Tomato (Solanum lycopersicum) is one of the most important vegetable crops in the world and abiotic stresses often cause serious problems in tomato production. It is thus important to identify new regulators in stress response and to devise new approaches to promote stress tolerance in tomato. Previous studies have shown that small secreted peptides (SSPs) are important signal molecules regulating plant growth and stress response by mediating intercellular communication. However, little is known about tomato SSPs, especially their roles in responding to abiotic stresses. Here we report the identification of 1,050 putative SSPs in the tomato genome, 557 of which were classified into 38 known SSP families based on their conserved domains. GO and transcriptome analyses revealed that a large proportion of SlSSPs might be involved in abiotic stress response. Further analysis indicated that stress response related cis-elements were present on the SlCEP promotors and a number of SlCEPs were significantly upregulated by drought treatments. Among the drought-inducible SlCEPs, SlCEP10 and SlCEP11b were selected for further analysis via exogenous application of synthetic peptides. The results showed that treatments with both SlCEP10 and SlCEP11b peptides enhanced tomato drought stress tolerance, indicating the potential roles of SlSSPs in abiotic stress response.
{"title":"Small secreted peptides (SSPs) in tomato and their potential roles in drought stress response.","authors":"Kexin Xu, Dongdong Tian, TingJin Wang, Aijun Zhang, Mohamed Abdou Youssef Elsadek, Weihong Liu, Liping Chen, Yongfeng Guo","doi":"10.1186/s43897-023-00063-2","DOIUrl":"10.1186/s43897-023-00063-2","url":null,"abstract":"<p><p>Tomato (Solanum lycopersicum) is one of the most important vegetable crops in the world and abiotic stresses often cause serious problems in tomato production. It is thus important to identify new regulators in stress response and to devise new approaches to promote stress tolerance in tomato. Previous studies have shown that small secreted peptides (SSPs) are important signal molecules regulating plant growth and stress response by mediating intercellular communication. However, little is known about tomato SSPs, especially their roles in responding to abiotic stresses. Here we report the identification of 1,050 putative SSPs in the tomato genome, 557 of which were classified into 38 known SSP families based on their conserved domains. GO and transcriptome analyses revealed that a large proportion of SlSSPs might be involved in abiotic stress response. Further analysis indicated that stress response related cis-elements were present on the SlCEP promotors and a number of SlCEPs were significantly upregulated by drought treatments. Among the drought-inducible SlCEPs, SlCEP10 and SlCEP11b were selected for further analysis via exogenous application of synthetic peptides. The results showed that treatments with both SlCEP10 and SlCEP11b peptides enhanced tomato drought stress tolerance, indicating the potential roles of SlSSPs in abiotic stress response.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"3 1","pages":"17"},"PeriodicalIF":0.0,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515272/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41142657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-17DOI: 10.1186/s43897-023-00064-1
Ze Wu, Jiahui Liang, Ting Li, Dehua Zhang, Nianjun Teng
The CCCH proteins play important roles in plant growth and development, hormone response, pathogen defense and abiotic stress tolerance. However, the knowledge of their roles in thermotolerance are scarce. Here, we identified a heat-inducible CCCH gene LlC3H18 from lily. LlC3H18 was localized in the cytoplasm and nucleus under normal conditions, while it translocated in the cytoplasmic foci and co-located with the markers of two messenger ribonucleoprotein (mRNP) granules, processing bodies (PBs) and stress granules (SGs) under heat stress conditions, and it also exhibited RNA-binding ability. In addition, LlC3H18 exhibited transactivation activity in both yeast and plant cells. In lily and Arabidopsis, overexpression of LlC3H18 damaged their thermotolerances, and silencing of LlC3H18 in lily also impaired its thermotolerance. Similarly, Arabidopsis atc3h18 mutant also showed decreased thermotolerance. These results indicated that the appropriate expression of C3H18 was crucial for establishing thermotolerance. Further analysis found that LlC3H18 directly bound to the promoter of LlWRKY33 and activated its expression. Besides, it was found that LlMYB305 acted as an upstream factor of LlC3H18 and activated its expression. In conclusion, we demonstrated that there may be a LlMYB305-LlC3H18-LlWRKY33 regulatory module in lily that is involved in the establishment of thermotolerance and finely regulates heat stress response.
{"title":"A LlMYB305-LlC3H18-LlWRKY33 module regulates thermotolerance in lily.","authors":"Ze Wu, Jiahui Liang, Ting Li, Dehua Zhang, Nianjun Teng","doi":"10.1186/s43897-023-00064-1","DOIUrl":"10.1186/s43897-023-00064-1","url":null,"abstract":"<p><p>The CCCH proteins play important roles in plant growth and development, hormone response, pathogen defense and abiotic stress tolerance. However, the knowledge of their roles in thermotolerance are scarce. Here, we identified a heat-inducible CCCH gene LlC3H18 from lily. LlC3H18 was localized in the cytoplasm and nucleus under normal conditions, while it translocated in the cytoplasmic foci and co-located with the markers of two messenger ribonucleoprotein (mRNP) granules, processing bodies (PBs) and stress granules (SGs) under heat stress conditions, and it also exhibited RNA-binding ability. In addition, LlC3H18 exhibited transactivation activity in both yeast and plant cells. In lily and Arabidopsis, overexpression of LlC3H18 damaged their thermotolerances, and silencing of LlC3H18 in lily also impaired its thermotolerance. Similarly, Arabidopsis atc3h18 mutant also showed decreased thermotolerance. These results indicated that the appropriate expression of C3H18 was crucial for establishing thermotolerance. Further analysis found that LlC3H18 directly bound to the promoter of LlWRKY33 and activated its expression. Besides, it was found that LlMYB305 acted as an upstream factor of LlC3H18 and activated its expression. In conclusion, we demonstrated that there may be a LlMYB305-LlC3H18-LlWRKY33 regulatory module in lily that is involved in the establishment of thermotolerance and finely regulates heat stress response.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"3 1","pages":"15"},"PeriodicalIF":0.0,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514960/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41136226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Citrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CaLas), is the most serious disease worldwide. CaLasSDE460 was previously characterized as a potential virulence factor of CaLas. However, the function and mechanism of CaLasSDE460 involved in CaLas against citrus is still elusive. Here, we showed that transgenic expression of CaLasSDE460 in Wanjincheng oranges (C. sinensis Osbeck) contributed to the early growth of CaLas and the development of symptoms. When the temperature increased from 25 °C to 32 °C, CaLas growth and symptom development in transgenic plants were slower than those in WT controls. RNA-seq analysis of transgenic plants showed that CaLasSDE460 affected multiple biological processes. At 25 °C, transcription activities of the "Protein processing in endoplasmic reticulum" and "Cyanoamino acid metabolism" pathways increased while transcription activities of many pathways decreased at 32 °C. 124 and 53 genes, separately annotated to plant-pathogen interaction and MAPK signaling pathways, showed decreased expression at 32 °C, compared with these (38 for plant-pathogen interaction and 17 for MAPK signaling) at 25 °C. Several important genes (MAPKKK14, HSP70b, NCED3 and WRKY33), remarkably affected by CaLasSDE460, were identified. Totally, our data suggested that CaLasSDE460 participated in the pathogenesis of CaLas through interfering transcription activities of citrus defense response and this interfering was temperature-dependent.
{"title":"Function and molecular mechanism analysis of CaLasSDE460 effector involved in the pathogenesis of \"Candidatus Liberibacter asiaticus\" in citrus.","authors":"Shuai Wang, Meixia Du, Liting Dong, Rongrong Qu, Danlu Ran, Juanjuan Ma, Xuefeng Wang, Lanzhen Xu, Weimin Li, Yongrui He, Xiuping Zou","doi":"10.1186/s43897-023-00062-3","DOIUrl":"https://doi.org/10.1186/s43897-023-00062-3","url":null,"abstract":"<p><p>Citrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CaLas), is the most serious disease worldwide. CaLasSDE460 was previously characterized as a potential virulence factor of CaLas. However, the function and mechanism of CaLasSDE460 involved in CaLas against citrus is still elusive. Here, we showed that transgenic expression of CaLasSDE460 in Wanjincheng oranges (C. sinensis Osbeck) contributed to the early growth of CaLas and the development of symptoms. When the temperature increased from 25 °C to 32 °C, CaLas growth and symptom development in transgenic plants were slower than those in WT controls. RNA-seq analysis of transgenic plants showed that CaLasSDE460 affected multiple biological processes. At 25 °C, transcription activities of the \"Protein processing in endoplasmic reticulum\" and \"Cyanoamino acid metabolism\" pathways increased while transcription activities of many pathways decreased at 32 °C. 124 and 53 genes, separately annotated to plant-pathogen interaction and MAPK signaling pathways, showed decreased expression at 32 °C, compared with these (38 for plant-pathogen interaction and 17 for MAPK signaling) at 25 °C. Several important genes (MAPKKK14, HSP70b, NCED3 and WRKY33), remarkably affected by CaLasSDE460, were identified. Totally, our data suggested that CaLasSDE460 participated in the pathogenesis of CaLas through interfering transcription activities of citrus defense response and this interfering was temperature-dependent.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"3 1","pages":"14"},"PeriodicalIF":0.0,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514941/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41177184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phase transition and floral induction in citrus requires several years of juvenility after germination. Such a long period of juvenility has been a major hindrance to its genetic improvement program. Studies have shown that miR156 along with its downstream genes SQUAMOSA PROMOTER BINDING PROTEINS (SBP) and SBP-LIKE (SPL) mediate the phase transition and floral induction process in plants. Our current study has systematically analyzed SPLs in 15 different citrus-related species, systematically annotated them based on their close homology to their respective Arabidopsis orthologs, and confirmed the functional attributes of the selected members in floral precocity. The majority of the species harbored 15 SPLs. Their cis-element assessment suggested the involvement of the SPLs in diverse developmental and physiological processes in response to different biotic and abiotic cues. Among all, SPL5, SPL9, and SPL11 stood out as consistently differentially expressed SPLs in the adult and young tissues of different citrus-related species. Independent overexpression of their F. hindsii orthologs (FhSPL5, FhSPL9, and FhSPL11) brought an enhanced expression of endogenous FLOWERING LOCUS T leading to the significantly precocious flowering in transgenic Arabidopsis lines. Future study of the genes in the citrus plant itself is expected to conclude the assessments made in the current study.
{"title":"Evolutionary assessment of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in citrus relatives with a specific focus on flowering.","authors":"Yawei Li, Shuting Wang, Prakash Babu Adhikari, Bing Liu, Shengjun Liu, Yue Huang, Gang Hu, Michitaka Notaguchi, Qiang Xu","doi":"10.1186/s43897-023-00061-4","DOIUrl":"10.1186/s43897-023-00061-4","url":null,"abstract":"<p><p>Phase transition and floral induction in citrus requires several years of juvenility after germination. Such a long period of juvenility has been a major hindrance to its genetic improvement program. Studies have shown that miR156 along with its downstream genes SQUAMOSA PROMOTER BINDING PROTEINS (SBP) and SBP-LIKE (SPL) mediate the phase transition and floral induction process in plants. Our current study has systematically analyzed SPLs in 15 different citrus-related species, systematically annotated them based on their close homology to their respective Arabidopsis orthologs, and confirmed the functional attributes of the selected members in floral precocity. The majority of the species harbored 15 SPLs. Their cis-element assessment suggested the involvement of the SPLs in diverse developmental and physiological processes in response to different biotic and abiotic cues. Among all, SPL5, SPL9, and SPL11 stood out as consistently differentially expressed SPLs in the adult and young tissues of different citrus-related species. Independent overexpression of their F. hindsii orthologs (FhSPL5, FhSPL9, and FhSPL11) brought an enhanced expression of endogenous FLOWERING LOCUS T leading to the significantly precocious flowering in transgenic Arabidopsis lines. Future study of the genes in the citrus plant itself is expected to conclude the assessments made in the current study.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"3 1","pages":"13"},"PeriodicalIF":0.0,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515035/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41172895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-26DOI: 10.1186/s43897-023-00060-5
Adi Doron-Faigenboim, Michal Moy-Komemi, Marina Petreikov, Yelena Eselson, Prashant Sonawane, Pablo Cardenas, Zhangjun Fei, Asaph Aharoni, Arthur A Schaffer
{"title":"Transcriptomes of developing fruit of cultivated and wild tomato species.","authors":"Adi Doron-Faigenboim, Michal Moy-Komemi, Marina Petreikov, Yelena Eselson, Prashant Sonawane, Pablo Cardenas, Zhangjun Fei, Asaph Aharoni, Arthur A Schaffer","doi":"10.1186/s43897-023-00060-5","DOIUrl":"https://doi.org/10.1186/s43897-023-00060-5","url":null,"abstract":"","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"3 1","pages":"12"},"PeriodicalIF":0.0,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514971/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41170238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-06DOI: 10.1186/s43897-023-00059-y
Yan Zhao, Guanze Liu, Feng Yang, Yanli Liang, Qingqing Gao, Chunfan Xiang, Xia Li, Run Yang, Guanghui Zhang, Huifeng Jiang, Lei Yu, Shengchao Yang
Medicinal plants represent a huge reservoir of secondary metabolites (SMs), substances with significant pharmaceutical and industrial potential. However, obtaining secondary metabolites remains a challenge due to their low-yield accumulation in medicinal plants; moreover, these secondary metabolites are produced through tightly coordinated pathways involving many spatiotemporally and environmentally regulated steps. The first regulatory layer involves a complex network of transcription factors; a second, more recently discovered layer of complexity in the regulation of SMs is epigenetic modification, such as DNA methylation, histone modification and small RNA-based mechanisms, which can jointly or separately influence secondary metabolites by regulating gene expression. Here, we summarize the findings in the fields of genetic and epigenetic regulation with a special emphasis on SMs in medicinal plants, providing a new perspective on the multiple layers of regulation of gene expression.
{"title":"Multilayered regulation of secondary metabolism in medicinal plants.","authors":"Yan Zhao, Guanze Liu, Feng Yang, Yanli Liang, Qingqing Gao, Chunfan Xiang, Xia Li, Run Yang, Guanghui Zhang, Huifeng Jiang, Lei Yu, Shengchao Yang","doi":"10.1186/s43897-023-00059-y","DOIUrl":"10.1186/s43897-023-00059-y","url":null,"abstract":"<p><p>Medicinal plants represent a huge reservoir of secondary metabolites (SMs), substances with significant pharmaceutical and industrial potential. However, obtaining secondary metabolites remains a challenge due to their low-yield accumulation in medicinal plants; moreover, these secondary metabolites are produced through tightly coordinated pathways involving many spatiotemporally and environmentally regulated steps. The first regulatory layer involves a complex network of transcription factors; a second, more recently discovered layer of complexity in the regulation of SMs is epigenetic modification, such as DNA methylation, histone modification and small RNA-based mechanisms, which can jointly or separately influence secondary metabolites by regulating gene expression. Here, we summarize the findings in the fields of genetic and epigenetic regulation with a special emphasis on SMs in medicinal plants, providing a new perspective on the multiple layers of regulation of gene expression.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"3 1","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514987/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41157426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-08DOI: 10.1186/s43897-023-00057-0
Wu Wang, Mindy Y Wang, Yunliu Zeng, Xiuyin Chen, Xiaoyao Wang, Anne M Barrington, Jianmin Tao, Ross G Atkinson, Niels J Nieuwenhuizen
Volatile terpenes are important compounds that influence fruit flavour and aroma of kiwifruit. Terpenes in plants also impact on the floral bouquet and defence against pests and pathogens in leaves and fruit. To better understand the overlapping roles that terpenes may fulfil in plants, a systematic gene, chemical and biochemical analysis of terpenes and terpene synthases (TPS) was undertaken in Red5 kiwifruit (Actinidia spp.). Analysis of the Red5 genome shows it contains only 22 TPS gene models, of which fifteen encode full-length TPS. Thirteen TPS can account for the major terpene volatiles produced in different tissues of Red5 kiwifruit and in response to different stimuli. The small Red5 TPS family displays surprisingly high functional redundancy with five TPS producing linalool/nerolidol. Treatment of leaves and fruit with methyl jasmonate enhanced expression of a subset of defence-related TPS genes and stimulated the release of terpenes. Six TPS genes were induced upon herbivory of leaves by the economically important insect pest Ctenopseustis obliquana (brown-headed leaf roller) and emission, but not accumulation, of (E)- and (Z)-nerolidol was strongly linked to herbivory. Our results provide a framework to understand the overlapping biological and ecological roles of terpenes in Actinidia and other horticultural crops.
{"title":"The terpene synthase (TPS) gene family in kiwifruit shows high functional redundancy and a subset of TPS likely fulfil overlapping functions in fruit flavour, floral bouquet and defence.","authors":"Wu Wang, Mindy Y Wang, Yunliu Zeng, Xiuyin Chen, Xiaoyao Wang, Anne M Barrington, Jianmin Tao, Ross G Atkinson, Niels J Nieuwenhuizen","doi":"10.1186/s43897-023-00057-0","DOIUrl":"10.1186/s43897-023-00057-0","url":null,"abstract":"<p><p>Volatile terpenes are important compounds that influence fruit flavour and aroma of kiwifruit. Terpenes in plants also impact on the floral bouquet and defence against pests and pathogens in leaves and fruit. To better understand the overlapping roles that terpenes may fulfil in plants, a systematic gene, chemical and biochemical analysis of terpenes and terpene synthases (TPS) was undertaken in Red5 kiwifruit (Actinidia spp.). Analysis of the Red5 genome shows it contains only 22 TPS gene models, of which fifteen encode full-length TPS. Thirteen TPS can account for the major terpene volatiles produced in different tissues of Red5 kiwifruit and in response to different stimuli. The small Red5 TPS family displays surprisingly high functional redundancy with five TPS producing linalool/nerolidol. Treatment of leaves and fruit with methyl jasmonate enhanced expression of a subset of defence-related TPS genes and stimulated the release of terpenes. Six TPS genes were induced upon herbivory of leaves by the economically important insect pest Ctenopseustis obliquana (brown-headed leaf roller) and emission, but not accumulation, of (E)- and (Z)-nerolidol was strongly linked to herbivory. Our results provide a framework to understand the overlapping biological and ecological roles of terpenes in Actinidia and other horticultural crops.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"3 1","pages":"9"},"PeriodicalIF":10.6,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514967/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41171776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-28DOI: 10.1186/s43897-023-00058-z
Zihan Song, Sheng Zhong, Li-Jia Qu
{"title":"FERONIA and reactive oxygen species: regulators in the self-incompatibility response and in interspecific pollination.","authors":"Zihan Song, Sheng Zhong, Li-Jia Qu","doi":"10.1186/s43897-023-00058-z","DOIUrl":"10.1186/s43897-023-00058-z","url":null,"abstract":"","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"3 1","pages":"10"},"PeriodicalIF":10.6,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514924/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41170237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-17DOI: 10.1186/s43897-023-00056-1
Yuxuan Wang, Yan Xu, Jieming Xu, Wanxia Sun, Zhengxin Lv, Muhammad Aamir Manzoor, Xunju Liu, Zhiyu Shen, Jiyuan Wang, Ruie Liu, Matthew D Whiting, Songtao Jiu, Caixi Zhang
Waterlogging has occurred more frequently in recent years due to climate change, so it is a huge threat to crop yield and quality. Sweet cherry, a fruit tree with a high economic value, is sensitive to waterlogging stress. One of the most effective methods for enhancing the waterlogging tolerance of sweet cherries is to select waterlogging-tolerant rootstocks. However, the waterlogging tolerance of different cherry rootstocks, and the underlying mechanism remains uncharacterized. Thus, we first evaluated the waterlogging resistance of five sweet cherry rootstocks planted in China. The data showed that 'Gisela 12' and 'Colt' were the most waterlogging-sensitive and -tolerant among the five tested varieties, respectively. Oxygenation effectively alleviated the adverse impacts of waterlogging stress on cherry rootstocks. Moreover, we found that the waterlogging group had lower relative water content, Fv/Fm value, net photosynthetic rate, and higher antioxidant enzyme activities, whereas the oxygenated group performed better in all these parameters. RNA-Seq analysis revealed that numerous DEGs were involved in energy production, antioxidant metabolism, hormone metabolism pathways, and stress-related transcription factors. These findings will help provide management strategies to enhance the waterlogging tolerance of cherry rootstocks and thereby achieve higher yield and better quality of cherries.
{"title":"Oxygenation alleviates waterlogging-caused damages to cherry rootstocks.","authors":"Yuxuan Wang, Yan Xu, Jieming Xu, Wanxia Sun, Zhengxin Lv, Muhammad Aamir Manzoor, Xunju Liu, Zhiyu Shen, Jiyuan Wang, Ruie Liu, Matthew D Whiting, Songtao Jiu, Caixi Zhang","doi":"10.1186/s43897-023-00056-1","DOIUrl":"https://doi.org/10.1186/s43897-023-00056-1","url":null,"abstract":"<p><p>Waterlogging has occurred more frequently in recent years due to climate change, so it is a huge threat to crop yield and quality. Sweet cherry, a fruit tree with a high economic value, is sensitive to waterlogging stress. One of the most effective methods for enhancing the waterlogging tolerance of sweet cherries is to select waterlogging-tolerant rootstocks. However, the waterlogging tolerance of different cherry rootstocks, and the underlying mechanism remains uncharacterized. Thus, we first evaluated the waterlogging resistance of five sweet cherry rootstocks planted in China. The data showed that 'Gisela 12' and 'Colt' were the most waterlogging-sensitive and -tolerant among the five tested varieties, respectively. Oxygenation effectively alleviated the adverse impacts of waterlogging stress on cherry rootstocks. Moreover, we found that the waterlogging group had lower relative water content, Fv/Fm value, net photosynthetic rate, and higher antioxidant enzyme activities, whereas the oxygenated group performed better in all these parameters. RNA-Seq analysis revealed that numerous DEGs were involved in energy production, antioxidant metabolism, hormone metabolism pathways, and stress-related transcription factors. These findings will help provide management strategies to enhance the waterlogging tolerance of cherry rootstocks and thereby achieve higher yield and better quality of cherries.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"3 1","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10515082/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41138580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}