopine biosynthesis, particularly emphasizing the TNMT gene family. These discoveries significantly enhance our understanding of metabolic diversity in tuberous Corydalis, providing essential insights for the exploration of novel medicinal resources and facilitating targeted genetic improvements for therapeutic use.

紫堇属,罂粟科中最大的一个,拥有丰富多样的药用资源,特别是在其块茎物种中。苯基异喹啉生物碱(Benzylisoquinoline alkaloids, BIAs)是延胡索属植物的主要药用成分。在这项研究中,我们通过将全基因组重测序与综合代谢物分析相结合,对不同延胡索属物种进行了综合进化分析。在这些初步发现的基础上,结合当地的栽培实践和广泛的文献综述,我们进一步研究了6个块茎延胡索(C. yanhusuo)、C. decumbens、C. changinii、C. ledebouriana、C. solida和新发现的C. nanchuanensis。我们的研究结果揭示了这些物种中保守的生物碱谱,但突出了关键生物活性化合物的显著差异。值得注意的是,与常用药用品种延湖梭相比,南川梭含有更高水平的四氢巴马汀,而原产于荷兰的南川梭含有较高浓度的堇青碱、巴马汀和脱氢堇青碱。此外,转录组-代谢组相关分析确定了几个参与原嘌呤生物合成的关键基因,特别强调了TNMT基因家族。这些发现极大地增强了我们对块茎延胡索代谢多样性的认识,为探索新的药用资源和促进治疗用途的靶向遗传改进提供了重要的见解。
{"title":"Metabolomic and evolutionary integration unveils medicinal potential in six Corydalis species.","authors":"Yun Gao, Xiangyu Zhou, Mengxiao Yan, Zhengwei Wang, Xin Zhong, Xiaochen Li, Junjie Zhu, Yu Kong, Wanrong Zhu, Ruolin Geng, Yaping Zhou, Qing Zhao, Yonghong Hu, Ping Xu","doi":"10.1186/s43897-025-00162-2","DOIUrl":"10.1186/s43897-025-00162-2","url":null,"abstract":"<p><p>The Corydalis genus, one of the largest within the Papaveraceae family, holds a rich diversity of medicinal resources, particularly among its tuberous species. Benzylisoquinoline alkaloids (BIAs) are primarily responsible for the medicinal properties observed in Corydalis plants. In this study, we conducted an integrated evolutionary analysis by combining whole-genome resequencing with comprehensive metabolite profiling across various Corydalis species. Guided by these initial findings, supported by local cultivation practices and an extensive literature review, we further investigated six tuberous Corydalis species: C. yanhusuo, C. decumbens, C. schanginii, C. ledebouriana, C. solida, and the newly identified C. nanchuanensis. Our results revealed conserved alkaloid profiles across these species but highlighted significant variations in key bioactive compounds. Notably, C. nanchuanensis exhibited considerably higher levels of tetrahydropalmatine compared to the commonly used medicinal species C. yanhusuo, while C. solida, originally sourced from the Netherlands, displayed elevated concentrations of corydaline, palmatine, and dehydrocorydaline. Additionally, transcriptome-metabolome correlation analyses pinpointed several critical genes involved in protopine biosynthesis, particularly emphasizing the TNMT gene family. These discoveries significantly enhance our understanding of metabolic diversity in tuberous Corydalis, providing essential insights for the exploration of novel medicinal resources and facilitating targeted genetic improvements for therapeutic use.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"38"},"PeriodicalIF":10.6,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12211431/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144529957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The triggering mechanism for predominant hormonal signal production in fleshy fruit ripening. 肉质果实成熟过程中显性激素信号产生的触发机制。
IF 10.6 Q1 HORTICULTURE Pub Date : 2025-06-06 DOI: 10.1186/s43897-025-00155-1
Jinyao Ouyang, Bing He, Ya Zeng, Changsheng Zhai, Yating Li, Jie Li, Pingyin Guan, Wensuo Jia

Fleshy Fruit (FF) ripening is regulated by multiple hormones, which can be categorized into two groups, i.e., the positive signals acting to promote FF ripening and the negative signals acting to suppress FF ripening. Ethylene (ET) and abscisic acid (ABA) are two predominant positive signals respectively controlling climacteric (CL) and non-climacteric (NC) FF ripening, whereas auxin (IAA) is the predominant negative signal controlling both FF growth and ripening. Functioning of these hormones is initiated by an alteration of the hormonal levels, which is referred to as the process of Hormonal Signal Production (HSP) in FF development and ripening. While the hormonal regulation of FF ripening has been extensively studied and reviewed, knowledge of HSP has never been summarized and discussed. The purpose of this review is to summarize and discuss the triggering mechanism of HSP. We first summarize the physiological, biochemical and molecular bases of HSP for three crucial hormones, ET, ABA, and IAA, including hormonal metabolism, transport and reciprocal regulation of HSP among different hormones, we then summarize and discuss the recent discoveries on the mechanism of cellular signal transduction of HSP. Finally, we propose several viewpoints to facilitate comprehension of the future research endeavors.

肉质果实(Fleshy Fruit, FF)成熟受多种激素调控,可分为促进FF成熟的积极信号和抑制FF成熟的消极信号两类。乙烯(ET)和脱落酸(ABA)分别是控制FF成熟期(CL)和非成熟期(NC)成熟的主要正信号,而生长素(IAA)是控制FF生长和成熟的主要负信号。这些激素的功能是由激素水平的改变启动的,这被称为FF发育和成熟过程中的激素信号产生(HSP)过程。虽然激素对FF成熟的调控已经被广泛的研究和回顾,但关于热休克蛋白的知识从未被总结和讨论过。本文就HSP的触发机制进行综述和探讨。本文首先综述了热休克蛋白对三种关键激素ET、ABA和IAA的生理生化和分子基础,包括热休克蛋白在不同激素之间的激素代谢、转运和相互调节,然后总结和讨论了热休克蛋白细胞信号转导机制的最新发现。最后,我们提出了几个观点,以促进对未来研究工作的理解。
{"title":"The triggering mechanism for predominant hormonal signal production in fleshy fruit ripening.","authors":"Jinyao Ouyang, Bing He, Ya Zeng, Changsheng Zhai, Yating Li, Jie Li, Pingyin Guan, Wensuo Jia","doi":"10.1186/s43897-025-00155-1","DOIUrl":"10.1186/s43897-025-00155-1","url":null,"abstract":"<p><p>Fleshy Fruit (FF) ripening is regulated by multiple hormones, which can be categorized into two groups, i.e., the positive signals acting to promote FF ripening and the negative signals acting to suppress FF ripening. Ethylene (ET) and abscisic acid (ABA) are two predominant positive signals respectively controlling climacteric (CL) and non-climacteric (NC) FF ripening, whereas auxin (IAA) is the predominant negative signal controlling both FF growth and ripening. Functioning of these hormones is initiated by an alteration of the hormonal levels, which is referred to as the process of Hormonal Signal Production (HSP) in FF development and ripening. While the hormonal regulation of FF ripening has been extensively studied and reviewed, knowledge of HSP has never been summarized and discussed. The purpose of this review is to summarize and discuss the triggering mechanism of HSP. We first summarize the physiological, biochemical and molecular bases of HSP for three crucial hormones, ET, ABA, and IAA, including hormonal metabolism, transport and reciprocal regulation of HSP among different hormones, we then summarize and discuss the recent discoveries on the mechanism of cellular signal transduction of HSP. Finally, we propose several viewpoints to facilitate comprehension of the future research endeavors.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"35"},"PeriodicalIF":10.6,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143107/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144235398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smi-miRmTERF regulates organelle development, retrograde signaling, secondary metabolism and immunity via targeting a subset of SmmTERFs in Salvia miltiorrhiza. Smi-miRmTERF通过靶向丹参中smmterf的一个亚群调节细胞器发育、逆行信号、次生代谢和免疫。
IF 10.6 Q1 HORTICULTURE Pub Date : 2025-06-05 DOI: 10.1186/s43897-025-00153-3
Xiaoxiao Qiu, Hong Zhou, Jiang Li, Miaomiao Liu, Xian Pan, Butuo Zhu, Sixuan Zhang, Fanqi Meng, Caili Li, Shanfa Lu

MicroRNAs are a class of endogenous small non-coding RNAs, some of which can trigger phased secondary small interfering RNA (phasiRNA) production from target genes. Mitochondrial transcription termination factors (mTERFs), mainly localized in chloroplasts and/or mitochondria, play critical roles in plant development and stress responses. We report here the identification of 63 mTERFs and a 22 nt novel miRNA (smi-miRmTERF), which directly cleave SmmTERF33 and SmmTERF45 transcripts to trigger phasiRNA biogenesis. The generated phasiRNAs could further trigger phasiRNA biogenesis from SmmTERF26 and regulated a subset of lineage-specific SmmTERFs. MIRmTERF widely existed in Nepetoideae plants and SmmTERF33 and SmmTERF45 proteins were localized in chloroplasts, mitochondria, and the cytoplasm. Smi-miRmTERF overexpression (MIRMTERF#OE) resulted in a dwarfing phenotype with severe defects in chloroplast and mitochondrial morphogenesis. Transcriptomic analysis showed up-regulation of defense-related and down-regulation of photosynthesis-related genes in MIRMTERF#OE plants. Under norflurazon and lincomycin treatments, MIRMTERF#OE plants displayed a gun phenotype, indicating the role of smi-miRmTERF in retrograde signaling. Furthermore, MIRMTERF#OE plants showed increased contents of phenolic acids, monoterpenoids, and sesquiterpenoids and reduced susceptibility to pathogenic bacteria Pst DC3000. The results suggest that smi-miRmTERF is a significant regulator of chloroplast and mitochondrial development, retrograde signaling, secondary metabolism, and immunity in S. miltiorrhiza.

microrna是一类内源性小非编码RNA,其中一些可以触发靶基因产生阶段性次级小干扰RNA (phasiRNA)。线粒体转录终止因子(Mitochondrial transcription termination factors, mTERFs)主要存在于叶绿体和/或线粒体中,在植物发育和逆境响应中起着重要作用。我们在这里报道了63个mterf和22个新的miRNA (smi-miRmTERF)的鉴定,它们直接切割SmmTERF33和SmmTERF45转录本来触发phasiRNA的生物发生。生成的phasiRNA可以进一步触发SmmTERF26的phasiRNA生物发生,并调节谱系特异性smmterf的一个子集。MIRmTERF广泛存在于nepetoidea植物中,SmmTERF33和SmmTERF45蛋白定位于叶绿体、线粒体和细胞质中。Smi-miRmTERF过表达(mirmterf# OE)导致矮化表型,叶绿体和线粒体形态发生严重缺陷。转录组学分析显示,mirmterf# OE植株防御相关基因上调,光合相关基因下调。在去氟拉松和林可霉素处理下,mirmterf# OE植株表现出枪型表型,表明半MIRMTERF在逆行信号传导中的作用。此外,mirmterf# OE植株酚酸、单萜类和倍半萜类含量增加,对病原菌Pst DC3000的敏感性降低。结果表明,smi-miRmTERF是丹参叶绿体和线粒体发育、逆行信号、次生代谢和免疫的重要调节因子。
{"title":"Smi-miRmTERF regulates organelle development, retrograde signaling, secondary metabolism and immunity via targeting a subset of SmmTERFs in Salvia miltiorrhiza.","authors":"Xiaoxiao Qiu, Hong Zhou, Jiang Li, Miaomiao Liu, Xian Pan, Butuo Zhu, Sixuan Zhang, Fanqi Meng, Caili Li, Shanfa Lu","doi":"10.1186/s43897-025-00153-3","DOIUrl":"10.1186/s43897-025-00153-3","url":null,"abstract":"<p><p>MicroRNAs are a class of endogenous small non-coding RNAs, some of which can trigger phased secondary small interfering RNA (phasiRNA) production from target genes. Mitochondrial transcription termination factors (mTERFs), mainly localized in chloroplasts and/or mitochondria, play critical roles in plant development and stress responses. We report here the identification of 63 mTERFs and a 22 nt novel miRNA (smi-miRmTERF), which directly cleave SmmTERF33 and SmmTERF45 transcripts to trigger phasiRNA biogenesis. The generated phasiRNAs could further trigger phasiRNA biogenesis from SmmTERF26 and regulated a subset of lineage-specific SmmTERFs. MIRmTERF widely existed in Nepetoideae plants and SmmTERF33 and SmmTERF45 proteins were localized in chloroplasts, mitochondria, and the cytoplasm. Smi-miRmTERF overexpression (MIRMTERF#OE) resulted in a dwarfing phenotype with severe defects in chloroplast and mitochondrial morphogenesis. Transcriptomic analysis showed up-regulation of defense-related and down-regulation of photosynthesis-related genes in MIRMTERF#OE plants. Under norflurazon and lincomycin treatments, MIRMTERF#OE plants displayed a gun phenotype, indicating the role of smi-miRmTERF in retrograde signaling. Furthermore, MIRMTERF#OE plants showed increased contents of phenolic acids, monoterpenoids, and sesquiterpenoids and reduced susceptibility to pathogenic bacteria Pst DC3000. The results suggest that smi-miRmTERF is a significant regulator of chloroplast and mitochondrial development, retrograde signaling, secondary metabolism, and immunity in S. miltiorrhiza.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"34"},"PeriodicalIF":10.6,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12139070/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144226943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic insights into Castanopsis carlesii and Castanea henryi: flower and fruit development and evolution of NLR genes in the beech-oak family. 山毛榉栎家族花、果发育及NLR基因的进化。
IF 10.6 Q1 HORTICULTURE Pub Date : 2025-06-04 DOI: 10.1186/s43897-025-00152-4
Xiong-De Tu, Wen-Jun Lin, Ya-Xuan Xin, Hou-Hua Fu, Cheng-Yuan Zhou, Yi-Zhe Lin, Jun Shen, Shuai Chen, Hui Lian, Shu-Zhen Jiang, Bin Liu, Yu Li, Zi Wang, Ding-Kun Liu, Zhi-Wen Wang, Siren Lan, Ming-He Li, Zhong-Jian Liu, Shi-Pin Chen

The Fagaceae family, comprising over 900 species, is an essential component of Northern Hemisphere forest ecosystems. However, genomic data for tropical and subtropical genera Castanopsis and Castanea remain limited compared to the well-studied oak. Here, we present chromosome-level genome assemblies of Castanopsis carlesii and Castanea henryi, with assembled genome sizes of 927.24 Mb (N50 = 1.57 Mb) and 780.10 Mb (N50 = 1.07 Mb), respectively, and repetitive sequence contents of 45.79% and 44.88%. Comparative genomic analysis revealed that the estimated divergence time between Castanopsis and Castanea was determined to be 48.3 Mya and provided evidence that both genera experienced only one of the ancient whole genome triplication event (γ event) shared with most eudicots. The development of C. carlesii flower bracts and cupules was controlled by A- and E-class genes, suggesting that the cupules may originate from the bracts. Additionally, genes involved in sucrose and starch metabolism genes played distinct roles during C. carlesii fruit development. The amplification of the nucleotide-binding leucine-rich repeat (NLR) gene family in Fagaceae exhibited similarities, indicating that this expansion may be an adaptation to similar environmental pressures. This study provides valuable genomic resources for Asian Fagaceae and enhances our understanding of Fagaceae evolution.

壳斗科有900多种,是北半球森林生态系统的重要组成部分。然而,与被充分研究的橡树相比,热带和亚热带的Castanopsis和Castanea属的基因组数据仍然有限。本研究获得了卡乐栲(Castanopsis carlesii)和核桃(Castanea henryi)的染色体水平基因组组装,组装基因组大小分别为927.24 Mb (N50 = 1.57 Mb)和780.10 Mb (N50 = 1.07 Mb),重复序列含量分别为45.79%和44.88%。比较基因组分析表明,Castanopsis和Castanea之间的分化时间估计为48.3 Mya,并提供了证据,证明这两个属只经历了一个与大多数桉树共有的古代全基因组三倍事件(γ事件)。花苞片和小苞片的发育受A类和e类基因控制,提示小苞片可能起源于苞片。此外,涉及蔗糖和淀粉代谢的基因在桃果发育过程中发挥了不同的作用。壳斗科NLR基因家族的扩增具有相似性,表明这种扩增可能是对类似环境压力的适应。该研究为亚洲壳斗科提供了宝贵的基因组资源,提高了我们对壳斗科进化的认识。
{"title":"Genomic insights into Castanopsis carlesii and Castanea henryi: flower and fruit development and evolution of NLR genes in the beech-oak family.","authors":"Xiong-De Tu, Wen-Jun Lin, Ya-Xuan Xin, Hou-Hua Fu, Cheng-Yuan Zhou, Yi-Zhe Lin, Jun Shen, Shuai Chen, Hui Lian, Shu-Zhen Jiang, Bin Liu, Yu Li, Zi Wang, Ding-Kun Liu, Zhi-Wen Wang, Siren Lan, Ming-He Li, Zhong-Jian Liu, Shi-Pin Chen","doi":"10.1186/s43897-025-00152-4","DOIUrl":"10.1186/s43897-025-00152-4","url":null,"abstract":"<p><p>The Fagaceae family, comprising over 900 species, is an essential component of Northern Hemisphere forest ecosystems. However, genomic data for tropical and subtropical genera Castanopsis and Castanea remain limited compared to the well-studied oak. Here, we present chromosome-level genome assemblies of Castanopsis carlesii and Castanea henryi, with assembled genome sizes of 927.24 Mb (N50 = 1.57 Mb) and 780.10 Mb (N50 = 1.07 Mb), respectively, and repetitive sequence contents of 45.79% and 44.88%. Comparative genomic analysis revealed that the estimated divergence time between Castanopsis and Castanea was determined to be 48.3 Mya and provided evidence that both genera experienced only one of the ancient whole genome triplication event (γ event) shared with most eudicots. The development of C. carlesii flower bracts and cupules was controlled by A- and E-class genes, suggesting that the cupules may originate from the bracts. Additionally, genes involved in sucrose and starch metabolism genes played distinct roles during C. carlesii fruit development. The amplification of the nucleotide-binding leucine-rich repeat (NLR) gene family in Fagaceae exhibited similarities, indicating that this expansion may be an adaptation to similar environmental pressures. This study provides valuable genomic resources for Asian Fagaceae and enhances our understanding of Fagaceae evolution.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"33"},"PeriodicalIF":10.6,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135283/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144217119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A native visual screening reporter-assisted CRISPR/Cas9 system for high-efficient genome editing in strawberry. 一种用于草莓高效基因组编辑的原生目视筛选报告器辅助CRISPR/Cas9系统
IF 10.6 Q1 HORTICULTURE Pub Date : 2025-06-03 DOI: 10.1186/s43897-025-00151-5
Xianyan Han, Xia Liang, Dongdong Li, Miaoying Song, Zhimin Ma, Ruixia Li, Han Meng, Yue Cai, Bailong Song, Zhongchi Liu, Houcheng Zhou, Junhui Zhou
{"title":"A native visual screening reporter-assisted CRISPR/Cas9 system for high-efficient genome editing in strawberry.","authors":"Xianyan Han, Xia Liang, Dongdong Li, Miaoying Song, Zhimin Ma, Ruixia Li, Han Meng, Yue Cai, Bailong Song, Zhongchi Liu, Houcheng Zhou, Junhui Zhou","doi":"10.1186/s43897-025-00151-5","DOIUrl":"10.1186/s43897-025-00151-5","url":null,"abstract":"","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"29"},"PeriodicalIF":10.6,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12131447/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144209689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-omics analyses unveil dual genetic loci governing four distinct watermelon flesh color phenotypes. 多组学分析揭示了控制四种不同西瓜果肉颜色表型的双重遗传位点。
IF 10.6 Q1 HORTICULTURE Pub Date : 2025-05-14 DOI: 10.1186/s43897-025-00166-y
Na Li, Shilai Xing, Gaofei Sun, Jianli Shang, Jia-Long Yao, Nannan Li, Dan Zhou, Yu Wang, Yuan Lu, Jinpeng Bi, Jiming Wang, Hongfeng Lu, Shuangwu Ma

Watermelon fruit flesh displays various colors. Although genetic loci underlying these variations are identified, the molecular mechanism remains elusive. Here, we assembled a chromosome-scale reference genome of an elite watermelon and developed integrated genetic maps using single nucleotide polymorphism (SNP) and structural variation markers. Several key genetic varients for fruit shape and flesh color were identified. Two variants associated with flesh color were further studied, including one copy number variant (CNV, a triplicate of 1.2 kb DNA) in the promoter region of REDUCED CHLOROPLAST COVERAGE 2 (ClREC2) and one SNP in Lycopene β-Cyclase (ClLCYB) coding region. These two variants together explained 99.7% of the flesh color variations in 314 watermelon accessions. The SNP in ClLCYB was the same as previously reported, disrupting ClLCYB function. The CNV could strongly enhance ClREC2 expression, consequently increasing the expression of carotenoid biosynthesis genes, the number of plastoglobules within chromoplasts, and carotenoid level in mature fruit flesh. Finally, we proposed a "two-switch" genetic model by integrating two major causative loci, which can explain the formation of the four main flesh colors in different watermelon accessions. These results provide new insights into the regulation of carotenoid biosynthesis and color formation in plants.

西瓜果肉呈现出各种各样的颜色。虽然这些变异背后的基因位点已经确定,但分子机制仍然难以捉摸。在此,我们组装了一个优良西瓜的染色体尺度参考基因组,并利用单核苷酸多态性(SNP)和结构变异标记建立了综合遗传图谱。鉴定了几个决定果实形状和果肉颜色的关键遗传变异。进一步研究了两个与果肉颜色相关的变异,包括一个拷贝数变异(CNV,一个1.2 kb DNA的3个重复)在还原叶绿体覆盖2 (ClREC2)启动子区域和一个SNP在番茄红素β-环化酶(ClLCYB)编码区域。这两个变异共同解释了314份西瓜果肉颜色变异的99.7%。ClLCYB中的SNP与先前报道的相同,破坏了ClLCYB的功能。CNV能强烈增强ClREC2的表达,从而增加成熟果肉中类胡萝卜素生物合成基因的表达、染色质内质体红蛋白的数量和类胡萝卜素水平。最后,我们提出了一个整合两个主要致病位点的“双开关”遗传模型,该模型可以解释不同西瓜材料中四种主要果肉颜色的形成。这些结果为植物类胡萝卜素生物合成和颜色形成的调控提供了新的见解。
{"title":"Multi-omics analyses unveil dual genetic loci governing four distinct watermelon flesh color phenotypes.","authors":"Na Li, Shilai Xing, Gaofei Sun, Jianli Shang, Jia-Long Yao, Nannan Li, Dan Zhou, Yu Wang, Yuan Lu, Jinpeng Bi, Jiming Wang, Hongfeng Lu, Shuangwu Ma","doi":"10.1186/s43897-025-00166-y","DOIUrl":"10.1186/s43897-025-00166-y","url":null,"abstract":"<p><p>Watermelon fruit flesh displays various colors. Although genetic loci underlying these variations are identified, the molecular mechanism remains elusive. Here, we assembled a chromosome-scale reference genome of an elite watermelon and developed integrated genetic maps using single nucleotide polymorphism (SNP) and structural variation markers. Several key genetic varients for fruit shape and flesh color were identified. Two variants associated with flesh color were further studied, including one copy number variant (CNV, a triplicate of 1.2 kb DNA) in the promoter region of REDUCED CHLOROPLAST COVERAGE 2 (ClREC2) and one SNP in Lycopene β-Cyclase (ClLCYB) coding region. These two variants together explained 99.7% of the flesh color variations in 314 watermelon accessions. The SNP in ClLCYB was the same as previously reported, disrupting ClLCYB function. The CNV could strongly enhance ClREC2 expression, consequently increasing the expression of carotenoid biosynthesis genes, the number of plastoglobules within chromoplasts, and carotenoid level in mature fruit flesh. Finally, we proposed a \"two-switch\" genetic model by integrating two major causative loci, which can explain the formation of the four main flesh colors in different watermelon accessions. These results provide new insights into the regulation of carotenoid biosynthesis and color formation in plants.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"46"},"PeriodicalIF":10.6,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077075/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144056716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new climate for genomic and epigenomic innovation in grapevine. 葡萄基因组学和表观基因组学创新的新气象。
IF 10.6 Q1 HORTICULTURE Pub Date : 2025-05-12 DOI: 10.1186/s43897-025-00171-1
Maximilian Schmidt, Timo Strack, Haylie Andrews, Lee T Hickey, Peter A Crisp, Kai P Voss-Fels
{"title":"A new climate for genomic and epigenomic innovation in grapevine.","authors":"Maximilian Schmidt, Timo Strack, Haylie Andrews, Lee T Hickey, Peter A Crisp, Kai P Voss-Fels","doi":"10.1186/s43897-025-00171-1","DOIUrl":"https://doi.org/10.1186/s43897-025-00171-1","url":null,"abstract":"","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"44"},"PeriodicalIF":10.6,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067663/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144054040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Horticulture
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1